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INTRODUCTION 
 

Cervical cancer (CC) is a serious global health issue. 

Although the anti-HPV vaccine can effectively reduce 

CC incidence and mortality, vaccination does not treat 

HPV infection [1]. Chemotherapy, radiation, and 

surgery are currently used to treat early-stage CC [2]. 

However, patients with advanced and recurrent disease 

remains poor prognosis [2, 3]. 

 

Unlike traditional therapy, immunotherapy acts through 

mechanisms against cancer cells by modifying and 

recruiting the host's immune system. It aims to 

supplement and support existing immune cells in the 
tumor microenvironment (TME) [4, 5]. Tumor cells can 

induce immune escape by inhibiting immune cell 

function through PD-1/PD-L1 signaling, which 

influences cancer progression and therapeutic efficacy 

for immunotherapy [6, 7]. Immunotherapies targeting 

immune suppressive cells, such as Tregs and tumor-

associated macrophages (TAMs), could reverse 

immunosuppressive environments and prevent further 

tumor growth [8]. Currently, immune checkpoint 

molecules of cytotoxic T-lymphocyte-associated 

antigen 4 (CTLA-4) and programmed cell death 

receptor (PD-1), as the most promising tumor 

immunotherapies, have received more attention in 

clinical applications [9, 10]. PD-1/PD-L1 axis could 

block immune cells biological activities, including 

CD8+ T cells [11], and promote cancer immune escape 

[12]. Blocking immune checkpoint function may 

enhance CD8+ T cell proliferation and promote the 

clearance of cancer cells [12]. Thus, immunotherapies 

against immune-suppressive factors can reverse 
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ABSTRACT 
 

The cervical cancer tumor microenvironment is a diverse and complex ecosystem. Tumor-immune cell 
infiltration (ICI) may influence immune escape and immunotherapeutic responses. However, the relationship 
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applied to calculate individual ICI scores and probabilities of immune escape, respectively. Through the 
IMvigor210 and the Cancer Immunome Atlas (TCIA) datasets, we validated the different responses to 
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predicted by the pRRophetic package. We found that patients with high ICI scores were prone to immune 
escape due to the activated JAK-STAT signaling pathway, along with lower CD8+ T cells. High ICI scores patients 
could benefit more from anti-PD-L1 immunotherapy, and individuals with low scores may be better candidates 
for the anti-CTLA-4 treatment. Combinations of immunotherapies with targeted inhibitors may improve clinical 
efficacy and reduce the risk of tumor recurrence. The ICI model not only helps us enhance the cognition of 
immune escape, but also guides the application of immunotherapy in cervical cancer patients. 
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immunosuppressive environments, inhibit cancer 

growth, and enhance the recognition of cancer cells by 

immune cells [13, 14]. Nonetheless, not all cancer 

patients could benefit equally from the interventions of 

immunotherapy, identification of potential immune 

escape mechanisms in cervical cancer patients will 

facilitate customized therapeutic regimens for different 

CC patients. 
 

Here, we evaluated immune cell infiltration (ICI) and 

immune microenvironment in CC using ESTIMATE 

and CIBERSORT and identified three immune subtypes 

and gene subtypes. In addition, ICI-based scoring 

subgroups were established to predict the probability of 

immune escape and response to immunotherapy. 

 

MATERIALS AND METHODS 
 

CC datasets and samples 

 

The TCGA dataset containing CC gene expression and 

clinical features, and a GSE44001dataset from GEO 

were utilized in this study. The pre-processed TCGA 

dataset included 3 normal samples and 306 tumor 

samples. The GSE44001 dataset was based on 300 

cervical cancer samples. The FPKM expression values 

were then converted into the transcripts per kilobase 

million (TPMs). The “ComBat” algorithm was applied 

to the merged database to reduce the probability of 

batch effects caused by non-biological technical 

deviations between datasets. 

 

Consensus clustering for tumor-infiltrating immune 

cells 
 

The CIBERSORT tool was used to analyze infiltration 

levels of 22 types of immune cells (LM22 signature) in 

each sample using 1,000 permutations. The contents  

of immune and stromal cells in CC were acquired  

by the ESTIMATE algorithm. Based on immune cell 

infiltration levels of each sample, each case was 

assigned to the corresponding cluster based on 

hierarchical agglomerative clustering. “Consensu- 

ClusterPlus” in R was used to execute the “Pam” 

method based on Euclidean and Ward’s linkage with 

1,000 repeats to guarantee classification stability. 

 

Identification of ICI phenotype-associated 

differentially expressed genes (DEGs) 
 

All genes that were not counted in any of the samples 

were dropped. The infiltration levels of immune cells 

were used to assign the study subjects to 3 immune 
cell infiltration (ICI) clusters. To identify ICI 

phenotype-associated genes, the cutoff thresholds for 

fold change and false discovery rate (FDR) were set at 

|log2-fold change| >1 and adjusted p-value < 0.05, 

respectively. 

 

Reduction of dimension and ICI score generation 

 

Unsupervised clustering was performed to cluster the 

samples based on DEGs. Also, DEGs with positive 

correlation with gene clusters were defined as gene type 

A and those negative as gene type B. To minimize 

redundant or noise genes, the Boruta algorithm was 

used for finding the feature genes, and the gene type A 

and B were dimensionally reduced through principal 

component analysis (PCA) analysis [15]. The main 

component 1 extracted from PCA was taken as a 

signature score [16]. Finally, an analogous was applied 

to evaluate the ICI score of each sample: 

 

1 1A BICI score PC PC= −   

 

Collection of tumor mutation burden data 

 

The mutation data of CC were acquired from the TCGA 

database. To evaluate tumor mutation burden in CC, we 

counted the non-synonymous mutations. Based on ICI 

scores, mutation data samples were classified into low 

or high ICI score groups. Mutation analysis and 

visualization were conducted using the maftools 

package. 

 

Evaluation of immunotherapy response 

 

TIDE analysis was performed to calculate TIDE scores, 

an indicator of the probability of immune escape 

(http://tide.dfci.harvard.edu/). Moreover, an indepen-

dent dataset which contained immunotherapy  

was obtained from IMvigor210 and clinical data  

were used to assess the therapeutic effectiveness of ICI 

(http://research-pub.gene.com/IMvigor210CoreBiologies). 

In addition, the Cancer Immunome Atlas (TCIA; 

https://tcia.at/) was used to detect immune scores (IPS) 

of tumor samples to predict responses to cytotoxic T-

lymphocyte antigen-4 (CTLA-4) and programmed cell 

death protein 1 (PD-1) blockers [17]. In this study,  

we also predicted the therapeutic sensitivity between 

high and low ICI score groups. The concentration 

(IC50) that leads to a 50% reduction growth of targeted 

inhibitors (TIs) was assessed with R package 

“pRRophetic” [18]. 

 

Statistical analysis 

 

All analyses were conducted using the R software. 

Kaplan–Meier analysis was performed to determine 

survival outcomes. Comparisons of survival 

differences among groups were carried out using the 

http://tide.dfci.harvard.edu/
http://research-pub.gene.com/IMvigor210CoreBiologies).
http://research-pub.gene.com/IMvigor210CoreBiologies).
https://tcia.at/
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log-rank method. Significant differences were 

established at P < 0.05. 

 

Data availability 

 

The supporting datasets were available from the public 

and described in the manuscript. 

 

RESULTS 
 

Immune cell infiltrations 

 

We calculated infiltration contents of the 22 immune 

cells of each sample. Figure 1A visualized the 

correlation interactions of different immune cells in 

TME. The ConsensusClusterPlus R package was used 

for sample clustering, and 3 ICI subtype classifications 

were obtained (Figure 1B). 

 

We carried out prognosis analysis on these three ICI 

subtypes and found that patients with ICI subtype A had 

a poor prognosis (p = 0.016, Figure 1C). To better clarify 

intrinsic differences of ICI subtypes, infiltration 

characteristics of immune cells were investigated in ICI 

subtypes (Figure 1D). ICI cluster A, which is related to a 

poorer prognosis, is characterized by low infiltrations of 

CD8+ T cells, macrophages M1, macrophages M2 and 

immune scores. It is also featured by high infiltration of 

 

 
 

Figure 1. The landscape of immune cells in the TME of CC. (A) Correlation coefficient heatmap of the infiltrating immune cell types. (B) 

Unsupervised clustering of immune cells. (C) Kaplan-Meier curves of immune cell clusters. (D) Immune cell infiltration heat map. (E) The 
composition of immune cells in three ICI clusters. (F–H) The difference in PD1 (F), PD-L1 (G) and CLTA4 (H) expression among three ICI clusters. 
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activated mast cells (Figure 1E). The expression profiles 

of three major immune checkpoints (PD1, PD-L1 and 

CTLA-4) were displayed in Figure 1F–1H among three 

ICI subtypes (Figure 1F–1H). 

 

Immune gene subtypes 

 

To prepare for the construction of ICI score model, 

unsupervised cluster of 129 DEGs was performed using 

the ConsensusClusterPlus package to obtain gene 

clusters (Supplementary Table 1). After the 

unsupervised cluster, the samples were re-classified into 

three ICI gene clusters (Figure 2A). Next, DEGs were 

distinguished based on positive or negative correlation 

with gene clusters. Of the 129 DEGs, the 115 that had 

inverse correlation with the gene cluster were assigned 

into the signature gene type B. The remaining DEGs 

were assigned into gene type A. The heatmap revealed 

the expression of DEGs in clinical features among 

samples (Figure 2B). Gene functional analysis was done 

using gene ontology (GO) enrichment on these gene 

types A and B (Figure 2D, 2E). 

 

Next, we performed the Kaplan–Meier analysis on these 

3 gene clusters, subjects in gene cluster A had a poor 

prognosis (p = 0.015, Figure 2C). As a guide from the 

 

 
 

Figure 2. Characterization of ICI Gene clusters. (A) Cluster results of DEGs. (B) Heat map of DEGs characteristics. (C) Kaplan-Meier 

curves of CC patients with DEGs classes. (D, E) GO analyses of ICI signature genes A (D) and B (E). (F) The immune cell component in three 
gene clusters. (G–I) The difference in PD1 (G), PD-L1 (H) and CLTA4 (I) expression among three ICI gene clusters. 
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results, gene cluster A was characterized on the low 

infiltration of CD8+ T cells, activated memory CD4 + T 

cells, and M1 macrophages, as well as low immune 

score and stromal score. It was also characterized on 

high infiltration of activated mast cells (Figure 2F). The 

expression of the 3 immune checkpoints in 3 gene 

clusters was shown in Figure 2G–2I. 

 

Calculation of ICI score 

 

After quantifying individual ICI scores with PCA, the 

cases were subsequently assigned into low or high score 

groups. A Sankey diagram was used to visualize 

patients’ distributions of patients with gene clusters, 

stage, ICI scores, and survival status (Figure 3A). To 

determine immune activity and tolerance, we selected 

related signature genes with immune checkpoint, 

immune activity, and antigen presentation (Figure 3B). 

Biological differences between the ICI score groups 

were determined through gene set enrichment analysis 

(GSEA). These pathways included RIG-I-Like receptor 

signaling, apoptosis, NOD-Like receptor signaling, 

JAK-STAT signaling, cytokine-receptor interactions 

(Figure 3C). Patients with different ICI scores showed 

significant survival differences, with low ICI scores 

indicating better survival (Figure 3D). 

Tumor mutation burden (TMB) 

 

Considering correlations of high TMB with prolonged 

progression-free survival, we attempted to detect an 

intra-association between TMB and ICI scores. 

Firstly, patients were assigned into low and high TMB 

groups based on optimal TMB cutoff values. As the 

Figure 4A showed that individuals with the high TMB 

had better overall survivals (OS). To discover whether 

the synergistic effect of TMB and ICI score exists in 

prognostic value, we conducted stratified survival 

analysis and found that the prediction value of ICI 

score was not interfered by the TMB. Two ICI score 

subtypes showed significantly different OS in both 

high and low TMB subgroups (Figure 4B). In 

summary, these findings suggest that ICI scores can 

be considered as a latent predictor independent of 

TMB. 

 

Next, we compared the distribution of CC driver genes 

derived by Maftools between the two ICI score groups 

[19]. The top 20 driver genes with the most frequent 

alterations were further analyzed (Figure 4C, 4D). 

Table 1 showed that alteration frequencies of KRAS, 

MED12, TP53, PKHD1L1, and SPTA1 were 

significantly different within two ICI score subgroups. 

 

 
 

Figure 3. ICI Scores construction. (A) Sankey plot of ICI gene cluster, ICI scores, Stages, and OS. (B) Difference of immune-checkpoint, 

immune-activity-associated genes signature, and antigen presentation-related gene signature expression in the two ICI score subgroups. (C) 
Function pathways of ICI scores groups. (D) Kaplan-Meier plots of two ICI score groups. (E) The fraction of CD8+T cells in the two ICI score 
subgroups. 
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Associations between ICI score and clinical features 

 

To assess potential clinical applications of ICI scores, 

we visualized distribution differences of survival status 

within two ICI score groups and found that patients who 

died had relative high ICI scores (Figure 5A, 5B). In 

addition, we performed survival analysis to evaluate 

prognostic implication of ICI score at different stages. 

Kaplan–Meier analysis showed that stages I and II 

patients with high ICI scores were correlated with worse 

prognosis than those with low scores. Furthermore, no 

significant difference was observed both in patients 

with high and low ICI scores at III and IV stages 

(Figure 5C, 5D). 

 

Immune escape 

 

Through GSEA, we identified an underlying immune 

escape pathway, the JAK-STAT signaling pathways 

(Figure 3C), in high ICI score patients. Firstly, immune 

escape mediated by the JAK-STAT pathway in cancer 

had been demonstrated in prior studies [20, 21]. In our 

study, the escape mechanism depicting IL6-JAK-

STAT3 signaling pathway had been illustrated in the 

Figure 6. The expressions of key factors and cells 

involved in this pathway, such as IL6, PD-L1, and 

CD8+ T cells, were compared between the two ICI 

score subgroups (Figure 3B, 3E) to discern whether the 

pathway functions in immune escape. Next, TIDE was 

used to verify the probability of immune escape (Figure 

7A), and a higher TIDE score, a higher chance of 

immune escape. Our results showed that patients with 

high ICI score had a higher TIDE score and were more 

prone to immune escape. 

 

Immunotherapy 

 

Immunotherapies by blocking T cell inhibition 

pathways (immune checkpoint blockade) had been 

widely applied to cancer treatment. To clarify responses 

 

 
 

Figure 4. Correlations between TMB and ICI Score. (A) Survival plots of two TMB subgroups. (B) Survival plots combined with TMB 

and ICI scores. (C) Distribution of gene mutation in the high ICI score group. (D) Distribution of gene mutation in the low ICI score group. 
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Table 1. Distribution characteristic of somatic variations in the ICI scores. 

Gene H-wild H-mutation L-wild L-mutation p-value 

KRAS 134 (99.26%) 1 (0.74%) 137 (90.73%) 14 (9.27%) 0.003026 

TP53 131 (97.04%) 4 (2.96%) 134 (88.74%) 17 (11.26%) 0.013975 

PKHD1L1 121 (89.63%) 14 (10.37%) 147 (97.35%) 4 (2.65%) 0.01467 

MED12 132 (97.78%) 3 (2.22%) 138 (91.39%) 13 (8.61%) 0.036738 

SPTA1 132 (97.78%) 3 (2.22%) 138 (91.39%) 13 (8.61%) 0.036738 

 

to immunotherapy for different ICI score patients, we 

divided the IMvigor210 immunotherapy cohort patients, 

receiving the anti-PD-L1 intervention, into high or low 

ICI score groups using the ICI model. Patients with high 

ICI scores were observed higher response rates to anti-

PD-L1 immunotherapy (Figure 7B) and better 

prognostic survivals (Figure 7C). Also, an additional 

TCIA database was used to further validate 

 

 
 

Figure 5. The association of ICI scores and clinical characteristics. (A) Rate of survival status of BC patients in the high and low ICI 

score group. (B) Distribution of survival status in the two groups. (C) Kaplan-Meier curves analysis for patients with Stage I and II. (D) 
Kaplan-Meier curves analysis for patients with Stage III and IV. 
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immunotherapy responses to PD1 and CTLA4 among 

individuals with different ICI scores. Figures 7D–7F 

displayed treatment responses to IPS, IPS-PD1, and 

IPS-CTLA4 in both ICI score group patients. Based on 

the pRRophetic method, we predicted the therapeutic 

sensitivity of TIs (Bosutinib, Dasatinib and Belinostat) 

between the two groups, and found two TIs (Bosutinib 

and Dasatinib) had higher IC50 in low score patients 

(Figure 7G, 7H). Individuals with low ICI scores were 

more sensitivity to Belinostat than those with high 

scores (Figure 7I). 

DISCUSSION 
 

In our study, we explored the underlying mechanism of 

immune escape and investigated whether benefits to 

immunotherapy would be suitable for all patients with 

cervical cancer. In the process of tumor immune escape, 

tumor cells would overexpress PD-L1, which binds to 

PD-1 on the T cell surface to induce T cell exhaustion, 

failing to kill cancer cells and leading to immune 

escape. To the best of our knowledge, not all patients 

with cervical cancer are potential candidates for the  

 

 
 

Figure 6. Immune escape mediated by the IL6-JAK-STAT signaling pathway In CC. IL6 binding to its receptors to activate the JAK-
STAT pathway. JAK1 phosphorylates PD-L1 to stabilize PD-L1 protein. STAT3 was involved in regulating the transcription of CD274. PD-L1 
modulates the expression and activation of CD8+ T cells. CD8+ T cells acting on tumor cells. 
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universal immunotherapy protocols. To clarify the 

difference in expression of high and low ICI score 

patients and to solve the issue of immune escape, we 

performed comparisons of two key factor expressions, 

PD - L1 and CD8+ T cell, within the two ICI score 

patients and investigated the potential escape pathway 

through the GESA analysis. For different ICI score 

patients, individualized treatment regimens were 

analyzed and validated by the IMvigor210 and TCIA 

databases. Our results showed that high ICI scores 

patients could benefit more from anti-PD-L1 immuno-

therapy, and individuals with low scores may be  

better candidates for the anti-CTLA-4 treatment. 

Combinations of immunotherapies with targeted 

inhibitors may improve clinical efficacy and reduce the 

risk of tumor recurrence. 

 

Due to the individual heterogeneity in the immune 

microenvironment, we developed the quantification 

model of the ICI score for comprehensive evaluation on 

outcomes. Using GSEA, we identified pathways related 

to immune responses, such as JAK-STAT signaling, 

NOD-like receptor signal, RIG-I-like receptor signaling, 

cytokine-cytokine receptor interaction, and apoptosis 

 

 
 

Figure 7. The additional validation and prediction in immune escape and immunotherapy. (A) The Additional Validation with 

TIDE scores in two ICI score group. (B) The immunotherapy response of anti-PD-L1 in the IMvigor210. (C) Survival plots of ICI scores in the 
IMvigor210. The responses of IPS-CTLA4 (D), IPS-PD1 (E) and IPS-PD1 and CTLA4 (F) in two ICI score groups. The sensitivities of Bosutinib 
(G), Dasatinib (H) and Belinostat (I) in two ICI score groups. 
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pathways. In particular, the IL-6- JAK-STAT3 signaling 

pathways plays a crucial role in human cancer [20]. 

Recently, a review by Kobayashi Y et al. detailed the 

immune escape mechanism of the JAK-STAT signaling 

pathway in cancers [21]. This pathway could be 

frequently activated in cancers or triggered by cytokines 

such as ILs [20–22]. In some cases, the JAK-STAT 

pathway may also be involved in resistance to 

chemotherapy or other treatments. Upon binding of 

cytokines to their cognate receptors, STATs could be 

activated by members of the JAK family of tyrosine 

kinases. Once activated, they dimerize and translocate 

to the nucleus and regulate the expression of target 

genes. Corresponding to the above, IL6 was significant 

higher in the high ICI score group, and the JAK-STAT 

signaling pathway was enriched in the same group. A 

similar expression was observed on PD-L1 within the 

two groups. Regarding PD-L1, it was regulated via a 

variety of signal pathways [23], one of these pathways 

is the JAK-STAT signaling [24]. PD-L1 could inhibit 

cytotoxicity and activation of CD8+ T cells and reduce 

the ratios of CD8+ T cells in the TME [25, 26]. In 

tumor immunity, CD8+ T cells act as the key tumor-

suppressing cells and induce the death of tumor cells 

[27]. Deficiency of CD8+ T cells could not function 

their immune function and contribute to immune 

evasion of tumor cells [27, 28]. Furthermore, TIDE, a 

computational framework, was used to validate the 

probability of tumor immune escape. A higher TIDE 

score, a higher chance of immune escape and a worse 

immunotherapy response [29]. In the results section, we 

also reported patients in the high ICI score group had 

higher TIDE scores. Overall, patients with high ICI 

scores had a greater potential for immune escape due to 

higher TIDE scores and fewer CD8+ T cells. 

 

For immunosuppressive checkpoints, expressions of 

PDCD1LG2, HAVCR2, and LAG3 were higher in the 

high ICI score group than those in the low, thereby 

suggesting that patients with high ICI scores could be 

more likely to benefit from immunotherapy. As shown 

in prior studies, genomic instability could affect 

immunotherapy by producing immune response 

phenotypes, and TMB as a predictor of immune 

checkpoint blockade could determine the possible 

response to immunotherapy drugs [30]. In the ICI score 

subgroups, we explored the frequencies of TMB in 

depth and found differences of gene mutation 

frequencies. Thus, patients with different ICI scores 

may be required to customize distinct immune-related 

drugs. 

 

By complying with the individualized treatment 
regimens in immunotherapy, ICI scores were set to 

identify which patients would benefit from potential 

treatment regimens. As a promising approach, some 

drugs by blocking checkpoint, such as programmed cell 

death protein 1 (PD-1), PD-1 ligand (PD-L1), or 

cytotoxic T lymphocyte antigen-4 (CTLA-4), achieved 

notable efficacies in clinical treatments. Currently, 

Atezolizumab (antibody to PD-L1) and Ipilimumab 

(antibody to CTLA-4) were approved for cancer 

treatment. IPS acts as a superior predictive role in 

response to CTLA-4 and PD-1, and the higher the IPS, 

the better response to PD-1 and CTLA-4 [17]. 

According to the results from the IMvigor210 and 

TCIA, patients with the high ICI scores may be better 

candidates for the anti-PD-L1 therapy, and the anti-

CTLA-4 protocol was more suitable for the remaining 

patients. In this study, a large quantity of TIs had 

exhibited distinct difference in sensitivity between ICI 

score subgroups. IC50 was used to infer the sensitivity 

of the different patients, and the lower the IC50, the 

more sensitive to drugs [18, 31]. Of all TIs, Bosutinib 

and Dasatinib were screened out as targeted inhibitors 

associated with the JAK-STAT signaling. Belinostat 

was selected as a potential candidate drug for tumor 

relapse. Interestingly, the JAK-STAT signaling had 

been demonstrated as a vital regulator of cancer stem 

cells (CSCs) and involved in the recurrence of tumors 

mediated by CSCs [32, 33]. Therefore, combination 

therapies may offer more efficient than single 

immunotherapy for relapsed patients. For patients with 

high ICI scores, combinations of the anti-PD-L1 and 

targeted inhibitors (e.g., Bosutinib) in the clinical 

treatment may be helpful for prevention of tumor 

recurrence. A combination of anti-CTLA-4 with 

targeted inhibitors (e.g., Belinostat) may improve the 

efficacy and reduce recurrence risk for patients with low 

ICI scores. Thus, this study speculated that patients with 

different ICI scores can benefit from individualized 

treatment regimens in immunotherapy. However, the 

therapeutic efficacy on patients with cervical cancer still 

deserves further investigation in depth. Additionally, 

stratification analysis suggested that the index of ICI 

score was independent of TMB in prognosis of cervical 

cancer, which contributing to guiding individualized 

treatment regimens in immunotherapy. 

 

The limitations are as follows: An additional 

experiment in vivo to investigate the immune escape is 

required to further validation and more independent 

cohorts of immunotherapy are warranted for validation 

of the reliability and stability of the ICI score model. 

 

In conclusion, we comprehensively analyzed the ICI 

landscape in CC and established an ICI score model to 

evaluate the immune escape and immunotherapy. 

Benefit from the ICI score model, we revealed the 
underlying immune escape mechanism that providing a 

clear immune escape pathway and predicted the 

response to immunotherapy in different populations. 
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Therefore, ICI score model played an important role in 

clinical significance and customized the optimal 

immunotherapy strategy for the target candidates. 
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Supplementary Table 1. DEGs of ICI-clusters in the cohort. 

 

 


