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ABSTRACT 
 
Recent research has proposed that GIT2 (G protein-coupled receptor kinase interacting protein 2) acts as an 
integrator of the aging process through regulation of ‘neurometabolic’ integrity. One of the commonly accepted 
hallmarks of the aging process is thymic involution. At a relatively young age, 12 months old, GIT2-/- mice 
present a prematurely distorted thymic structure and dysfunction compared to age-matched 12 month-old 
wild-type control (C57BL/6) mice. Disruption of thymic structure in GIT2-/- (GIT2KO) mice was associated with a 
significant reduction in the expression of the cortical thymic marker, Troma-I (cytokeratin 8). Double positive 
(CD4+CD8+) and single positive CD4+ T cells were also markedly reduced in 12 month-old GIT2KO mice compared 
to age-matched control wild-type mice. Coincident with this premature thymic disruption in GIT2KO mice was 
the unique generation of a novel cervical ‘organ’, i.e. ‘parathymic lobes’. These novel organs did not exhibit 
classical peripheral lymph node-like characteristics but expressed high levels of T cell progenitors that were 
reflexively reduced in GIT2KO thymi. Using signaling pathway analysis of GIT2KO thymus and parathymic lobe 
transcriptomic data we found that the molecular signaling functions lost in the dysfunctional GIT2KO thymus 
were selectively reinstated in the novel parathymic lobe – suggestive of a compensatory effect for the 
premature thymic disruption. Broader inspection of high-dimensionality transcriptomic data from GIT2KO 
lymph nodes, spleen, thymus and parathymic lobes revealed a systemic alteration of multiple proteins (Dbp, 
Tef, Per1, Per2, Fbxl3, Ddit4, Sin3a) involved in the multidimensional control of cell cycle clock regulation, cell 
senescence, cellular metabolism and DNA damage. Altered cell clock regulation across both immune and non-
immune tissues therefore may be responsible for the premature ‘aging’ phenotype of GIT2KO mice. 
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INTRODUCTION 
 
The thymus gland, responsible for T-cell maturation is 
most active during neonatal and pre-adolescent periods. 
Hematopoietic precursors originating from bone 
marrow translocate to the thymus and eventually these 
cells undergo a process of expansion, maturation and 
TcR (T-cell receptor) repertoire selection, and finally 
migrate to the periphery as mature T cells. Diminution 
in thymic size and function is a hallmark of normal 
aging and immunosenescence [1-4], in which the 
thymus begins to atrophy with gradual stromal adipose 
infiltration. This natural process of aging-related 
degeneration of the immune system exerts a significant 
impact upon quality of life in aged populations and 
increases the propensity for autoimmune diseases and 
cancers [5]. It is estimated that approximately 80% of 
aged individuals are afflicted with at least one chronic 
disease as a result of a declination of immune function 
[6]. In this respect the structural and functional 
degradation of the thymus is considered as one of the 
hallmarks of the natural aging process [6]. 
 
The thymus comprises a peripheral cortex and the 
central medulla that control separate maturational steps 
in the differentiation process from precursor cells to 
mature T cells. Loss of medullary and cortical definition 
and a disorganization of the corticomedullary junction 
are characteristic of the aged thymus [7, 8]. Age-related 
thymic involution results in the reduction of 
thymopoiesis which precedes T-cell related immuno-
incompetence in an advanced age. Age-related thymic 
involution is classically associated with loss of gross 
structural integrity as well as disruption of multiple 
pathways involved in stress responses [6]. From several 
decades of concerted research it has become ever more 
clear that the ‘rate’ of somatic aging is a complex sum 
of multiple interconnected and synergistic molecular 
pathologies including mitochondrial dysfunction, 
alterations in nutrient sensation and metabolism, 
dysfunctions in tissue and DNA repair, chronic 
inflammation, attenuated stress responsivity and 
accumulated oxidative damage [9]. The aging process 
appears to be effectively coordinated across the whole 
body and the impact of these diverse molecular 
disruptions appears to effectively underpin virtually 
every form of disease-related process [10, 11]. Systemic 
and single cellular metabolic disruption, linked to either 
mitochondrial insufficiency or dysfunctional glucose 
uptake/transport, represents one of core features of 
aging as this pathophysiology can further entrain 
oxidative damage to lipids, nucleic acids and proteins. 
Given this, it is unsurprising that age-related diseases 
including Metabolic Syndrome/Type II diabetes 
mellitus (T2DM) [12], nonalcoholic steatohepatitis 
(NASH: [13]), cardiovascular disease [14], chronic 
kidney disease [15] and central neurodegenerative 

disorders such as Alzheimer’s and Huntington’s disease 
[16, 17] are strongly influenced by aberrant glucose 
metabolism. 
 
A recent aspect of the aging/cellular damage/disease 
nexus is the emerging evidence demonstrating cellular 
clock and circadian rhythm disruption in the aging 
process [18]. Hence, considerable evidence now 
demonstrates that not only can cellular clock 
mechanisms regulate cellular tissue chronological aging 
but these mechanisms also strongly regulate the 
rate/extent of metabolic disruption, telomere stability 
and DNA damage during the aging process [19-21]. 
Considering this it is not surprising therefore that 
cellular clock functionality has now been linked to 
multiple age-related disorders including 
neurodegeneration/dementia [22], metabolic disorders 
such as NASH and Metabolic Syndrome [23, 24] and 
premature pathophysiological aging linked to attenuated 
DNA damage repair [25, 26]. It is interesting to note 
that a strong evolutionary synergy between clock genes 
and also proteins involved in the DDR process has been 
proposed [27]. With specific regards to classical 
mechanisms of aging it has also been demonstrated that 
alterations in cellular reduction-oxidation (redox) status 
(strongly linked to energy metabolism) triggers the 
transduction of light-entrained signals that regulate 
circadian clock gene transcription, suggesting that 
cellular responses to photo-oxidative stress may have 
been the evolutionary origin of the circadian clock [27]. 
Multiple intracellular signaling proteins involved in 
stress-responsive cascades, e.g. ATM, p53, MRE11, 
BRCA1 and CDKN2A, play important roles in both cell 
cycle/DDR control as well as circadian clock regulation 
[24, 26, 28-30]. Recently we have also demonstrated 
that G protein-coupled receptor (GPCR)-related 
signaling proteins, linked to premature aging, can also 
effectively connect energy metabolism, oxidative stress 
responses and DDR activity [31-34]. Hence, G protein-
coupled receptor kinase interacting protein 2, also 
known as ADP-ribosylation factor GTPase-activating 
protein 2, (GIT2) is a G protein-coupled receptor-
associated protein associated with cytoskeletal activity, 
receptor internalization and bone resorption [35-Wang 
et al, 2012]). GIT2 appears to exert a strong trophic 
effect upon multiple aspects of the aging process [31, 
32]. GIT2 expression is highly sensitive to 
neurometabolic stress and cellular injury associated 
with oxidative damage or DNA double strand breaks, 
both pivotal controllers of pathological and normal 
aging [31-33]. In this regards we have demonstrated that 
GIT2 is an ATM kinase substrate that assists in the 
assembly of DDR complexes containing MRE11, p53 
and BRCA1 – proteins that also serve a role in clock 
regulation. With respect to the in vivo accumulation of 
DNA damage, GIT2 knockout mice (GIT2KO) 
demonstrate essentially an advanced aging phenotype, 
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as measured by the presence of phosphorylated H2AX 
histone adducts [33] indicating with respect to DNA 
damage accumulation these mice present a premature 
aging phenotype. Peripheral T cells and thymocytes also 
express GIT2 where it has a key role in regulating 
chemokine-mediated motility of thymocytes. Hence, 
GIT2 expression has been shown to negatively regulate 
T cell motility [36]. While it is clear that GIT2 may 
affect immune cell functionality, via control of T cell 
motility [36] we also asked whether, in the context of 
the keystone role GIT2 plays in connecting multiple 
age-related pathologies, classical age-related thymic 
involution was also affected as this process is 
considered one of the canonical aspects of physiological 
aging. 
 
RESULTS 
 
GIT2 genomic deletion affects total lifespan and 
alters indices of thymic functionality  
 
Assessing age-related survival of male and female 
homozygous GIT2 knockout (GIT2KO) mice we found 
that GIT2KO males and females possessed a 
significantly shorter total lifespan compared to wildtype 
(WT) controls (males, p=0.0118; females, p=0.0225) 
(Figure 1A). The longitudinal mortality rate was 
accelerated in GIT2KO (male and female) compared to 

WT controls: in this context the males demonstrated a 
faster longitudinal rate of expiration compared to the 
females (Figure 1B). With this strong distinction in 
mortality rate in male GIT2KO mice we then chose to 
assess whether there was an alteration in the rate of 
thymic degradation in these males compared to WT 
male controls. We analyzed the presence of thymic 
progenitor cells, a proxy of thymic function, using 
FACS analysis at early time points linked to good 
health (i.e. 3 months of age, zero mortality) and also at a 
timepoint in which male GIT2KO mice first 
demonstrate a profound divergence in mortality rate 
compared to WT controls (i.e. 12 months of age, Figure 
1B). A representative FACS output image of thymic 
progenitors (CD25/c-Kit) is shown for 3 (Figure 1C) 
and 12 months of age (Figure 1D). At 3 and 12 months 
of ages, Lin- cells were significantly reduced (Figure 
1E), as were ETPs (early thymic progenitors: Figure 
1F), DN2 (Figure 1G), DN3 (Figure 1H) and DN4 
(Figure 1I) in GIT2KO mice compared to similarly-
aged-matched WT controls. We also assessed DP and 
CD4+, CD8+ cell counts in the GIT2KO mice. DP and 
CD4+ cell counts were significantly reduced at 12 
months in GIT2KO mice (Figure 1J-K) compared to 
WT (Figure 1J-K). A non-significant trend of reduced 
CD8+ cells at 12 months of age in GIT2KO mice was 
noted (Figure 1L). To assess whether reductions in 
GIT2KO thymic DP and CD4+ cells were linked to 

 
 

Figure 1. Genomic deletion of GIT2 attenuates overall murine lifespan and alters thymic T cell functionality. Male and 
female GIT2KO overall lifespan was assessed through comparison to control wild type (WT) littermates (A). Survival curve analysis of 
GIT2KO and WT mouse cohorts across their lifespan (B). Representative FACS images of a male WT and GIT2KO thymus at (C) 3 and 
(D) 12 months of age. The x-axes show increasing c-Kit positive and the y-axes, increasing counts of CD25+ cells. Quadrant 3 (Q3) 
(bottom R) indicates ETPs (Lin-c-Kit+CD25-), Q2 (top R) indicates DN2 (Lin-c-Kit+CD25+), Q1 (top L) indicates DN3 (Lin-c-Kit-CD25+) and 
Q4 (bottom L) indicates DN4 cells (Lin-c-Kit-CD25-). Significant age- and GIT2KO-dependent changes (compared to WT) in Lin- (E), ETP 
(F), DN2 (G), DN3 (H) and DN4 (I) cell counts. GIT2KO mice also demonstrate GIT2KO mice demonstrate significant decreases in DP (J) 
and CD4+ (K) cell counts at 12 months of age compared to WT. A non-significant trend for a similar reduction in CD8+ cell counts (L) in 
GIT2KO thymus compared to WT at 12 months of age was observed. Values indicated are mean ± SEM (standard error of mean). WT 
data are indicated in this and analogous figures with solid lines, GIT2KO data with dashed lines. Months of age is abbreviated to m.o. 
*p<0.05, **p<0.01. 
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apoptosis-related activity we measured thymic 
transcript levels of Bcl-xL, Bim, Bax, Bid and Caspase 
3 (Figure S1). Pro-apoptotic GIT2KO Bid expression 
was not significantly altered in GIT2KO mice at either 
3 or 12 months of age (Figure S1A). Caspase-3 
transcript levels were consistently, albeit in a non-
significant manner, lower at both time points in the 
GIT2KO mice compared to WT mice (Figure S1B). 
Bax expression was significantly reduced in 12 month-
old GIT2KO mice compared to controls (Figure S1C). 
Anti-apoptotic Bcl-xL and Bim transcript levels were 

significantly reduced in 12 month-old GIT2KO 
thymocytes (Figure S1D, E). Therefore GIT2 deletion 
appears to attenuate cell support in the thymus, without 
the excessive induction of pro-apoptotic activity.  
 
We determined the status of recent thymic emigrant cell 
numbers from CD31+/CD31- ratios in the spleen (Figure 
S2). Compared to WT, splenic GIT2KO CD8+CD31+ 
and CD4+CD31+ cell counts were significantly reduced 
at both 3 months of age (Figure S2A, B): a distinction 
missing at the 12 month timepoint. GIT2KO 

 
 

Figure 2. Thymic structural dysregulation in GIT2KO mice. Significant age-dependent bodyweight variations observed between 
WT and GIT2KO mice (A). Thymic weight was reduced for all mice with increasing age (B) while only GIT2KO thymocytes, normalized 
to thymic weight, were reduced with age (C). Compared to age-matched 12 month old WT mice (left image panel) gross cortico-
medullary thymic structure was disrupted in GIT2KO (right panel) mice (D: original magnification: 4x. Scale bar: 200 μm). Troma-I 
transcript expression is significantly reduced in GIT2KO thymus at 12 months of age compared to WT controls (E). WT and GIT2KO 
histogram data is indicated by black and lined bars respectively: mean ± SEM is indicated on each histogram. Months of age is 
abbreviated to m.o. *p<0.05, **p<0.01, ***p<0.001. Significantly-regulated (p<0.05) transcripts differentially expressed in GIT2KO 
versus WT thymus are indicated – specifically highlighted up- (red) or down-regulated transcripts are denoted by their official Gene 
Symbol (F). Ingenuity Pathway Analysis (IPA) Canonical Signaling Pathway analysis of transcripts differentially and significantly 
regulated (% of transcripts in pathway - upregulated in red, down-regulated in green are shown) between 12 month old GIT2KO and 
WT thymus (Top 10 enrichment probability pathways indicated: yellow line indicates pathway enrichment probability) (G). IPA 
BioFunction Z score activation analysis was performed on significantly-regulated differential transcripts from GIT2KO thymus 
compared to WT (Top 10 activation Z-score BioFunctions indicated) (H). Pathways/BioFunctions were only considered significantly 
populated with >2 transcripts at a p value of <0.05. Transcript arrays were performed in triplicate.  
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CD8+CD31- and CD4+CD31- cell counts were both 
similar to WT at 3 months of age but only CD4+CD31- 
counts were significantly elevated in GIT2-/- compared 
to WT at 12 months (Figure S2C, D). In contrast the 
ratios of GIT2KO CD8+: CD31+/CD31- or CD4+: 
CD31+/CD31- were both significantly lower than those 
found in WT mice at the 12 month timepoint (Figure 
S2E, F). With respect to the status of circulatory white 
blood cells (WBCs) no significant differences between 
GIT2KO or WT mice at either time-point (Figure S2G, 
H) were observed: a trend of reduced levels in GIT2KO 
mice at both 3 and 12 months of age was evident. 
Circulating lymphocyte percentages and total cell 
counts were consistently reduced in GIT2KO mice, at 3 
(significant) and 12 (non-significant) months of age, 
compared to WT (Figure S2I-L). To further investigate 
the age-dependent alterations in GIT2KO immune 
cellular status, we investigated bone marrow (BM) cell 
lineages. We assessed BM cell counts of Lin-CD127+, 
Lin-CD127-, LSK (Lin-Sca1+c-Kit+), LK (Lin-Sca1-c-
Kit+) and CLPs (common lymphoid progenitors) 
(Figure S3). Levels of Lin-CD127+, Lin-CD127- and 
CLPs were similar between WT and GIT2KO mice 
between 3 and 12 months of age (Figure S3A-C). In 
contrast we found an aging-specific elevation of BM 
LSK (Figure S3D) and LK cells (Figure S3E) in 
GIT2KO mice compared to WT (FACS insets for 12 
month WT: Figure S3F and GIT2-/-: Figure S3G, 
LSK/LK counts). This age-dependent accumulation of 
LSK/LK cells in the GIT2KO BM may be associated 
with reduced cell motility [36] as GIT2 functions as a 
regulator of cytoskeletal remodeling [37]. Chemotactic 
targeting is also crucial for BM progenitor thymic 
transition. We found an age-induced decline of 
transcript expression in the bone marrow of GIT2KO 
mice for chemokine receptors involved in thymic 
seeding (CCR7, CCR9, CXCR4: Figure S3H-J).  
 
GIT2KO mice exhibit early-onset physical thymic 
disruption 
 
In line with the attenuated support of thymocyte 
function (Figure 1, S1), we next investigated the 
structural integrity of the thymus itself. WT and 
GIT2KO mice possessed similar body weights at 3 and 
12 months (Figure 2A). As expected with advancing 
age total thymic weights were reduced in WT and 
GIT2KO mice from 3 to 12 months (Figure 2B) – at 
both time points however GIT2KO thymi were smaller 
than WT. An age-dependent significant decrease in 
thymocyte cell counts (normalized to thymic weight, i.e. 
thymocyte ‘density’) was only evident for GIT2KO 
mice (Figure 2C). Histologically we found that at the 
one year time point GIT2KO thymi failed to 
demonstrate a strongly-delineated cortex compared to 
WT mice (Figure 2D). Indicative of this cortical failure 

in GIT2KO thymi we found that thymic Troma-
I/cytokeratin 8 (thymic cortical marker) gene expression 
(Figure 2E) was significantly lower compared to WT 
controls. To assess global GIT2KO molecular signaling 
alterations in the thymus we performed unbiased 
transcriptomic analysis of 12 month-old GIT2KO mice 
compared to WT controls. Commensurate with the 
profound structural effects of GIT2 deletion on gross 
thymic integrity we found that 777 transcripts from the 
GIT2KO mice were differentially regulated compared 
to WT (331 up-, 446 down-regulated, p<0.05; Figure 
2F; Table S1). The most down-regulated transcripts in 
GIT2KO thymi included genes regulating: age-related 
stress responses (Ager [38]); T cell survival/regulation 
(Tsc22d3 [39]); structural integrity of tissues (Emb 
[40]); T cell autophagy (Ddit4 [41]); T cell expansion 
and differentiation (Tnfrsf4 [42]); susceptibility to 
thymic DNA damage (Mecp2 [43]) and cell cycle clock 
regulation/circadian rhythms (Fbxl3 [44], Dbp [45], Tef 
[46], Per1 and Per2 [47, 48]). Many of the thymic 
transcripts up-regulated in GIT2KO thymi are 
associated with: advanced aging (Glo1 [49]; Sod2 [50]; 
Mgst1 [51]; Ndn [52]; mitochondrial pathophysiology 
(Tspo [53]); DNA damage responses (Tipin [54]); 
autophagy suppression linked to thymic disruption 
(Sqstm1 [55]) (Figure 2F). We assessed the actual 
protein expression in GIT2KO thymus (compared to 
WT control) for multiple significantly altered transcripts 
(Glo1, Sod2, Per1, Ager: Figure S4A). For each of these 
factors our microarray data was reproduced at the level 
of protein expression. In addition, through in vitro 
siRNA-mediated attenuation of GIT2 expression in 
cultured Jurkat cells resulted in the modulation of 
multiple factors (Glo1, Cav1, Vdac3 – upregulated; 
Per1, Mgst2, Tef – downregulated: Figure S4B) in a 
similar manner indicated by our transcriptomic array 
data (see Supplementary Data). 
 
At the functional signaling pathway level (Figure 2G, 
Table S2) GIT2KO thymic transcriptomes possessed 
significant alterations in (i) energy metabolism 
(‘mitochondrial dysfunction’, ‘oxidative 
phosphorylation’, ‘TCA cycle’, ‘AMPK signaling’) and 
(ii) oxidative stress resistance pathways (‘NRF2-
mediated oxidative stress response’, ‘Glutathione redox 
reactions’, ‘PI3K/AKT signaling’, ‘Glucocorticoid 
Receptor Signaling’); both processes strongly 
implicated in the advanced aging process [31, 56, 57]. 
Reinforcing our pathway analysis we also assessed IPA 
BioFunction predictions (Table S3) generated using the 
significantly-affected, compared to WT controls, 
GIT2KO thymus transcriptomic data. Upon inspection 
of the predicted stimulation or inhibition of these 
BioFunctions (generated using the input GIT2KO vs. 
WT thymus data) a strong pattern of immunological 
depression was evident, i.e. stimulation of ‘hypoplasia  
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Figure 3. Development of idiosyncratic parathymic lobes in GIT2KO mice. Large parathymic lobes (PTLs) were consistently 
observed in 12 month old GIT2KO mice only (A: 1-thymus, 2-PTL). Total cell count data measured in WT and GIT2KO inguinal and 
mesenteric lymph nodes (ILN and MLN respectively), thymus and PTLs (GIT2KO only) (B). (C) PTLs express significantly lower Troma-I 
expression compared to WT or GIT2KO thymus (C). PTLs also demonstrate significantly-distinct patterns (compared to WT and GIT2KO 
thymus, ILN and MLN) of total counts for Lin- (D), ETP (E), DN2 (F) and DN3 (G) T cell precursors, as well as for CD8+ (H) and CD4+ (I) 
cells. All values indicated are mean ± SEM. For histograms WT data are represented by solid black objects, with GIT2KO data 
represented by lined objects. Months of age is abbreviated to m.o. *p<0.05, **p<0.01, ***p<0.001. 
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of lymphoid organ’ and ‘hypoplasia of primary 
lymphoid organ’ with a simultaneous inhibition of 
‘quantity of lymphocytes’, ‘quantity of mononuclear 
leukocytes’, ‘quantity of leukocytes’ and ‘quantity of 
blood cells’ (Figure 2H, Table S3). 
 
Early-onset thymic disruption engenders cervical 
parathymicand DN3 cell count lobe development in 
GIT2KO mice 
 
In addition to alterations in gross thymic 
structure/functionality (Figure 2) in GIT2KO mice at 12 
months these mice specifically at this timepoint 
presented novel large ‘parathymic lobes’ (PTLs: Figure 
3A). We hypothesized these novel organs could 
represent modified lymphoid tissues, induced in-part as 
a compensatory mechanism for T cell development by 
the early-onset deterioration of the GIT2KO thymus. 
Cellular analysis of the extracted GIT2KO PTL tissues 
revealed similar total cell counts compared to inguinal 
lymph nodes (ILNs) from WT or GIT2KO mice, as well 
as GIT2KO thymic tissue (Figure 3B). PTLs however 
demonstrated significantly-reduced cell counts 
compared to WT thymic tissue (Figure 3B). Similar to 
the disrupted GIT2KO thymus, PTLs exhibited 
significantly reduced Troma-I/cytokeratin 8 transcript 
expression levels (Figure 3C). Assessing the immune 
cell lineages in these GIT2KO-specific PTLs, we found 
that PTLs possessed similar levels of Lin- cells as WT 
thymi (Figure 3D). This PTL Lin- level was 
significantly greater than that of GIT2KO thyme or 
WT/GIT2KO ILNs. GIT2KO PTL tissues demonstrated 
ETP, DN2 and DN3 cell counts significantly greater 
than any ILNs or thymi of WT or GIT2KO origin 
(Figure 3E-G). With respect to the levels of CD8+ 
(Figure 3H) or CD4+ (Figure 3I) cells PTLs possessed 
counts similar to those seen in WT or GIT2KO ILNs as 
opposed to the CD8+/CD4+ count levels seen in WT or 
GIT2KO thymi. Therefore it appears that the GIT2KO 
PTLs represent, at a functional level, a ‘pseudo-thymus’ 
(e.g. Lin- cell counts) potentially from a lymph node 
origin (e.g. CD8+/CD4+) that still possesses some 
degree of unique functional nature (e.g. ETP/DN2/DN3 
counts). 
 
Transcriptomic characterization of GIT2KO 
cervical PTLs 
 
To gain an unbiased and comprehensive appreciation of 
the functional nature of the novel GIT2KO PTL organs 
we analysed the relative transcriptomic expression 
patterns present in PTLs and compared these to i) 
inguinal and mesenteric lymph nodes (ILNs and MLNs 
respectively) and ii) thymi of WT and GIT2KO mice. 
Using Principal Component Analysis (PCA), we found 
that global PTL transcriptomic data clustered 
independently of peripheral lymph nodes (ILN/MLN) 
from either WT or GIT2KO mice (Figure 4A). With a 

more targeted PCA, comparing thymus and ILNs from 
WT/GIT2KO with the PTLs, we found that PTLs 
shared one component (PC2) with ILN data, regardless 
of genotype, while sharing one component with 
GIT2KO thymic data (PC1) (Figure 4B). To analyze the 
differences in significantly-altered transcripts between 
PTLs and WT or GIT2KO tissues we performed 
multiple pair-wise transcriptomic comparisons. We 
compared significantly-regulated PTL transcriptomic 
expression patterns to those in both GIT2KO thymus 
(Table S4) and WT thymus (Table S5). 3-way Venn 
analysis was employed to identify any potential 
relationships between PTL-specific transcriptomic 
patterns (PTL transcriptomes compared to WT or 
GIT2KO thymus as ‘controls’) and those specific to the 
GIT2KO thymus (from Table S1, i.e. GIT2KO thymus 
compared to control WT thymus) (Table S6). Venn 
analysis revealed there were 22 upregulated, 30 contra-
regulated (i.e. divergent expression polarities in at least 
two datasets), and 26 down-regulated transcripts shared 
across all the comparisons (Figure 4C). It is likely that 
the 30 contra-regulated common transcripts (all 
displaying expression polarity reversals between the 
PTL vs. GIT2KO thymus comparison and GIT2KO vs. 
WT thymus comparison) represents an indication of the 
core functional activity of the PTL compared to the 
dysfunctional GIT2KO thymus as well as a WT thymus. 
To further validate this specific data subset from the 30 
contra-regulated common transcripts we independently 
measured Hsp90β1 and Itgb7 transcript levels in WT 
thymus, GIT2KO thymus and PTLs in 12 month old 
animals. These factors were chosen using GeneIndexer-
based prioritization [58, 59] using interrogator terms 
related to T cell function. In accordance with our 
transcriptomic array data, both Hsp90β1 and Itgb7 were 
upregulated in PTLs compared to WT and GIT2KO 
thymus (Figure 4D, E: Tables S4, S5). A large 
proportion of this PTL-based dataset is strongly linked 
with metabolic aging and clock regulation [60, 61], cell 
senescence [62, 63] and age-related immune 
dysfunction [64] (Figure 4F). For each of the 
significantly-regulated PTL transcripts in these general 
categories (Figure 4F) it was evident that their 
regulation extent (z ratio magnitude) was consistently 
greater when compare to the dysfunctional GIT2KO 
thymus as opposed to the WT thymus. This supports our 
suggestion that PTL ‘functionality’ may be a reflexive 
compensatory process for the accelerated thymic 
disruption seen in the GIT2KO mice. Supportive of this 
posit is our identification of PTL activation of 
transcripts linked to T cell selection and development 
(Irf8 [65]; Irf1 [66]), T cell differentiation (Bach2 [67]; 
Btla [68]), immune cell ion channel regulation (Hvcn1 
[69]), cellular chemotaxis (H2dmb1 [70]), interferon 
regulation of immune function (Gvin [71]), T cell 
activity regulation (Hmgb2 [72]) and protein 
sorting/endocytosis (Chmp1b [73]; Ehd1 [74]). 
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Figure 4. Transcriptomic analysis of GIT2KO parathymic lobes. Principal component analyses were performed upon 
transcriptomic data from thymus (WT thymus = TWT; GIT2KO thymus = T GIT2-/-), WT/GIT2KO ILN and MLN, as well as PTLs from GIT2KO 
mice. PTL transcriptome data separates with PCA from ILN and MLN from both WT and GIT2KO mice (A). PTLs share component 2 with 
GIT2KO thymi and component 1 with WT and GIT2KO ILN (B). Venn diagram analysis of significantly-regulated transcripts generated by 
the following tissue transcriptome comparisons: GIT2KO PTLs vs. GIT2KO thymus (black circle); GIT2KO PTL vs. WT thymus (green circle); 
GIT2KO thymus vs. WT thymus (blue circle). For the Venn diagram numbers in italics represent upregulated transcripts, underlined 
numbers represent downregulated transcripts, red numbers represent transcripts possessing diverse expression polarities (C). RT-PCR 
validations of selected PTL transcripts Hsp90β1 (D) and Itgb7 (E: **p<0.01, ***p<0.001). Transcriptomic z ratios of 30 common and 
coherently regulated (same expression polarity across three Venn sectors) transcripts generated from Venn separation of PTL-
associated transcripts (F). 
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To further investigate the functionality of this unique 30 
transcript PTL dataset we employed two orthogonal 
latent semantic indexing (LSI) informatic platforms, 
Textrous! [75] and Genes2WordCloud [76]. Textrous! 
and Genes2Wordcloud facilitate the creation of natural 
language-based scientific interpretations of small 
datasets. Using the collective processing mode of 
Textrous! a hierarchical wordcloud was generated that 
indicated a strong functional bias towards age-
dependent, presenilin-focused and pro-degenerative 
activities such as amyloid processing (Figure 5A: Table 
S7 - for Cosine Similarity Scores, Probability Values 
and Z-scores associated with the wordcloud). Among 
the top 20 highest frequency words semantically 

associated with the input 30 transcript dataset were: 
early, onset, age, Alzheimer and amyloid. The strongest 
risk factor for most neurodegenerative conditions, 
including Alzheimer’s disease, is aging and therefore in 
this GIT2KO model it is not surprising that molecular 
signatures of advanced aging are present across multiple 
tissues in the body. It is interesting to note that 
presenilin-dependent gamma-secretase activity 
(processing Notch) has been demonstrated to modulate 
thymocyte development [77] and that significant 
immune function disruption is found in mutant 
presenilin-1 transgenic mice [78]. Using the mammalian 
phenotype analytical data module of Genes2Wordcloud 
to annotate the core 30 PTL transcripts we found that 

 
 

Figure 5. LSI-based natural language investigation of the core 30 GIT2KO PTL-associated transcripts. The noun-phrase 
wordcloud for the 30 core PTL-associated coherently regulated transcripts was generated using the collective processing module of 
Textrous! coupled to proportional text representation output with Wordle. Noun-phrase frequency score analysis (histogram on left of 
panel A) of the resultant wordcloud was performed using WriteWords text analysis (A). In addition to LSI-based interpretation of the 
core 30 PTL-associated coherently regulated transcripts and orthogonal analysis was performed using Genes2wordcloud (Mammalian 
Phenotype annotation database: B). The wordcloud output in panel B is from Genes2wordcloud as is the associated histogram 
displaying the top 20 word frequencies from the cloud. For both wordclouds in panels A and B, the text size is directly proportional to 
the word/phrase frequency generated from either Textrous! or Genes2wordcloud. 
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wordcloud interpretation reinforced the demonstration 
of a GIT2-specific immunological aging phenotype 
(Figure 5B). Among the top 20 highest frequency 
mammalian phenotype-based words semantically 
associated with the input 30 transcript dataset were: 
immune, lifespan, hematopoietic and homeostasis 
/metabolism.  
 
Complementary signaling pathway analysis of 
GIT2KO PTLs and thymus reveals effective 
compensatory functional ‘transposition’ 
 
To complement our natural language processing-based 
interpretation of the core 30 PTL-specific transcripts we 

performed classical signaling pathway analysis to 
investigate the potential compensatory functionality of 
the de novo PTL in the GIT2KO mice. IPA-based 
canonical signaling pathway analysis was performed 
with significant transcriptomic data comparing GIT2KO 
thymus vs. WT thymus (Table S8) and PTL vs. 
GIT2KO thymus (Table S9). We directly compared the 
most-downregulated (assessed by % of specific pathway 
transcripts downregulated – indicative of the ‘loss’ of 
thymic functionality in the GIT2KO mice) signaling 
pathways in the GIT2KO thymus (Table S8) with the 
most upregulated (assessed by % of specific pathway 
transcripts upregulated) – indicative of potential 
compensatory signaling pathways in the GIT2KO PTL 

 
 

Figure 6. Functional signaling transposition between the GIT2KO thymus and PTLs. Signaling analysis of transcripts 
differentially and significantly regulated between GIT2KO and WT thymus (A). The top 10 pathways containing the most 
downregulated transcripts are indicated. Upregulated (red) or downregulated (green) transcripts populating these specific pathways 
are indicated in the histogram. Signaling analysis of transcripts differentially and significantly regulated between the PTL and the 
GIT2KO thymus (B). Venn diagram comparison of the functional cross-over between GIT2KO thymus pathways containing the greatest 
number of downregulated transcripts (>5%) with the GIT2 PTL pathways containing the greatest number of upregulated transcripts 
(>5%) (C). Histograms indicate the functional transcript expression nature of the 25 shared signaling pathways (from C) common 
between the GIT2KO thymus and the PTLs (D). 
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(Table S9). Differential signaling activity in the 
dysfunctional GIT2KO thymus (Table S8) revealed a 
large number of significantly downregulated transcripts 
enriching pathways involved in cell growth and 
development (‘GADD45 signaling’, ‘EGF receptor 
signaling’, ‘Role of p14/p19ARF in tumor 
suppression’), T cell functionality (‘T helper cell 
differentiation’, ‘Antigen presentation pathway’) and 
cytokine signaling (‘Role of Jak family kinases in IL-6 
type cytokine signaling’, ‘IL-9 signaling’, ‘interferon 
signaling’) (Figure 6A – top 10 downregulated – Table 
S8). Similar analysis of pathways modulated 
differentially between the PTL and GIT2KO thymus 
(Figure 6B – top 10 upregulated; Table S9). Many 
pathways that contained the greatest number of 
transcripts up-regulated in the PTL were functionally 
similar (although oppositely-regulated) to those 
representing this loss of function (downregulated 
transcripts) in GIT2KO thymus, e.g. ‘T helper cell 
differentiation’, ‘Antigen presentation pathway’ and 
‘Role of Jak2 family kinase in IL-6-type cytokine 
signaling’ (Figure 6B). To more comprehensively 
assess our hypothesized functional ‘transposition’ from 
the dysfunctional GIT2KO thymus to the PTLs, we 
assessed how much signaling pathway complementarity 
crossover existed between GIT2KO thymus and PTLs. 
Using signaling pathways containing the most down-
regulated transcripts (pathways with >5% of transcripts 
down-regulated: Table S8) in GIT2KO thymus, and the 
corresponding group of signaling pathways containing 
the most up-regulated transcripts in the PTLs (pathways 

with >5% of transcripts up-regulated: Table S9), we 
found a considerable (25 signaling pathways; 50% of 
GIT2KO thymus and 25% of PTL pathways) functional 
cross-over between these two sets (Figure 6C). We 
analyzed these common functional groups and found an 
almost universal polarity reversal of regulation (with 
respect to percentage up- or downregulation of 
pathway-populating transcripts) between those in 
GIT2KO thymus data and the same pathways found 
using PTL data, indicating perhaps that multiple 
signaling functions lost in disrupted GIT2KO thymus 
were being reflexively stimulated in the PTLs (Figure 
6D).  
 
GIT2 genomic deletion generates a systemic 
alteration of age-related clock gene functionality in 
the immune system 
 
From ours and previous research it is clear that GIT2 
plays a profound role in immune system regulation: 
here we demonstrate that the immune system can also 
compensate for GIT2-associated disruption. To 
investigate the systemic actions of GIT2 deletion in 
multiple immune-related tissues we assessed the 
presence of consistent significantly-regulated 
transcriptomic expression patterns between the thymus 
(Table S1), ILNs (Table S10), MLNs (Table S11) and 
Spleen (Table S12) and of GIT2KO mice compared to 
WT controls. As previously demonstrated for GIT2KO 
thymus tissue (Figure S4) we also assessed the 
correlation between transcriptomic data and protein 

 
 

Figure 7. GIT2 genomic deletion engenders a consistent transcriptomic signature across multiple immune tissues. Venn 
diagram analysis of the significant transcriptomic effects of GIT2 deletion in the ILN, MLN, spleen and thymus of GIT2KO mice compared 
to age-matched WT controls. In the Venn diagram numbers in italics represent upregulated transcripts, underlined numbers represent 
downregulated transcripts, red numbers represent transcripts possessing diverse expression polarities (A). Hierarchical wordcloud 
generated using the collective processing mode of Textrous! to investigate the functional nature of the 40 coherently-regulated 
transcripts common across GIT2KO ILN, MLN, spleen and thymus (B). Physical proximity of semantically-associated scientific words in 
public biomedical database curated documents indicates their strength of relationship. The most strongly associated words (with the 
entire input 40 transcript dataset) occur in the more intense red-hued regions of the cloud. A cumulative z ratio representation of the 
40 coherently-regulated cross-tissue (ILN – black bars; MLN – red bars; spleen – green bars; thymus – blue bars) GIT2KO-spepcific 
factors indicates the strong presence of pro-aging/stress phenotype that is closely linked with clock gene dysfunction (stress/clock gene 
related transcripts possess Gene Symbols in bold typeface) (C). 
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expression levels (for Ndufb10, Rnase4, Per1, Sin3a) in 
for example the spleen (Figure S5). For each factor we 
found that protein levels of these factors closely 
mirrored our transcriptomic data. Venn analysis of the 
significantly-regulated transcripts found in all of the 
four tissues studied (Figure 7A) revealed a core of 40 
coherently-regulated transcripts common to all of the 
tissues (13 commonly upregulated, 27 commonly 
downregulated) (Table S13). We have previously 
shown that the Collective Processing module of 
Textrous! can efficiently generate meaningful 
biomedical semantic output from small data corpi [75]. 
Using the 40 commonly-regulated transcripts from 
GIT2KO ILN, MLN, spleen and thymus we found a 
remarkably strong and focused hierarchical wordcloud 
was created (Figure 7B: Table S14). The collective 
processing module of Textrous! employs latent semantic 
indexing (LSI) to assess the strength of correlation 
between all the members of the input dataset (40 
coherently-regulated GIT2KO ILN/MLN/spleen/thymus 
transcripts) and semantically-associated nouns and 
noun-phrases from multiple curated biomedical 

databases. Biomedical textmining Cosine Similarity 
scores, ranging from 0 to a theoretical perfect textual 
correlation score of 1 [59], are employed to indicate the 
strength of the semantic correlation between datasets 
and specific words – here we found five output nouns 
possessing a near perfect Cosine Similarity score of 
over 0.9, i.e. ‘oscillators’, ‘clocks’, ‘circadian’, 
‘rhythms’ and ‘rhythmicity’ (Table S14). Therefore it 
appears that the disruption of circadian clock-related  
transcript expression observed previously in the 
GIT2KO thymus is reproduced across multiple tissues 
involved in immune regulation across the body. 
Collective Textrous! processing attempts to find 
commonalities of textual output from a complete corpus 
of input data. Alternatively, the Individual Processing 
mode of Textrous! reveals the strongest individual 
transcript-word associations. With the same 40 
transcript used for Collective Processing we found that 
the dataset possessed multiple input transcripts strongly 
linked to ‘clock regulation’, ‘transcription’, 
‘metabolism/stress’ and ‘immune’ functionalities 
(Figure S6A). Creating a summated Z-score (addition of 

 
 

Figure 8. GIT2 genomic deletion engenders a consistent signaling pathway signature across multiple immune tissues. 
Venn diagram analysis of the significant signaling pathway modulatory effects of GIT2 deletion (assessed using IPA-based canonical 
signaling pathway annotation of GIT2KO-specific significantly-regulated transcripts in ILN, MLN, spleen and thymus tissues) in the ILN, 
MLN, spleen and thymus of GIT2KO mice compared to age-matched WT controls. For each significantly-enriched signaling pathway 
derived from the respective transcriptomic datasets a pathway activation score was derived by subtraction of the number of 
downregulated transcripts from the number of upregulated transcripts that mediated the enrichment of the specific signaling 
pathway. In the Venn diagram numbers in italics represent upregulated transcripts, underlined numbers represent downregulated 
transcripts, red numbers represent transcripts possessing diverse expression polarities (A). The Venn diagram in panel A indicates that 
there are 17 coherently-regulated signaling pathways common to all tissues studied – 13 upregulated and 4 downregulated. The 
respective pathway scores of these pathways and their functional identities are indicated in the histogram in panel B. Pathways with a 
0 pathway activation score were considered positive – a zero score indicated an even number of up and downregulated enriching 
transcripts. 
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individual transcript z ratio scores (GIT2KO vs. WT 
expression)) for each of these functional categories of 
activity it was evident that a profound inhibitory activity 
towards ‘clock regulation’ was present in the input 
dataset (Figure S6B). Inspection of the individual 
transcripts coherently regulated across ILN/MLN/ 
spleen/thymus in GIT2KO mice demonstrated that, 
aside from the expected changes in immune-related 
factors (Btla [79], Tnfrsf4 [80], AI467606 [81]), there 
were significant reductions in multiple clock-related 
transcripts that are also associated with premature aging 
and DNA damage repair actions (DDR) (Per1 [22], Per2 
[48], Tef [82], Dbp [83], LOC100044862-Fbxl3-like 
[84] as well as transcripts related to age-related 
stress/metabolism alterations and cell senescence (Glo1 
[85], Ndufb10 [86], Ddit4 [87], Sin3a [88], Rnase4 [89] 
(Figure 7C). In addition to our LSI-based interpretation 
of the systemic effects of GIT2 genomic deletion we 
also individually annotated each significant GIT2KO 
dataset (ILN, MLN, spleen, thymus) using Ingenuity 
Pathway Analysis canonical signaling pathways (ILN 
Table S15; MLN Table S16; spleen Table S17, thymus 
Table S1). As with our analysis at the transcript level 
we aimed to identify the qualitative and quantitative 
nature of the coherently-regulated signaling pathways 
common to each of the experimental tissues (Figure 
8A). Venn analysis revealed the presence of 13 
coherently upregulated (calculated by creating a Z score 
of Up/Down regulated transcripts that significantly 
populate that specific pathway) and 4 coherently 
downregulated signaling pathways common to all the 
immune tissues (Table S18). The pathway Z scores, 
indicating the relative degree of activation (positive Z 
score) or inhibition (negative Z score) of the total of 17 
coherently-regulated pathways are represented in Figure 
8B. Corroborating our multiple observations of an 
aberrant aging process in the GIT2KO mice we found 
consistent and significant GIT2KO-specific alterations 
in aging-related pathways linked to clock gene 
disruption: ‘Mitochondrial dysfunction’ [90]; ‘AMPK 
Signaling’ [91]; ‘P2Y Purinergic Receptor Signaling 
pathway’ [92]; ‘P70S6K Signaling’ [93]; ‘Telomerase 
Signaling pathway’ [94]; ‘Superpathway of Cholesterol 
Biosynthesis’ [95]; ‘PI3K/AKT Signaling pathway’ [96]. 
In the context of these multiple interconnected 
pathways there are also a group of inter-related 
pathways linking immune cell function (‘PKCθ 
Signaling in T Lymphocytes’, ‘CD28 Signaling in T 
Helper Cells’, ‘iCOS-iCOSL Signaling in T Helper 
Cells’) with Ephrin receptor signaling and clathrin-
mediated endocytic subcellular trafficking [97]. Taken 
together from both LSI-based and classical signaling 
pathway analysis it is evident that GIT2 genomic 
deletion engenders a premature state of cellular 
senescence/aging across multiple immune-related 
tissues.  

DISCUSSION 
 
We have previously demonstrated that the GPCR-
interacting protein GIT2 is strongly implicated in 
somatic regulation of the aging process, via the 
management of stress response systems linked to 
pathological aging, oxidative stress, metabolic 
disruption and eventual DNA damage [5, 31-34]. Here 
we investigated the potential effects of GIT2 genomic 
deletion upon the structure and functionality of a key 
immune tissue, the thymus, whose deterioration is 
considered an important hallmark of aging [1-4]. 
Compared to aged-matched WT controls, GIT2KO 
mice demonstrated an attenuated overall lifespan 
(Figure 1) as well as an accelerated idiosyncratic form 
of thymic involution/dysfunction (Figure 2). GIT2KO 
mice demonstrated premature decreases in T cell 
precursor levels (similar at 3 months of age to 12 month 
old WT mice) (Figure 1), an advanced-age reduction in 
DP/CD4+/CD8+ total cell counts (Figure 1), significant 
reductions in thymocyte density (Figure 2) and 
significant deficits in thymic structure and key 
functional regulators (Figure 2). Unbiased 
transcriptomic analysis coupled to signaling pathway 
analysis of GIT2KO thymi revealed the significant 
population of pathways linked to thymic aging, e.g. 
‘Mitochondrial Dysfunction’ [98], ‘AMPK Signaling’ 
[99] and ‘Glucocorticoid Receptor Signaling’ [100] 
(Figure 2F). With IPA BioFunction analysis we found a 
strong indication that GIT2 genomic ablation negatively 
affects cellular development and functionality 
(elevation of ‘hypoplasia of lymphoid organ’ – 
reduction of ‘quantity of T lymphocytes’) of the thymus 
at the relatively young age of 12 months (Figure 2G).  
 
Our observed accelerated decline in GIT2KO 
thymocytes DP (CD4+CD8+) and CD4+ T cells (Figure 
S2) was not fully accounted for by apoptosis as we 
found no significant increases in pro-apoptotic 
mediators in GIT2KO thymocytes. Instead we observed, 
at 12 months of age in GIT2KOs, a decrease in 
transcript expression of the pro-survival mediator Bcl-
xL and two of the pro-apoptotic mediators (Bim and 
Bax) (Figure S1). GIT2 deletion thus seems to, in-part, 
engender thymic dysfunction via mechanism(s) linked 
to reductions in cellular survival support, as suggested 
by the loss of an appropriate T cell maturation 
environment due to the Troma-I reductions (Figure 2). 
Our data are in accord with reports demonstrating age-
related changes to thymic size and structure, including 
that of reduced Troma-I, which would result in 
decreased thymic output of mature naive T cells [3, 
101]. Most significant age-related thymic changes often 
occur in the cortex, resulting in a negative correlation 
between thymic cortex, volume, and age [3]. As the 
thymic cortex hosts the earlier stages of thymic T cell 
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development, its disruption in GIT2KO mice may 
contribute to disturbed T cell development. Cortical 
integrity is strongly linked to cortical thymic epithelial 
cell interaction with thymocytes. Genomic loss of 
Troma-I (keratin 8) induces mitochondrial dysfunction 
and somatic metabolism in an aging murine context 
[102, 103]. In addition to regulating mitochondrial 
functionality – a process strongly linked to metabolic 
aging [104], Troma-I is involved (like GIT2), in 
maintaining normal pancreatic beta cell functionality 
and circulatory glycemic control [34, 105]. Pancreatic 
regulation of the insulin/IGF-1 signaling system 
represents one of the prime drivers of the aging process 
in most species [106-109]. Our link of GIT2 to thymic 
involution and the creation of a premature aging 
phenotype, demonstrates the systemic connectivity of 
metabolism and immune functionality in the aging 
process. 
 
Assessing the subtle role(s) of GIT2 in controlling 
thymic function we assessed recent thymic emigrants 
and observed marked reductions in newly-emigrated 
CD8+ cells as early as 3 months in GIT2KO mice 
(Figure S2). For newly-emigrated CD4+ cells from the 
thymus, reduced numbers in GIT2KO mice were 
observed at 12 months (Figure S2). These data reflect a 
disruption in thymic T cell differentiation with 
increasing age in GIT2KO mice. We next investigated 
the status of hematopoietic precursors in GIT2KO BM 
at 12 months: only LSK (Lin-CD127-Sca-1+c-Kit+) and 
LK (Lin-CD127-Sca-1-c-Kit+) were upregulated in 
GIT2KO mice. If migration of hematopoietic precursors 
from the BM to the thymus was negatively affected 
over time, an accumulation of precursors within the BM 
can be accounted for. Migration is vital for 
hematopoietic progenitor movement from BM to the 
thymus. Chemokine receptors CCR7, CCR9 [110, 111]  
and CXCR4 [112] are important for thymic seeding by 
hematopoietic progenitors. CCR7 and CCR9 expression 
were reduced in GIT2KO mice at 3 months, aligning 
our data with reports implicating chemokine receptors 
as key mediators of thymic targeting [112]. As GIT2KO 
mice possess reduced thymic progenitors as early as 3 
months, but only observable differences in DP and 
CD4+ cell counts by 12 months of age, these results 
agree with earlier studies, i.e. despite the absence of a 
key thymic settling agent as CCR9, CCR9-/- mice still 
retain some thymic settling demonstrated simply by 
their ability to generate thymocytes [113]. While 
chemotactic mechanisms have been proposed to play an 
important role in GIT2KO mice, our data and others 
(Phee et al. [36]), suggest additional factors are also 
important. One novel ameliorative mechanism by which 
GIT2KO mice attempt to provide sufficient T cells may 
reside in their age-dependent generation of PTLs. A 
second cervical ‘thymus’ in mice has been reported 

previously [114, 115]. Cervical thymus-like structure 
have also been observed in humans [116]. We found 
that the generation of cervical parathymic lobes (PTLs) 
was coincident with the disruption of GIT2KO thymic 
function (Figure 3). Despite their potential resemblance 
to cervical lymph nodes, these idiosyncratic PTLs did 
not exhibit classical peripheral lymph node-like 
characteristics, but expressed relatively high levels of T 
cell progenitors which we found to be 
contemporaneously reduced in GIT2KO thymus. From 
our PTL cell count data (Figure 3) PTLs exhibited 
characteristics of a hybrid thymus/lymph node organ, 
e.g. PTLs expressed higher numbers of T cell 
progenitors (ETP, DN2, DN3), compared to inguinal 
lymph nodes or even WT or GIT2KO thymus. Unbiased 
transcriptomic PCA analysis confirms this gestalt 
distinction from either lymph node or thymic tissue 
(Figure 4). These data suggest that PTLs serve as a site 
of extrathymic T cell development in GIT2KOs.  
 
As we observed differences in chemokine receptor gene 
expression in bone marrow cells, we also investigated 
the expression of the cognate ligands (CCL19, CCL25, 
and CXCL12) for these receptors in PTLs. CXCL12 
expression was significantly increased in PTLs 
compared to both WT and GIT2KO thymus (Figure 
S7). GIT2 has been implicated in the CXCL12/CCL25-
mediated regulation of the in vitro motility of DP 
thymocytes [36]. Earlier studies suggested that 
CXCL12 and CXCR4 are involved in T cell precursor 
expansion in both fetal and adult thymi in vivo and any 
defect in T cell development caused by a CXCR4 
mutation is not caused by reduced expression of the 
anti-apoptotic mediator Bcl-2 [117]. Our data suggest 
that CXCR4/CXCL12 are also implicated in the GIT2-
dependent model of dysfunctional thymic function as T 
cell development is disrupted and the anti-apoptotic 
mediator Bcl-xL is significantly reduced at 12 months 
of age. There has been much debate on the relevance of 
extrathymic T cell development in a variety of organs 
including the gut [118, 119], skin, and liver and their 
physiological relevance to thymic T cell development 

[120]. We contrasted the disrupted GIT2KO thymus to 
the PTL at a cellular and functional signaling level to 
assess whether functions that were lost in the GIT2KO 
thymus were effectively recapitulated in the 
transcriptomic profile of the PTLs. Comparing the 
GIT2KO thymus signaling pathways populated by the 
greatest percentage of downregulated transcripts with 
the pathways populated by the greatest percentage of 
upregulated transcripts we found that at a signaling 
pathway level, these two tissues were almost completely 
inverted mirror images of each other (Figure 6D). For 
example, multiple pathways associated with T cell 
development were among the most downregulated in 
the GIT2KO thymus (Figure 6A), while these pathways 
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were amongst the most upregulated in the GIT2KO 
PTLs (Figure 6B). Our data suggest that the PTL is a 
functional hybrid tissue between the thymus and lymph 
nodes (Figure 3D, Figure 4A-B) that can be generated 
in mice and may serve as an ameliorative mechanism to 
counter the abnormal immunological aging profile 
(Figure 5) present in GIT2KO mice.  
 
Our analyses of PTL-unique transcript datasets (Table 
S6 – indicated by asterisk) uncovered a core of 30 
GIT2KO PTL-specific transcripts that were functionally 
linked to biomedical text terms associated with age-
related neurodegeneration, cell senescence, lifespan 
regulation, metabolic disruption and 
immunomodulation (Figures 4, 5). Hsp90β1 and Itgb7 
were specifically and markedly upregulated in PTLs 
compared to WT/GIT2KO thymi (Figure 6D, E). 
Hsp90β1 is a molecular chaperone for integrins such as 
Itgb7 [121]. In tamoxifen-inducible Hsp90β1-/- mice, T 
cell development is severely compromised with the 
inability of thymocytes to develop beyond the DN 
stage. This was strongly correlated with thymic atrophy 

[121]. At seven months of age, DP and SP (single 
positive) cells were almost absent in Hsp90β1-/- mice. It 
has been reported that without β-7 integrins, 
lymphopoiesis may proceed [122], our current data 
indicate that Itgb7 may be important in the functioning 
of the PTLs which express higher numbers of T cell 
progenitors than thymi, along with higher Itgb7 gene 
expression. With respect to the strong pro-
aging/senescence signature induced in thymic tissues by 
GIT2 deletion it is interesting to note that multiple High 
Mobility Group (HMG) proteins (HMGCS2, HMGB2) 
are affected. HMG proteins are stress-sensitive DNA-
modulatory factors involved in transcription/translation 
and DNA repair activities. We have previously 
demonstrated that HMG proteins are functionally linked 
with GIT2 in neuronal cells [33] where they likely 
coordinate the actions of GIT2 in the DDR response and 
PARP activity modulation [123]. HMGCS2 is one of 
the controlling enzymes in the mitochondrial 
mechanism of ketogenesis, an energy derivation process 
often entrained in the context of disrupted glucose 
metabolism and altered aging [49, 102]. HMGCS2 
functionality is not only associated with ketogenesis but 
also with fatty acid β-oxidation, a compensatory process 
which is commonly observed in the context of disrupted 
aging mechanisms, age-related neurodegenerative 
conditions and age-related metabolic disruption [60, 78, 
124]. Confirming our observations of disrupted Troma-I 
expression in the GIT2KO model it has also been 
demonstrated that reductions in Troma-I can also 
modulate HMGCS2 expression and in doing so 
modulate energy metabolism and ketogenic activity 
[103]. HMGB2 is also critically involved in regulatory 
mechanisms that, control DNA damage [125], cell 

senescence [126], innate immune responses and 
neuroinflammation [127, 128] as well as stem cell 
proliferation and neurogenesis [129]. In addition to the 
specific GIT2-dependent alteration of HMG proteins 
multiple additional proteins that regulate age-related 
energy metabolism (Prcp [130], age-related DNA 
damage (Bach2 [131], age-related hematopoietic 
network regulation (Irf8 [132], immunosenescence 
(Pecam1 [133] and ER stress/amyloid related regulation 
of insulin secretion (Herpud1 [134-136]) were altered in 
GIT2KOs. From our work it was evident that GIT2 
deletion in our models was potentially associated with 
cellular senescence. To further investigate this, we 
sought to identify whether any GIT2-associated factors 
were also associated with the well-characterized 
senescence-associated secretory phenotype (SASP). 
Using a canonical list of 80 SASP-associated proteins 
extracted from REACTOME (www.reactome.org) we 
cross matched this with GIT2KO data from thymus, 
PTL, spleen and lymph nodes. Across these multiple 
tissues we found that GIT2 deletion significantly altered 
the expression of over 20% (17 from 80) of the 
REACTOME SASP pathway list (Figure S8) that 
revealed a highly interconnected group of factors 
strongly linked to senescent/DNA stability activity 
(Enrichr-based Reactome 2015 analysis - 
http://amp.pharm.mssm.edu/Enrichr/enrich: Table S19). 
 
As genomic GIT2 deletion appeared to modify 
physiological immune system aspects in the thymus and 
the PTL that were functionally related to additional 
immune-relates tissues, e.g. ILN/MLN (Figures 3D, 4A-
B), we next investigated the functional effects of GIT2 
deletion upon splenic and ILN/MLN tissues to assess 
whether a core ‘GIT2-functional signature’ was present 
in multiple immune-related sites. Using the significant 
transcriptomic patterns of gene expression in thymus, 
spleen, ILN and MLN in GIT2KO mice we discovered 
a functional core of forty GIT2-dependent gene 
transcripts coherently regulated (expression polarity 
versus WT control) in all four tissues (Figure 7A). 
Using Textrous! to investigate this core dataset a strong 
clock gene-associated phenotype was evident (Figures 
7B, S6A). Multiple transcripts possessing well-
characterized roles in circadian rhythm control, e.g. 
Dbp, Tef and Per2, were coherently regulated in all the 
GIT2KO immune tissues (Figure 7C). GIT2 genomic 
deletion also generated a coherent pathway signature 
(Figure 8A) across the multiple tissues, i.e. 13 pathways 
commonly upregulated and four pathways commonly 
downregulated (Figure 8B). Nearly all of the coherent 
and commonly-controlled signaling pathways were 
strongly linked to cellular clock control mechanisms, 
e.g. ‘Mitochondrial Dysfunction’ [90], ‘AMPK 
Signaling’ [91], ‘P70S6K Signaling’ [93], ‘Telomerase 
Signaling’ [94], ‘Superpathway of Cholesterol 
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Biosynthesis’ [95] and ‘PI3K/AKT Signaling’ [96]. 
Additional GIT2KO multi-immune tissue signaling 
pathways also demonstrated multiple functional data 
corpi links as ‘P2Y Purinergic Receptor Signaling’ has 
been shown to strongly control the AMPK signaling 
pathway [92]. In addition the quality and nature of 
‘Ephrin Receptor Signaling’ is strongly dependent on 
‘Clathrin mediated endocytosis signaling’ mechanisms 
[97].  
 
Our data demonstrates that loss of GIT2 protein causes 
an attenuated lifespan and induction of a premature 
aging/senescent state in the thymus as well as other 
immune-related tissues. This premature GIT2KO aging 
phenotype is associated with the disruption of cellular 
clock regulation and DDR activity. In this respect, our 
data are synergistic with previous research linking GIT2 
with multiple physiological/pathophysiological 
activities associated with the aging process, e.g. 
oxidative damage, dysglycemia and DNA damage [32-
34]. Hence GIT2 appears to likely act as a powerful 
mechanistic factor in the aging process through its 
control of cellular aging via clock gene regulation. In 
addition to an evident common evolutionary mechanism 
for clock and DDR genes [27] it has been shown that a 
strong functional interaction occurs between clock-
DDR functions [137-139] that involves several GIT2 
interaction partners such as MRE11, ATM and p53 
[33]. GIT2 therefore may serve as a functional bridge 
between cellular senescence, clock regulation and DNA 
damage, and thus possess the capacity to potently 
control the accumulation of age-related cellular damage. 
As age-related accumulation of DNA damage and 
metabolic dysfunction appear to synergize to accelerate 
the onset of aging-related disorders it is interesting to 
note that already therapies targeting clock-regulation 
mechanisms are currently showing promise [140-142]. 
 
MATERIALS AND METHODS 
 
Animal handling 
 
All animal studies performed were approved according 
to the guidelines of the NIA Animal Care and Use 
Committee. Mice were maintained in a 12h light/dark 
cycle on an ad libitum regular diet. Male GIT2-/- 

(GIT2KO) (n=3-16) and C57BL/6 WT mice (n=3-8), at 
1, 3 and 12 months of age, were bred in the NIA animal 
facility. Lifespan measurements at this facility for the 
wild-type (WT) C57/BL6 indicated that for both male 
and female GIT2KO mice presented a significantly-
reduced total lifespan (n≥20 per group: male WT: 
609.3±24.2 days; female WT: 617.25±30.15; male 
GIT2-/-: 503.15±32; female GIT2-/-: 529.35±21.4). They 
were fasted 12h before experimentation, sacrificed by 
carbon dioxide asphyxiation and whole body and organ 

weights were recorded. GIT2KO gene-trap animals 
[143], based on a standard C57BL/6 background, were 
transported from Duke University (Richard Premont, 
Durham, NC) and bred at the National Institute on 
Aging under NIH protocol numbers, 432-LCI-2015 and 
433-LCI-2015, according to approval of the 
Institutional Review Board. Prior to experimentation, 
the animals were labelled with an ID number and thus, 
during experimentation, the investigator(s) were blinded 
to the animal genotype(s). Equal numbers of animals 
belonging to the control and/or experimental groups 
were experimented on the same day. Overall, the order 
of animal experimentation was performed in a random 
manner.  
 
Blood cell counts  
 
Prior to sacrifice, mice were bled retro-orbitally and 
blood cells were counted using a Horiba ABX Micros 
60 (Horiba Medical).  
 
Flow cytometry 
 
Bone marrow cells were collected from femurs and 
disrupted into a single cell suspension. All other 
immune organs were dissociated in RPMI media (Life 
Technologies, Carlsbad CA). Cell suspensions were 
then passed through 70 µm nylon mesh strainers (BD 
Falcon). RBCs (red blood cells) were lysed with 
ammonium chloride buffer (Quality Biological) and 
washed twice with HBSS/1%BSA/0.1% sodium azide. 
Antibodies (BD BioSciences, eBioScience or 
BioLegend) were subsequently used. The antibodies 
used in the study are outlined as follows: For the bone 
marrow: CD3 PE (phycoerythrin) (clone 17A2), CD8a 
PE (53-6.7), CD4 PE (L3T4), CD19 PE (1D3), B220 
PE (RA3-6B2), Ly6G PE (RB6-8C5), CD127 PE-Cy5 
(A7R34), Sca-1 FITC (D7), C-Kit APC (2B9), viability 
e506. For the assessment of early thymic progenitors 
(ETPs), the following antibodies were used: c-Kit FITC 
(2B8), CD11b PE (MAC-1), CD11C PE (N418), B220 
(RA3-6B2), CD3 (17A2), CD8a (53-6.7), CD19 
(MB19-1), CD 127 (A7R34), Ter 119 (Ter 119), TCRB 
(H57-597), TCRGD (GL3), NK 1.1 (PK 136), GR1 
(RB6-8C5), PanNK PE (DX5), CD25 PerCP-Cy5.5 
(PC61). For other assessments in the thymus, the 
following antibodies were used: CD4 e450, CD8 PerCP, 
IgM APC, B220 FITC, fixable viability e506. For the 
peripheral lymph nodes and novel parathymic lobes the 
following antibodies were used: (i) CD31 FITC (390), 
CD62L PE (MEL-14), CD8 PerCP, CD44 APC (IM-7), 
CD4 e450, viab e506; (ii) B220 FITC, CD23 PE (B3-
B4), CD21 e710 (4E3), IgM APC, CD1d e450 (1B1), 
viab e506, (iii) B220 FITC, CD19 PE, IgM APC, GL7 
e450, viab e506. Cells were examined on a FACSCanto 
II (Becton Dickinson, Franklin Lakes NJ) and the data 
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were analyzed using FlowJo (Ashland, OR). In all 
analyses, the primary gate was set on total lymphocytes, 
using forward and side scatter. Dead cells stained with 
Fixable Viability Dye eFluor® 506 (eBioscience) were 
excluded. The following were assessed in bone marrow: 
LSK and LK cells were identified by first gating out all 
Lin- cells that were negative for the following lymphoid 
markers: CD3 (clone 2C11), CD4 (RM4-5), CD8a (53-
6.7), CD19 (6D5), CD45R (RA3-6B2), Ly6G (8C5, 
MAC1) and Ter119). From Lin- cells, those that were 
CD127+c-Kit+Sca-1+ were identified as common 
lymphoid progenitors (CLPs). Cells that were CD127-c-
Kit+Sca-1+ or CD127-c-Kit+Sca-1- were designated as 
LSK and LK progenitor cells, respectively. In the 
thymi: ETPs were identified by first gating out all Lin- 
cells and then further subdividing based on CD25 and c-
Kit expression. ETPs were CD25-c-Kit+ or DN, DN2 
(CD25+c-Kit+), DN3 (CD25+c-Kit-) and DN4 (CD25-c-
Kit-). Lin+ cells were divided based on CD4 and CD8 
expression. In the spleen, after gating on lymphocytes 
and live cells, cells were analyzed based on their 
expression of the various epitopes examined. 
CD31+/CD31- are indicative of recent thymic emigrants 
in the spleen.  
 
RT-PCR 
 
The RNeasy Mini kit (Qiagen) was used for thymic cell 
mRNA extraction. Reverse transcription was performed 
using proprietary kits (Life Technologies, Carlsbad 
CA). Genes were normalized to GAPDH. RT-PCR was 
performed using the ABI Prism 7300 Sequence 
Detector (Applied Biosystems, Carlsbad CA). Thymic 
cells were subsequently assessed for pro-apoptotic 
mediator caspase-3 and pro-apoptotic mediators of the 
Bcl-2 family: Bid, Bim, Bax and the pro-survival 
mediator Bcl-xL. Bone marrow cells were assessed for 
chemokine receptors CCR7 and 9, and CXCR4. Whole 
thymic organs and novel parathymic lobes (PTLs) were 
assessed for the cortical marker Troma-I (keratin 8), 
Hsp90β1, Itgb7, CCL19 and 25, and CXCL12.  
The primer sequences; GAPDH-F: 5’-
ACCACAGTCCATGCCATCAC-3’; GAPDH-R: 5’-
TCCACCACCCTGTTGCTGTA-3’; Bax-F: 5’-
GTGAGCGGCTGCTTGTCT’3’; Bax-R: 5’-
GGTCCCGAAGTAGGAGAGGA-3’; Bcl-xL-F: 5’-
TGACCACCTAGAGCCTTGGA-3’; Bcl-xL-R: 5’-
GCTGCATTGTTCCCGTAGA-3’; Bid-F: 5’-
GTGAGGAACTTGGTTAGAAACGA-3’; Bid-R: 5’-
CAGGCCAAGGTCTTTCCAT-3’; Bim-F: 5’-
AGGGCGGGTACATTCTGA-3’; Bim-R: 5’-
GGCGTGTTTACCCTAGTGTCTT-3’; Caspase-3-F: 
5’-GAGGCTGACTTCCTGTATGCTT-3’; Caspase-3-
R: 5’-AACCACGACCCGTCCTTT-3’; CCL19-F: 5’-
TGTGGCCTGCCTCAGATTAT-3’; CCL19-R: 5’-
AGTCTTCCGCATCATTAGCAC-3’; CCL25-F: 5’-
GAGTGCCACCCTAGGTCATC-3’; CCL25-R: 5’-

CCAGCTGGTGCTTACTCTGA-3’; CCR7-F: 5’-
ATTTCTACAGCCCCCAGAGC-3’; CCR7-R:  5’-
AGCACACCTGGAAAATGACA-3’; CCR9-F: 5’-
GGCTGGTCTGCATTATCTTGA-3’; CCR9-R: 5’-
CATGCCAGGAATAAGGCTTG-3’; CXCL12-F: 5’-
CCAAACTGTGCCCTTCAGAT-3’; CXCL12-R: 5’-
ATTTCGGGTCAATGCACACT-3’; CXCR-4-F: 5’-
TGGAACCGATCAGTGTGAGT-3’; CXCR-4-R: 5’-
GGGCAGGAAGATCCTATTGA-3’; HSP90β1-F: 5’-
AGGGTCCTGTGGGTGTTG-3’; HSP90β1-R:5’-
CATCATCAGCTCTGACGAACC-3’; ITGB7-F: 5’-
TGTGCATGGTGCAAACAAC-3’; ITGB7-R: 5’-
GCGAGCCAGTAGCTCCTCT-3’; Troma I-F:  5’-
GGGGGTTGGGAAATGAGTAT-3’; Troma I-R: 5’-
CAGAGATACAGGGCATGCAA-3’. Most of the 
primer sequences were designed to be intron-spanning, 
if applicable (https://www.roche-
appliedscience.com/sis/rtpcr/upl/index.jsp?id=uplct_030
000). 
 
Histological analysis 
 
Thymi were snap-frozen for histological assessment. 
Alcohol-free Oil red O staining was performed on 
frozen OCT (optimal cutting temperature)-fixed, 5 μm 
thymic sections. Sections were dipped in Oil Red O for 
10 minutes, followed by water, hematoxylin (10 dips), 
tap water, clarifier (10 dips), tap water, bluing agent (10 
dips), tap water and aqueous mounting media was used 
to coverslip the sections.  
 
Transcriptomic microarray analysis 
 
RNA isolation of 12-month old thymi and PTLs, 
subsequent cDNA generation, labeling and 
hybridization to Illumina Sentrix Mouse Ref-8 
Expression BeadChips (Illumina) were performed as 
previously described [16]. We have deposited the raw 
transcriptomic data at GEO/ArrayExpress under 
accession number GSExxx. All details are MIAME 
compliant. Gene array data were analyzed using DIANE 
6.0 as described previously [16]. 
 
Bioinformatic analyses 
 
Ingenuity Pathway Analysis (Redwood City, CA), was 
used for BioFunction and Canonical Signaling Pathway 
analyses for the high-dimensionality transcriptomic 
data. The latent semantic indexing-based natural 
language processor, Textrous! was employed for further 
novel informatics analyses [58, 75].  
 
Statistical analysis 
 
Data are presented as mean ± SEM. Where applicable, 
data are represented in dot plots (Figs 5, 6, S3) to 
indicate the variation between data points within a study 
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group, providing further insight as to the distribution of 
the data. Statistical analysis was performed using 
GraphPad Prism, v5. Two-way ANOVA followed by a 
Bonferroni post-hoc test was performed for all panels in 
Figs 2 and 3 and panels A-C for Fig 4. A one-way 
ANOVA was performed followed by a Newman Keuls 
test for graphs with comparisons that involved at least 3 
study groups for all other figures. For comparisons with 
only 2 study groups, a two-tailed Student’s t-test was 
performed. p ≤ 0.05 was considered significant. 
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SUPPLEMENTARY MATERIALS 
 
Please browse the links in Full Text version of this 
manuscript to see Supplemental Tables. 
 
Supplemental Tables 
 

Table S1. Transcripts significantly regulated 
differentially between the GIT2KO thymus and the 
WT thymus. Supplemental File 1 

Table S2. Full metabolic and signaling pathway 
analysis of transcripts significantly regulated in 
GIT2KO thymus compared to WT thymus. 
Supplemental File 2. 

Table S3. IPA-based BioFunction enrichment 
annotation of transcripts significantly regulated in a 
differential manner in GIT2KO thymus compared to 
WT control thymus. Supplemental File 3. 

Table S4. Transcripts significantly and differentially 
regulated in GIT2KO PTLs versus GIT2KO 
thymus. Supplemental File 4. 

Table S5. Transcripts significantly and differentially 
regulated in GIT2KO PTLs versus WT thymus. 
Supplemental File 5. 

Table S6. Venn diagram analysis of GIT2KO 
parathymic lobe (PTL) transcriptomic profiles. 
Supplemental File 6. 

Table S7. Textrous!-based natural language 
collective processing output from the core of 30 
GIT2KO PTL-regulated transcripts. Supplemental 
File 7. 

Table S8. Canonical signaling pathway analysis of 
transcripts significantly regulated in GIT2KO 
thymus compared to WT thymus. Supplemental File 
8. 

Table S9. Canonical signaling pathway analysis of 
transcripts significantly regulated in GIT2KO PTLs 
compared to GIT2KO thymus. Supplemental File 9. 

Table S10. Transcripts significantly regulated 
differentially between the GIT2KO inguinal lymph 
node (ILN) and WT ILN. Supplemental File 10.  

Table S11. Transcripts significantly regulated 
differentially between the GIT2KO mesenteric 
lymph node (MLN) and WT MLN. Supplemental File 
11.  

Table S12. Transcripts significantly regulated 
differentially between the GIT2KO spleen and WT 
spleen. Supplemental File 12.  

Table S13. Venn diagram separation of transcripts 
significantly regulated differentially between the 
GIT2KO inguinal lymph node (ILN), mesenteric 
lymph node (MLN), Spleen and Thymus compared 
to WT tissue counterparts. Supplemental File 13. 

Table S14. Collective Processing Textrous! analysis 
of coherently-regulated transcripts common across 
GIT2KO ILN, MLN, spleen and thymus tissues. 
Supplemental File 14. 

Table S15. Ingenuity Pathway Analysis-based 
canonical signaling pathway analysis of significantly 
regulated transcripts differential between GIT2KO 
ILN compared to WT controls. Supplemental File 15. 

Table S16. IPA-based canonical signaling pathway 
analysis of significantly regulated transcripts 
differential between GIT2KO MLN compared to 
WT controls. Supplemental File 16. 

Table S17. IPA-based canonical signaling pathway 
analysis of significantly regulated transcripts 
differential between GIT2KO spleen compared to 
WT controls. Supplemental File 17. 

Table S18. Venn diagram analysis of significantly 
populated Ingenuity Pathway Analysis canonical 
signaling pathways from GIT2KO versus WT 
control ILN, MLN, spleen and thymus 
transcriptomic data. Supplemental File 18. 

Table S19. Enrichr-based Reactome-2015 analysis of 
SASP (senescence-associated secretory phenotype) 
factors affected by GIT2 deletion. Supplemental File 
19. 
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Supplemental Figures.  

 
 

Figure S1. Altered apoptotic marker expression in GIT2KO thymocytes. Thymocyte transcript expression of apoptotic 
regulators Bid (A), caspase-3 (B), Bax (C), Bcl-xL (D) and Bim (E). All values indicated are mean ± SEM. For line charts (A-C) WT data is 
indicated with solid lines, GIT2KO data with dashed lines. For histograms, WT data are represented by black bars with GIT2KO data 
represented by lined bars. Months of age is abbreviated to m.o. *p<0.05, **p<0.01. 
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Figure. S2 GIT2 genomic depletion affects functional T cell development and circulating white cell status. WT and 
GIT2KO total cell counts for splenic CD8+CD31+ cells (A) and CD4+CD31+ cells (B). WT and GIT2KO total cell counts for splenic 
CD8+CD31- cells (C) and CD4+CD31- cells (D). CD8+:CD31+/CD31- cell count ratios in WT and GIT2KO spleen (E). CD4+:CD31+/CD31- cell 
count ratios in WT and GIT2KO spleen (F). Total white blood cell (WBC) counts for 3 month old WT and GIT2KO mice (G). (B) Total WBC 
counts for 12 month old WT and GIT2KO mice (H). (C) Total percentage lymphocyte measurements for 3 month old WT and GIT2KO 
mice (I). Total percentage lymphocyte measurements for 12 month old WT and GIT2KO mice (J). Total lymphocyte cell counts for 3 
month old WT and GIT2KO mice (K). Total lymphocyte cell counts for 12 month old WT and GIT2KO mice (L). All values indicated are 
mean ± SEM. WT data are represented by black bars with GIT2KO data represented by lined bars. Months of age is abbreviated to 
m.o. *p<0.05, **p<0.01, ***p<0.001. 
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Figure S3 Hematopoietic precursors for T cell development in WT and GIT2KO mouse bone marrow. Cell counts for Lin-

CD127+ (A), Lin-CD127- (B) and CLP (common lymphoid progenitors: C) were not significantly different between WT and GIT2KO mice. 
LSK (Lin-CD127-Sca-1+c-Kit+: (D)) and LK (Lin-CD127-Sca-1-c-Kit+: (E)) were up-regulated in GIT2KO mice in an age-dependent manner. 
Representative FACS images are represented for WT (F) and GIT2KO (G) bone marrow extracts. In each panel (F-G) x-axes represents 
increasing Sca-1 and y-axes represent increasing c-Kit. Bone marrow transcript expression for CCR7 (H), CCR9 (I) or CXCR4 (J) in WT 
and GIT2KO mice. All values indicated are mean ± SEM. For line charts WT data is indicated with solid lines, GIT2KO data with dashed 
lines. For histograms, WT data are represented by black bars with GIT2KO data represented by lined bars. Months of age is 
abbreviated to m.o. *p<0.05, **p<0.01, ***p<0.001. 
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Figure S4. GIT2-dependent protein expression analysis reinforces transcriptomic microarray data. Protein expression 
data for both GIT2-dependent upregulation and downregulation (IB – immunoblot) in thymi from GIT2KO mice (A). For each 
representative blot quantification a quantitative histogram is depicted. Data represented is mean ± SEM (n=3). *p<0.05, **p<0.01. 
Endogenous GIT2 expression was attenuated in cultured Jurkat cells using a combination of GIT2 siRNA (50-400nM final 
concentration). Immunoblots for proteins suggested by transcriptomic microarray analysis were performed, for both upregulated and 
downregulated factors (B). 
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Figure S5. GIT2-dependent protein expression analysis reinforces transcriptomic microarray data in spleen. Protein 
expression data for both GIT2-dependent upregulation and downregulation (IB – immunoblot) in spleen from GIT2KO mice (A). For each 
representative blot quantification a quantitative histogram is depicted. Data represented is mean ± SEM (n=3). *p<0.05, **p<0.01. 
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Figure S6. LSI-based analysis of GIT2KO-specific, cross-tissue immune regulatory factors. Individual semantic processing 
heatmaps of the strongest individual transcript-word associations generated using the input of the 40 transcripts coherently regulated 
in GIT2KO mice across ILN, MLN, spleen and thymus tissues. The strength of the latent semantic associations between input transcript 
identities (arranged in columns: upregulated in GIT2KO vs. WT are depicted in red; downregulated in GIT2KO vs. WT in green) and the 
extracted scientific words (arranged in rows) are indicated in a scale from grey (no correlation) to increasing densities of teal (strongest 
correlations) (A). The semantically-associated words were then clustered into functional groups: ‘clock regulation’; ‘transcription’; 
‘metabolism/stress’; ‘immune’. For the four functional categories indicated in panel A – the mean geometric group Z score is indicated 
(mean ± 95% confidence limit range) in panel (B). In the histogram the mean Z score value is indicated by the solid green line and the 
number in italics associated with each column represents the cumulative group Z score value – calculated by the summation of the 
individual z ratios of the significantly-regulated transcripts linked with that specific group (green indicates a negative cumulative Z 
score, red indicates a positive cumulative Z score). 
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Figure S7 Chemokine ligand transcript expression patterns in GIT2KO parathymic lobes. Transcript expression for CCL19 
(A), CCL25 (B) and CXCL12 (C) was measured in WT thymus, GIT2KO thymus and in GIT2KO PTLs. All values indicated are mean ± SEM. 
WT data are represented by solid black objects and GIT2KO data are represented by lined objects. *p<0.05, **p<0.01. 
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Figure S8. Functional overlap between the canonical senescence-associated secretory pathway (SASP) and the GIT2KO 
molecular phenotype. An unbiased SASP pathway data list was obtained from REACTOME (www.reactome.org) (A). Transcripts 
significantly altered in the respective tissues (thymus, PTL – parathymic lobe, lymph nodes, spleen) that are found in the canonical SASP 
list. Functional interaction network analysis (STRING – www. http://string-db.org/: high network confidence applied) using the 17 
GIT2KO-altered SASP-overlapping transcripts demonstrates a strong interconnectivity between the GIT2KO and SASP phenotypes. 
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SUPPLEMENTARY MATERIALS AND 
METHODS 
 
Western Blotting 
 
Cell and tissue lysates were prepared using a standard 
RIPA buffer containing 0.1% SDS (Janssens et al., 
2015). All protein extracts were quantified using BCA 
reagent (ThermoScientific, Rockford IL) and then 
normalized for each specific experiment before 
resolution with SDS-PAGE and semi-dry electrotransfer 
(Bio-Rad, Hercules CA) to PVDF membranes 
(PerkinElmer Life Sciences; Waltham MA). 
Membranes were blocked using a 4% bovine serum 
albumin for Western blot and primary antibody 
immune-reactive complexes were identified using 
alkaline phosphatase-conjugated secondary antisera 
(Sigma-Aldrich, St. Louis MO) with enzyme-linked 
chemifluorescence (GE Healthcare) as described 
previously (Martin et al., 2016). Primary antibodies 
specific for glyoxalase 1 (GLO1: 6F10: ab81461), 
superoxide dismutase 2 (SOD2: ab13533), period 1 
(PER1: ab3443), receptor for advanced glycation 
endproducts (AGER: ab37647), RNase 4 (RNASE4: 
ab200717), microsomal glutathione S-transferase 2 
(MGST2: ab208802) and thyrotrophic embryonic factor 
(TEF: ab48836) were obtained from Abcam 
(Cambridge MA). Primary antibodies specific for 
glyceraldehyde-3-phosphate dehydrogenase (GAPDH: 
I-19), caveolin 1 (CAV1: N-20) and voltage-dependent 
anion-selective channel protein 3 (VDAC3: H-40) were 
obtained from Santa Cruz Biotechnology (Santa Cruz 
CA). A primary antibody specific for Paired 
amphipathic helix protein Sin3a (SIN3A: NB600-1263) 
was obtained from Novus Biologicals (Littleton CO). A 
primary antibody specific for NADH dehydrogenase 
(ubiquinone) 1 beta subcomplex, 10 (NDUFB1010: 
15589-1-AP) was obtained from, ProteinTech (Chicago 
IL). A primary antibodies specific for G protein-coupled 
receptor kinase-interactor 2 (GIT2: A302-102A) was 
obtained from Bethyl Laboratories Inc. (Montgomery 
TX). 
 
Cellular RNA interference 
 
Human Jurkat cells (obtained from ATCC: clone E6-1) 
were maintained at 37oC in a 5% CO2 atmosphere in 
RPMI media (Sigma-Aldrich, St. Louis MO) 
supplemented with 10% fetal bovine serum (Sigma-
Aldrich, St. Louis MOI) as recommended by ATCC 
(https://www.lgcstandards-atcc.org/en.aspx). Human 
GIT2 siRNA (Santa Cruz) was a pool of 3 target-
specific 19-25 nt siRNAs. Control siRNA-A consists of 
a scrambled sequence that will not lead to the specific 
degradation of any cellular mRNA. Sequences of 
siRNAs: GIT2-A: Sense: CCAAUAAAGCGG 

AAUUCAU; Antisense: 
AUGAAUUCCGCUUUAUUGG. GIT2-B: Sense: 
GUACUCAUCAA CACG AAAU; Antisense: 
AUUUCGUGUUGAUGAGUAC. GIT2-C: Sense: 
GCGUUGAGAG UCAAGACAA; Antisense: 
UUGUCUUGACUCUCAACGC. Control siRNA-A: 
Sense: UUCU CCGAACGUGUCACGU; Antisense: 
CGUGACACGUUCGGAGAA. Jurkat cells were 
transfected with siRNA oligos using Lipofectamine 
RNAi MAX (Life Technologies, Carlsbad CA) 
according to the manufacturer's protocol. 
 
 


