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ABSTRACT 
 

Objective: Ewing’s sarcoma (ES) is a common bone malignancy in children and adolescents that severely affects 
the prognosis of patients. The aim of this study was to identify novel biomarkers and potential therapeutic 
targets for ES. 
Methods: Highly prognosis-related hub genes were identified by independent prognostic analysis in the 
GSE17679 dataset. We then performed survival analysis, Cox regression analysis and clinical correlation analysis 
on the key gene and validated them with the GSE63157, GSE45544 and GSE73166 datasets. Differentially 
expressed genes (DEGs) were screened based on the high and low expression of key gene, Gene Ontology (GO), 
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses, Gene Set Enrichment Analysis (GSEA), 
and Gene Set Variation Analysis (GSVA) were performed to explore the underlying mechanisms of ES, and 
significant module genes were established based on protein‒protein interaction (PPI) networks. Furthermore, 
the correlations between module genes and the immune microenvironment were analyzed and the correlations 
between the key gene and immune infiltration levels in sarcoma were investigated using TIMER and TISIDB. 
Finally, the expression levels of these key genes in ES cell lines (RD-ES and A673 cells) were further validated by 
real-time quantitative PCR (RT‒qPCR). CCK-8 and EdU assays were performed to assess the effect of ANXA1 
knockdown on RD-ES cell proliferation. 
Results: ANXA1 was identified as a key gene for ES prognosis. The overall survival (OS) time of patients with low 
ANXA1 expression was shorter, and the expression level of ANXA1 in the metastatic group was significantly 
lower than that in the primary group (P<0.01). Additionally, the abundance of 12 immune cells in the ANXA1 
low-expression group was significantly lower than that in the high-expression group (all P<0.05), which may be 
related to the inhibition of the immune microenvironment. A PPI network was constructed based on 96 DEGs to 
further identify the five ANXA1-related module genes (COL1A2, MMP9, VIM, S100A11 and S100A4). The 
expression levels of ANXA1, COL1A2, MMP9, VIM, S100A11 and S100A4 were significantly different between ES 
cell lines and mesenchymal stem cells after validation in two ES cell lines (all P<0.01). Among these genes, 
ANXA1, COL1A2, MMP9, VIM and S100A4 were significantly associated with the prognosis of ES patients (all  
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INTRODUCTION 
 

Ewing’s sarcoma (ES) is the second most frequent and 

highly invasive bone tumor, accounting for 15% of all 

bone tumors in children and adolescents [1]. According 

to early data from the American Cancer Center, there 

are approximately three cases of ES per million people 

each year [2]. The incidence of ES is higher in white 

populations, and it is more common in males for 

unknown reasons [3, 4]. Despite being less than 1% of 

all human malignant tumors [5], sarcomas are all 

invasive, and the most common metastatic sites are the 

lung, bone, and bone marrow [6]. 

 

The standard treatment for ES includes a combination 

of surgery, local radiotherapy, and drug chemotherapy  

[7, 8]. After the introduction of chemotherapy, the 

survival rate of local ES patients increased from 10% 

to approximately 75%, but the metastasis of ES is still 

not optimistic [9, 10]. It has been reported that 

approximately 20-25% of patients with ES have 

metastases at the time of diagnosis, with a 5-year 

survival rate of less than 30% [11, 12]. In view of the 

above factors, new treatments are urgently needed  

to improve the prognosis of ES patients. In contrast  

to other sarcoma types, specific chromosome 

translocations such as EWS-TL11, are necessary 

conditions for Ewing’s sarcoma [13, 14]. Therefore, the 

pathological process controlled by the fusion protein 

determines the importance of molecular targeted 

therapy for Ewing’s sarcoma. Several previous studies 

evaluated indicators affecting ES survival and 

metastasis based on the SEER database and additional 

multicenter cohort data, and further developed 

nomogram models to predict the incidence of ES  

[15, 16]. Recently, the development of public databases 

and genomics has made it critical to seek potential 

prognostic biomarkers for ES, which would improve the 

prognosis of patients and guide their treatment. 

 

In this study, we analyzed four datasets, GSE17679, 

GSE63157, GSE45544 and GSE73166, from the Gene 

Expression Omnibus (GEO). High prognosis-related 

genes in the GSE17679 dataset were screened by 

independent prognostic analysis, and survival analysis, 

Cox regression analysis and clinical correlation analysis 

were performed based on these genes. 88 ES samples 

from the GSE17679 dataset were used as the 

experimental group, and 107 ES samples from the 

GSE63157, GSE45544 and GSE73166 datasets were 

used as the validation group to validate the results of the 

survival analysis, independent prognostic analysis and 

clinical correlation analysis. Differential analysis, Gene 

Ontology (GO) and Kyoto Encyclopedia of Genes and 

Genomes (KEGG) enrichment analysis were performed 

with median expression values of hub gene. 

Additionally, a protein‒protein interaction (PPI) 

network was constructed to identify the module genes 

associated with hub gene to further explore the 

relationship between these module genes and the ES 

immune microenvironment. Finally, the expression of 

module genes was validated in ES cell lines (RD-ES 

and A673 cells) and mesenchymal stem cells (MSCs), 

and survival analysis was conducted. Exploring the 

effect of ANXA1 knockdown on the proliferation of 

RD-ES cells by CCK8 and EdU assays. 

 

RESULTS 
 

Screening of hub genes 

 

First, a total of 64 genes were screened by Cox 

regression analysis of patients with ES based on OS time 

and survival status (P<0.001) (Supplementary Table 1). 

Next, 50 genes were further obtained from 88 samples 

screened by survival analysis according to OS time and 

survival status (P<0.001) (Supplementary Table 2). 

Finally, 374 genes were significantly associated with at 

least one clinical characteristic through clinical 

correlation analysis, of which 50 genes were 

significantly associated with two clinical features, and 

324 genes were significantly associated with only one 

clinical feature (Supplementary Table 3). Based on 

survival (P<0.001), independent prognostic (P<0.001), 

and clinical correlation analyses (SigNum=2), ANXA1 

was determined to be the final hub gene. 

 

Survival analysis of ANXA1 and validation 

 

A total of 88 samples in the training set were divided 

into a high-expression group and a low-expression 

group according to the median expression of ANXA1, 

and a survival curve was drawn. The results suggested 

that the OS time of patients with low-expression was 

significantly lower than that of patients with high-

expression (P < 0.001), and the five-year survival rates 

of the ANXA1 low and high-expression groups were 

approximately 30% and 70%, respectively (Figure 1A). 

P<0.05). Importantly, ANXA1 knockdown significantly promoted the proliferation of RD-ES cells, which may 
explain the susceptibility to ES metastasis in the ANXA1 low-expression group. 
Conclusions: ANXA1 may serve as an independent prognostic biomarker for ES patients and is associated with 
metastasis and the immunosuppressive microenvironment in ES, which needs to be validated in further studies. 
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Figure 1. ANXA1-based survival curves, univariate and multivariate Cox regression analysis. (A) The results of Kaplan–Meier 

survival analysis based on the GSE17679 dataset suggested that patients in the ANXA1 low expression group had worse OS times than those 
in the low expression group (P<0.001). (B) The results of Kaplan–Meier survival analysis based on the GSE63157 dataset suggested that 
patients in the ANXA1 low expression group also had worse OS time, which was consistent with the training set (P=0.001). (C) Univariate Cox 
regression analysis for ANXA1 in the GSE17679 dataset (P<0.001). (D) Multivariate Cox regression analysis for ANXA1 in the GSE17679 dataset 
(P<0.001). (E) Univariate Cox regression analysis for ANXA1 in the GSE63157 dataset (P<0.001). (F) Multivariate Cox regression analysis for 
ANXA1 in the GSE63157 dataset (P<0.001). 
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To validate the results of ANXA1 survival analysis, 85 

samples from the GSE63157 dataset were divided into 

high and low-expression groups. According to the 

results, patients in the low-expression group had a 

shorter OS time than those in the high expression group 

(P=0.001), and the five-year survival rates of the 

ANXA1 low and high-expression groups were 

approximately 50% and 75%, respectively, which 

supported the conclusion of the experimental group 

(Figure 1B). To further analyze the prognostic value of 

ANXA1 in patients with different types of ES, survival 

analyses were performed in primary ES, recurrent ES, 

and metastatic ES patients from the GSE17679 dataset. 

The results showed that the OS time of the ANXA1 low 

expression group was significantly lower than that of 

the ANXA1 high expression group in primary 

(P<0.001) and metastatic ES patients (P=0.028), while 

there was no significant difference in recurrent ES 

patients (Supplementary Figure 1). 

 

Univariate and multivariate Cox regression analysis 

of ANXA1 

 

The results of univariate analysis based on sex, age and 

tumor status suggested that ANXA1 was significantly 

associated with the survival and status of ES patients 

(P<0.001) and that the low HR value (HR<1) of 

ANXA1 indicated that it may be a low risk factor for 

prognosis in ES patients (Figure 1C). Multifactorial 

regression analysis indicated that ANXA1 was a low-

risk factor for prognosis in ES patients (P<0.001) 

(Figure 1D). Univariate and multifactorial regression 

analyses from the validation group similarly 

demonstrated that ANXA1 could be an independent 

prognostic factor for predicting prognosis in ES patients 

(P<0.001) (Figure 1E, 1F). 

 

The expression of ANXA1 in clinical subgroups 

 

After dividing the clinical characteristics into specific 

subgroups, we analyzed the expression of ANXA1 in a 

clinical subgroup from the GSE17679 dataset. In the 

subgroup of age, the median expression of ANXA1 in 

the ≤20-year-old group was higher than that in the >20-

year-old group (P=0.018) (Figure 2A). In the gender 

subgroup, there was no significant difference in 

ANXA1 expression levels between male and female 

patients (P>0.05) (Figure 2B). In the subgroup of tumor 

status, the median expression of ANXA1 in the 

metastasis ES group was significantly lower than that in 

the primary ES group (P=0.0072), but there was no 

significant difference between the primary group and 

recurrence group (P>0.05) (Figure 2C). Additionally, 
22 ES patients from combined the GSE45544 and 

GSE73166 datasets were used to verify the age, gender 

and tumor status of the subgroup, and the results 

showed that the median expression of ANXA1 in the 

metastasis ES group was significantly lower than that in 

the primary ES group (P=0.00034) (Figure 2D). 

 

Identification and enrichment analysis of DEGs 

 

A total of 95 DEGs were identified, of which 81 were 

upregulated genes and 14 were downregulated genes. 

The visual volcano plot and heatmap showed that the 

high-expression genes and the low-expression genes 

could be clearly distinguished according to the median 

expression of ANXA1 (Figure 3A, 3B). Further 

analysis of the correlation between ANXA1 and DEGs 

showed that 81 genes were positively correlated with 

ANXA1, and 14 genes were negatively correlated with 

ANXA1 (Figure 3C). In GO enrichment analysis 

(Figure 4A, 4B), DEGs were mainly involved in 

biological processes (BPs) such as the formation of 

extracellular matrix organization (16 genes), formation 

of extracellular structure organization (16 genes), 

ossification (17 genes), formation of external 

encapsulating structure organization (16 genes), and 

formation of collagen fibril organization (8 genes). In 

cellular components (CCs), DEGs were mainly 

involved in collagen-containing extracellular matrix 

(36 genes), collagen trimer (10 genes), fibrillar 

collagen trimer (4 genes), banded collagen fibril  

(4 genes), and basement membrane (7 genes). In terms 

of molecular functions (MFs), DEGs were significantly 

involved in extracellular matrix structural constituent 

(26 genes), collagen binding (10 genes), integrin 

binding (11 genes), extracellular matrix structural 

constituent conferring tensile strength (6 genes), and 

extracellular matrix structural constituent conferring 

compression resistance (5 genes). Additionally, the 

enrichment results of the KEGG pathway analysis 

showed that DEGs were related to phagosomes (8 

genes), Staphylococcus aureus infection (6 genes), and 

protein digestion and absorption (6 genes) (Figure 4C). 

The top 5 pathways are listed in Table 1. 

 

To further identify the expression differences in the 

involved KEGG pathways, GSEA and GSVA 

enrichment analyses revealed that ANXA1 was 

involved in the cell adhesion molecules cams, cell 

cycle, cytokine‒cytokine receptor interaction, DNA 

replication, ECM receptor interaction and focal 

adhesion pathways (Figure 5A, 5B). 

 

PPI network construction and modular analysis 

 

The DEGs were introduced into STRING to draw the 

PPI network plot. After Cytoscape processing, the 
module with the highest MCODE score (score=13.875) 

was constructed (Figure 6A), which included 71 nodes 

and 304 edges, as well as 69 upregulated genes and 1 
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downregulated gene. Next, a new module was 

constructed using ANXA1 as the node, which included 

COL1A2, MMP9, VIM, S100A11 and S100A4, all of 

which were upregulated genes (Figure 6B). 

 

Survival analysis of DEGs between the two groups 

 

The five modular genes were differentially expressed 

in RD-ES cells or A673 cells compared to MSCs, and 

we further established survival curves to explore the 

effects of these genes on the prognosis of ES. The 

results revealed that except for S100A11 (Figure 6C), 

the expression of COL1A2, MMP9, VIM and S100A4 

significantly affected the overall survival time of 

patients with ES, in which the OS time of the high 

expression group of MMP9 and COL1A2 was 

significantly lower than that of the low expression 

group (Figure 6D, 6E), and the OS time of the low 

expression group of VIM and S100A4 was 

significantly lower than that of the high expression 

group (Figure 6F, 6G). 

 

Immune infiltration analysis of ANXA1 and five 

module genes 

 

To explore the relationship between the 23 immune 

cells and the hub genes, a correlation heatmap was 

constructed (Figure 7A) and it suggested that 5 target 

genes other than the VIM gene had a strong correlation 

with 23 immune cells. Specifically, ANXA1, COL1A2, 

MMP9, S100A4 and S100A11 high-expression groups 

were associated with high infiltration of activated 

dendritic cells, gamma delta T cells, immature B cells, 

immature dendritic cells, MDSCs, macrophages, natural 

killer cells, regulatory T cells, T follicular helper cells, 

and type 1 T helper cells (Figure 7B–7G). 

 

 
 

Figure 2. ANXA1 expression in different subgroups based on the GSE17679, GSE45544 and GSE73166 datasets. (A) In different 
age groups, the expression levels of the ANXA1 gene were higher in the ≤ 20-year-old group than in the > 20-year-old group (P = 0.018). (B) In 
different gender groups, the expression levels of ANXA1 gene were not significantly different (P = 0.067). (C) In different type groups, the 
expression levels of the ANXA1 gene were higher in the primary group than in the metastasis group (P = 0.0072), and there was no significant 
difference between the remaining groups. (D) 22 ES samples from the GSE45544 and GSE73166 datasets validated that the expression levels 
of the ANXA1 gene were higher in the primary group than in the metastasis group. 
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Figure 3. Visualization of DEGs and correlation analysis of ANXA1. (A) Volcano plot of DEGs. Red dots indicate upregulated genes, 

green dots indicate downregulated genes, and black dots indicate genes with insignificant differences. (B) Heatmap of DEGs. Red indicates 
high expression, blue indicates low expression, and white indicates moderate expression. (C) Correlation coefficient heatmap of DEGs. Red 
represents positive correlation and green represents negative correlation. 
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Previous studies have shown that tumor tissues contain 

tumor cells and lymphocytes, and TILs can predict the 

survival status of tumor patients [17, 18]. To further 

investigate the correlation between the expression levels 

of ANXA1 and TILs, we explored the correlation 

between the expression levels of ANXA1 and the 

infiltrating abundance of TILs in sarcoma patients 

through the TIMER database. In sarcoma, the expression 

levels of ANXA1 were positively correlated with those 

of MMP9 (r=0.204, P=9.43e-04), COL1A2 (r=0.349, 

p=8.87e-09), S100A4 (r=0.574, P<0.001), VIM (r=0.48, 

P<0.001) and S100A11 (r=0.638, P<0.001) (Figure 8A). 

 

 
 

Figure 4. GO functional annotation and KEGG pathway analysis of DEGs. (A) The top 5 biological processes (BP), cellular 
components (CC), and molecular functions (MF) of DEGs. (B) Enrichment circle diagram of DEGs. (C) KEGG pathway analysis of DEGs. 
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Table 1. TOP 5 KEGG pathway of differentially expressed genes (DEGs). 

ID Description Gene count P value Genes 

hsa03040 Spliceosome 23 2.08×10-9 

HNRNPM/SART1/DDX42/HNRNPA3/ISY1/SF3B2/

SNRPD3/PUF60/SRSF4/PLRG1/HNRNPA1/CCDC1

2/SYF2/RNU4-1/WBP11/THOC3/RNU5A-

1/LSM3/SNRPA1/SRSF5/RNU2-1/SNRPA/RNU4-2 

hsa05014 
Amyotrophic lateral 

sclerosis 
32 5.63×10-6 

ATXN2/PSMC5/NUP214/NDUFS6/ATF4/PPP3R1/C

OX5B/HNRNPA3/PSMC1/COX4I1/ATP5MC1/ND

UFC2/HNRNPA1/PSMD6/NDUFA12/NDUFA4/PF

N1/NDUFA2/PSMA5/RAB1A/NDUFA5/GPX7/PSM

A4/COX8A/PSMB3/ATP5F1A/PSMA2/NUP107/CO

X7A2/SIGMAR1/ACTR1B/COX7B 

hsa05014 Prion disease 26 5.04×10-6 

PSMC5/NDUFS6/ATF4/PPP3R1/COX5B/PSMC1/C

OX4I1/ATP5MC1/NDUFC2/PSMD6/NDUFA12/ND

UFA4/NDUFA2/PSMA5/NDUFA5/CREB3L2/PSM

A4/COX8A/PSMB3/ATP5F1A/PSMA2/CSNK2A2/

COX7A2/COX7B/CYBA/NCF2 

hsa05014 
Oxidative 

phosphorylation 
17 2.25×10-6 

NDUFS6/COX5B/COX4I1/ATP5MC1/NDUFC2/ND

UFA12/NDUFA4/NDUFA2/NDUFA5/COX8A/ATP

5F1A/ATP6V0E1/COX7A2/ATP6V0B/ATP6V1F/C

OX7B/ATP6V1C1 

hsa05012 Parkinson disease 24 2.91×10-5 

PSMC5/GNAI3/NDUFS6/ATF4/COX5B/PSMC1/C

OX4I1/ATP5MC1/NDUFC2/SLC39A7/PSMD6/ND

UFA12/NDUFA4/NDUFA2/PSMA5/NDUFA5/PSM

A4/COX8A/PSMB3/ATP5F1A/PSMA2/COX7A2/T

XN/COX7B 

 

 
 

Figure 5. Single-gene gene set enrichment analysis (ssGSEA) and gene set variation analysis (ssGSVA) pathway analysis of 
ANXA1. (A) The top 6 underlying related KEGG enrichment pathways of ANXA1 through single-gene GSEA. (B) Results of single-gene GSVA 

analysis involving KEGG pathways. 
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The expression levels of ANXA1 were negatively 

correlated with tumor purity (r=-0.271, P=1.64e-05), but 

positively correlated with the levels of infiltrating B cells 

(r=0.04, P=5.4e-01), CD8+ T cells (r=0.175, P=6.64e-

03), CD4+ T cells (r=0.256, P=6.15e-05), macrophages 

(r=0. 469, P=2.97e-14), neutrophils (r=0.348, P=2.57e-

08) and dendritic cells (r=0.306, P=1.25e-06), with the 

strongest correlation with macrophages (Figure 8B). We 

then analyzed the correlation between the expression 

levels of ANXA1 and immune cells and the prognosis of 

sarcoma patients, and the Kaplan–Meier plots suggested 

that the expression levels of CD4+ T cells (P=0.003) and 

neutrophils (P=0.01) were significantly associated with 

the prognosis of sarcoma patients (Figure 8C). 

 

Next, we explored the correlation between the 

expression levels of ANXA1 and immune cells through 

the TISIDB database. Figure 9A shows a heatmap of 

correlation between the expression levels of ANXA1 

and TILs in different types of tumors. In 263 sarcoma 

patients, the expression levels of ANXA1 were 

significantly correlated with the infiltration abundance 

of 26 TILs, with the strongest correlation with 

tcm_CD8, tcm_CD4, macrophage, treg, tfh, MDSC, 

tgd, NKT, act_DC and monocyte (Figure 9B and 

Supplementary Figure 2). 

 

Finally, we revealed the correlation between the 

expression levels of ANXA1 and immunoinhibitors in 

sarcoma patients by a heatmap of correlation (Figure 9C), 

and the results suggested that the expression levels of 

ANXA1 were associated with 20 immunoinhibitors, 

among which HAVCR2, CSF1R, IL-10, LGALS9, 

IL10RB, PDCD1LG2, TGFB1, TGFBR1, TIGIT and 

CD96 showed strong positive correlations (Figure 9D 

and Supplementary Figure 3). These results suggested 

that ANXA1 may play an important role in the 

immunotherapy of sarcoma. 

 

 
 

Figure 6. Protein interaction network diagram and survival curves of module genes. (A) The module with the highest MCODE 
score. (B) The module associated with AXNA1. Red indicates upregulated genes, green indicates downregulated genes, and hub gene is 
indicated in blue. The expressions of ANXA1-related module genes used to construct the prognosis of ES. (C) S100A11; (D) MMP9;  
(E) COL1A2; (F) VIM; (G) S100A4. P values <0.05 indicated that differences were significantly significant. 
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Figure 7. Immune infiltration results of the 6 hub genes. (A) Heatmap of the correlation between immunocyte abundance and 6 hub 

genes. Box diagram of immunocyte abundance in the ANXA1 (B), MMP9 (C), COL1A2 (D), S100A4 (E), VIM (F) and S100A11 (G) high- and low-
expression groups. 
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Figure 8. ANXA1 expression is correlated with 5 module genes and the level of immune infiltration in sarcoma. (A) ANXA1 

expression is correlated with 5 module genes in sarcoma. (B) ANXA1 expression is correlated with the level of immune infiltration in sarcoma. 
(C) Kaplan–Meier plots of immune infiltration and ANXA1 expression levels in sarcoma. 
 

 
 

Figure 9. Correlation of ANXA1 expression with immune cells and immunoinhibitors in sarcoma. (A) Heatmap of the correlation 
between ANXA1 expression and TILs in sarcoma: red represents a positive correlation, blue represents a negative correlation. (B) ANXA1 
expression was positively correlated with infiltrating abundance of tcm_CD8, tcm_CD4, macrophage, treg, tfh, MDSC, tgd, NKT, act_DC and 
monocyte. (C) Heatmap of the correlation between ANXA1 expression and immunoinhibitors in sarcoma: red represents positive correlation, 
blue represents negative correlation. (D) ANXA1 expression was positively correlated with infiltrating abundance of HAVCR2, CSF1R, IL-10, 
LGALS9, IL10RB, PDCD1LG2, TGFB1, TGFBR1, TIGIT and CD96. 
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The expression levels of ANXA1 and five module 

genes 

 

The RT‒qPCR results showed that six hub genes, 

including ANXA1, were significantly differentially 

expressed in either RD-ES cells or A673 cells  

(Figure 10A). The relative expression levels of ANXA1 

were significantly higher in RD-ES cells than in MSCs, 

while the relative expression levels of MMP9, COL1A2, 

S100A4, VIM and S100A11 were significantly lower 

than in MSCs. The relative expression levels of ANXA1, 

MMP9 and COL1A2 were significantly higher in A673 

cells, while the relative expression levels of S100A4, 

VIM and S100A11 were significantly lower than those in 

MSCs (Figure 10B). Subsequent Western blot analysis 

verified that the protein levels of the six hub genes were 

all significantly differentially expressed in either RD-ES 

cells or A673 cells (Figure 10C). The expression of 

ANXA1 increased in ED-ES and A673 cells, while the 

expression of MMP9, COL1A2, S100A4, VIM and 

S100A11 decreased in ED-ES cells. It is worth 

mentioning that the protein levels of ANXA1, MMP9 

and COL1A2 were significantly increased in A673 cells, 

while the protein levels of S100A4, VIM and S100A11 

were significantly decreased in A673 cells, which was 

consistent with the results of RT‒qPCR (Figure 10D). 

 

ANXA1 inhibits the proliferation of RD-ES cells  

in vitro 

 

Since ANXA1 downregulation was associated with 

worse prognosis and metastasis in ES patients, we further 

investigated the effect of ANXA1 downregulation on 

RD-ES cells in vitro. Figure 10E showed the efficiency 

test of si-ANXA1. CCK-8 and EdU assays revealed that, 

compared with NC group, the proliferation ability of  

cells in the HMGB1 knockdown group was increased 

(Figure 10F, 10G). The above results suggested that 

downregulated ANXA1 may affect the prognosis and 

metastasis of ES patients by promoting cell proliferation. 

 

DISCUSSION 
 

As a common malignancy of bone and soft tissue,  

the prognosis is not promising for the pediatric  

and adolescent population, even after standardized 

chemotherapy regimens [19, 20]. With the development 

of genomics and high-throughput technologies providing 

a novel direction for the prognosis and treatment of ES, 

it is crucial to explore key biomarkers for the prognosis 

of ES patients. In this study, we first screened the 

ANXA1 gene using independent prognostic analysis  

and clinical correlation analysis from 88 ES samples 

obtained from the GSE17679 dataset. Then, survival 

analysis and clinical correlation analysis based on 

ANXA1 determined that low ANXA1 expression was 

associated with a shorter survival time, and this result 

was successfully validated by 85 ES samples from the 

GSE63157 dataset. In the clinical subgroups, the 

expression levels of ANXA1 were significantly lower in 

the metastatic group than in the primary group. We 

further analyzed 96 DEGs with ANXA1 expression as 

the median value and GO and KEGG pathway analyses 

suggested that DEGs were mainly associated with the 

extracellular matrix. Finally, we found that the 

expression of five ANXA1-related modular genes was 

significantly different between ES cell lines and MSCs 

by in vitro RT‒qPCR, and four genes were significantly 

associated with the prognosis of ES patients. 

 

ANXA1 is a phospholipid-binding protein located on 

chromosome 9q12-q21.2 and is expressed in many 

tissues and cells [21, 22]. Its C-terminus is composed of 

four annexin repeats with calcium binding sites, while 

the N-terminus contains important phosphorylation 

regulatory sites, which are unique to ANXA1 [23, 24]. 

In addition to mediating inflammatory responses, 

ANXA1 is involved in the development of multiple 

tumors, metastasis and drug resistance and may be used 

as a potential biomarker for tumor diagnosis, treatment, 

and prognosis [25, 26]. However, the role of ANXA1 in 

tumors remains uncertain, both as an antitumor factor 

and as a promoter of tumor progression [27]. To date, 

there is no literature on the relationship between 

ANXA1 expression and the prognosis of ES. It shows 

high expression levels in breast [28], colorectal [29] and 

prostate cancers [30]. This is consistent with the results 

of the present study, in which we found that ANXA1 

showed significantly high expression in either RD-ES 

or A673 cells and a significant correlation with the OS 

time of patients with ES. In contrast, ANXA1 shows 

low expression levels in thyroid cancer [31] and 

nasopharyngeal carcinoma [32]. A recent study showed 

that ANXA1 expression was upregulated in patients 

with small cell lung cancer bone metastases and 

promoted bone metastasis of small cell lung cancer cells 

in mice, suggesting that ANXA1 may be a potential 

biomarker for lung cancer bone metastasis [33]. 

Interestingly, low expression levels of ANXA1 in this 

study were significantly associated with ES metastasis, 

suggesting that the downregulated ANXA1 gene was 

associated with the proliferation, invasion, and 

migration of ES cells. 

 

The tumor microenvironment (TME) plays a key role in 

tumor and developmental processes and therapeutic 

susceptibility, and the typical immune profile of ES is a 

large infiltration of myeloid cells in the TME [34, 35]. 

Myeloid-derived suppressor cells (MDSCs) are 
involved in a variety of immunosuppressive responses 

as immature monocytes and granulocytes, and Zhang  

et al. [36] identified a subpopulation of MDSCs with 
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Figure 10. The expression levels of ANXA1-related module genes in ES cell lines and MSCs by RT-qPCR and Western blot and 
functional validation of ANXA1 in RD-ES cell using CCK-8 and EdU assays. The relative mRNA levels of ANXA1, MMP9, COL1A2, 

S100A4, VIM and S100A11 in RD-ES (A) or A673 (B) cells compared to MSCs. (C) The protein levels of ANXA1-related module genes in ES cell 
lines and MSCs by Western blot. (D) Quantitative analysis of protein expression levels of module genes. (E) The efficiency of si-ANXA1 was 
detected by RT-qPCR and Western blot analysis. (F) ES-RD cell viability at 24 h, 48 h and 72 h after downregulation of ANXA1 was measured 
using a CCK-8 assay. (G) The effect of ANXA1 on ES-RD cell proliferation was assessed by an EdU assay. P values are shown as follows:  
* P<0.05, ** P<0.01, *** P<0.001, and **** P<0.0001. 
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significant immunosuppressive effects. Patients with ES 

showed significant depletion of CD4+ and CD8+ T cells 

in the peripheral blood compared to the healthy 

population [37]. Consistent with these results, ANXA1 

downregulation in this study was significantly 

associated with reduced infiltration of macrophages, 

MDSCs and T cells, suggesting that ANXA1 is 

involved in the regulation of immune responses in the 

TME of ES patients. Previous studies showed that 

ANXA1 was involved in the proliferation and invasion 

of a variety of tumor cells [38, 39], and we also found 

that downregulated ANXA1 promoted the proliferation 

of ES cells, which may lead to progression and 

metastasis in ES patients. 

 

Additionally, the COL1A2 gene was shown to be 

upregulated in ES tissues [40], and we also obtained 

consistent results in RD-ES cells. Zhang et al. [41] 

found that COL1A2 was involved in the development of 

ES and was significantly associated with the survival 

time of ES patients. Our survival curves also suggest 

that patients with low COL1A2 expression have shorter 

survival times. The S100A11 gene was found to be 

significantly upregulated in clear cell sarcoma of soft 

tissue [42]. In contrast, we found higher levels of 

S100A11 expression in ES-RD and A673 cells. High 

expression of MMP9 is associated with human tumor 

invasion or metastasis, and knockdown of MMP inhibits 

the migration of ES cells [43]. In this study, we verified 

the relationship between the expression of six key genes 

and ES and found that five of them were significantly 

associated with the prognosis of ES. At present, there 

are no literature reports of MMP9, S100A11, VIM and 

S100A4 as prognostic markers for ES, and their 

prognostic relationships need to be further investigated. 

 

In this study, to screen for the hub gene with prognostic 

significance in ES patients, DEGs were screened using 

survival analysis and Cox regression analysis based on 

the OS time and status of ES patients. To reflect the 

clinical application value of hub genes, patients were 

further grouped according to their age, gender, and 

tumor status to explore the hub gene significantly 

associated with clinical characteristics and prognosis. 

Finally, differences in the gene and protein expression 

levels of the hub gene were examined in different ES 

cell lines and BMSCs using independent datasets to 

validate its prognostic value, which may provide 

theoretical support for prognosis and molecularly 

targeted therapy in clinical ES patients. 

 

Admittedly, our study has some limitations that need to 

be considered. Firstly, both datasets used for analysis 
were small and a larger chip set should be utilized to 

validate the prognostic role of ANXA1 in ES. Secondly, 

the GEO dataset of the validation cohort lacked detailed 

clinical information about the patients, making it 

difficult to validate the relationship between ANXA1 

and the clinical characteristics of ES patients. Finally, 

some basic experiments are also required to further 

investigate the effect of ANXA1 on the phenotypes of 

ES cells such as migration. 

 

CONCLUSIONS 
 

Taken together, we screened ANXA1 as an independent 

prognostic gene for ES based on the GEO database 

using multifactorial Cox regression analysis. ES 

patients with low expression of this gene had a shorter 

survival time and were significantly associated with ES 

metastasis and immunosuppressive microenvironment. 

In addition, the expression levels of ANXA1 were 

higher in ES cell lines. This study may facilitate the 

development of new prognostic biomarkers for targeted 

treatment of ES, although further experimental 

validations are needed. 

 

MATERIALS AND METHODS 
 

Collection and processing of GEO data 

 

Data on ES patients and clinical characteristics were 

obtained through the Gene Expression Omnibus website 

(https://www.ncbi.nlm.nih.gov/geo/). Four microarray 

datasets, GSE17679, GSE63157, GSE45544 and 

GSE73166, were extracted and the platform files of 

both datasets were downloaded. 88 ES samples and 18 

normal samples from the GSE17679 dataset were 

obtained from the GPL570 platform, 85 ES samples 

from the GSE63157 dataset were obtained from the 

GPL5175 platform, and a total of 22 ES samples from 

the GSE45544 and GSE73166 datasets were obtained 

from GPL6244. To extract the survival time and 

survival status of ES patients, non-ES samples and ES 

cell lines were excluded. The GSE17679 dataset was 

the experimental group and the GSE63157, GSE45544 

and GSE73166 datasets were the validation group. The 

results of survival analysis were validated by the 

GSE63157 dataset, and the results of clinical 

correlation analysis were validated by the GSE45544 

and GSE73166 datasets after eliminating the batch 

effect. 

 

Screening of hub gene related to survival and 

prognosis 

 

First, the data from the gene expression matrix were 

corrected using the “impute” package of R software 

(version 4.1.3) [44]. For data with large values of gene 
expression, log 2 processing is needed. Next, the 

survival time and survival status of patients were 

extracted, and the gene expression data and survival 

https://www.ncbi.nlm.nih.gov/geo/
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information were merged using the “Perl” program [45]. 

The merged data were subjected to Cox regression 

analysis to filter genes according to overall survival 

(OS) time and survival status with a P value < 0.001. 

After obtaining the genes, survival analysis was 

performed through the “survival” package to screen for 

survival-associated genes with a P value threshold of 

0.001. Finally, the samples were divided into two 

subgroups based on clinical characteristics such as sex 

and age, and three subgroups based on tumor status. 

Further clinical correlation analysis of genes was 

performed to identify the hub gene with a significant 

number (SigNum) of differences. 

 

Survival analysis of hub gene and validation 

 

Based on the median expression of the hub gene,  

88 ES samples were divided into two groups for 

survival analysis. Furthermore, survival analyses for 

patients with different types of ES were performed. 

The high expression group indicated that the 

expression of the hub gene was greater than the 

median, and the low expression group indicated that 

the expression was less than or equal to the median. 

Moreover, 85 ES samples from the GSE63157 dataset 

were used to verify the accuracy of the survival  

curve. 

 

Univariate and multivariate Cox regression analysis 

of hub gene 

 

The hub gene expression data, clinical characteristics, 

and survival data of 88 ES samples were integrated, and 

univariate and multivariate Cox regression analyses 

were conducted using the “survival” package to identify 

characteristics that independently guided ES prognosis 

and to validate the results with the GSE63157 dataset. 

 

Clinical correlation analysis of hub gene 

 

ES patients were divided into two subgroups by age 

using 20 years as the threshold, two subgroups by 

gender, and three subgroups by tumor status: primary, 

recurrent, and metastatic. The hub gene was analyzed 

for differences among the subgroups. 

 

Identification and correlation analysis of DEGs 

 

Based on the median expression level of the hub gene, 

ES samples were divided into high and low expression 

groups. DEGs were screened using the “limma” 

package, and the concentrated area of upregulated or 

downregulated genes was indicated by a volcano plot 
and heatmap. The screening criteria were an absolute 

value of |logFC| > 1 and an adjusted P value < 0.05. To 

explore the relationship between the hub gene and 

DEGs, a significant P value was obtained by correlation 

test. Further visualization was performed in the form of 

a heatmap and correlation coefficient heatmap using the 

“corrplot” package. 

 

GO and KEGG enrichment analysis 

 

Gene Oncology (GO) and Kyoto Encyclopedia of Genes 

and Genomes Pathway Enrichment (KEGG) enrichment 

analyses based on DEGs were conducted using the 

“ClusterProfile” and “enrichplot” packages [46, 47]. GO 

enrichment analysis focused on the cytological 

components (CC), molecular functions (MF), and 

biological processes (BP) of DEGs, while KEGG 

enrichment analysis focused on the pathways of DEGs. 

The filtering condition was set to a P value < 0.05. 

 

Single-gene gene set enrichment analysis (GSEA) 

enrichment 

 

To further analyze the related pathways and potential 

biological functions of the hub gene in osteomyelitis, we 

used the “enrichplot” and “clusterProfiler” packages to 

perform GSEA enrichment analysis for each signature 

gene, with two gene sets, “c5.go.symbols.gmt” and 

“c2.cp.kegg.symbols.gmt”, as the predefined sets. The top 

6 pathways with significant enrichment were visualized 

and the screening threshold was set at a P value < 0.05. 

 

Single-gene gene set variation analysis (GSVA) 

enrichment 

 

GSVA is a method to estimate the variation in 

pathway activity in samples with an unsupervised way 

due to its stability and is often used in the data analysis 

of gene expression profiles [48]. The hub gene was 

analyzed by GSVA based on predefined sets 

“c5.go.symbols.gmt” and “c2.cp.kegg.symbols.gmt”. 

Firstly, the samples are scored and corrected. Then, the 

samples were divided into groups according to the 

expression of the target gene, and the difference in 

GSVA score between the high expression group and 

the low expression group was further analyzed. The 

screening conditions for significant differences were  

|t| >2, P value < 0.05. 

 

Construction of the PPI network and module 

analysis 

 

The protein‒protein interaction network of the hub 

genes was constructed using STRING (http://string-

db.org) [49]. Cluster analysis was further performed 

using the Molecular Complex Detection (MCODE) 
plugin in Cytoscape (version 3.9.1) [50] to identify 

key modules in the PPI network to construct 

subnetworks. 

http://string-db.org/
http://string-db.org/
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Immune infiltration analysis and survival analysis of 

module genes 

 

We further used ssGSEA in the “gsva” package to 

combine the 23 immune gene datasets with “high-low 

discriminant analysis” and calculate the immune 

infiltration score for each ES sample [51]. The 

correlation between hub genes and immune cell 

infiltration was represented by a heatmap. Based on the 

median expression level of each gene, the samples were 

divided into low and high expression groups, and 

boxplots were used to observe whether there was a 

significant difference in the abundance of immune cells 

between the high and low expression groups. Based on 

the median expression values of the hub gene, survival 

analysis was divided into high and low expression 

groups. 

 

TIMER database 

 

The TIMER database serves as an online visualization 

tool to assess the correlation between immune cell 

infiltration and target genes in different cancers 

(https://cistrome.shinyapps.io/timer/) [52]. In the current 

study, we analyzed the correlations between the 

infiltration abundance of B cells, CD8+ T cells, CD4+ T 

cells, macrophage, neutrophil and dendritic cells and 

expression levels of ANXA1 in sarcoma by TIMER 

database. 

 

TISIDB database 

 

The TISIDB database is an integrated repository  

portal for tumor-immune system interactions 

(http://cis.hku.hk/TISIDB/) [53]. Correlations between 

the infiltration abundance of tumor infiltrating 

lymphocytes (TILs) and the expression levels of 

ANXA1 in sarcoma evaluated by the TISIDB database. 

 

Cell culture 

 

ES is a malignant bone tumor that invades bone or muscle 

tissue, and mesenchymal stem cells are its main precursor 

cells [54]. Therefore, we selected RD-ES and A673 cells 

(Procell Bio, Wuhan, China) as the experimental group 

and MSCs as the control group for the experiment. Cells 

were maintained in Dulbecco’s modified Eagle’s medium 

(Gibco, NY, USA) supplemented with 10% fetal bovine 

serum (Gibco, NY, USA), 100 U/mL penicillin and 100 

mg/mL streptomycin. Cultures were incubated at 37° C 

and 5% CO2. 

 

RNA interference 

 

Specific small interfering RNAs (siRNAs) were obtained 

from Guangzhou RiboBio Co., Ltd. ANXA1 siRNA or 

negative control (NC) siRNA was transfected into cells. 

The siRNA-ANXA1 sequences were as follows: #1, 5′-

CAUAAGGCCAUAAUGGUUAAATT-3′; #2, 5′-UUU 

AACCAUUAUGGCCUUAUGTT-3′; #3, 5′-GCAUUC 

UAUCAGAAGAUGUAUTT-3′. 

 

Cell survival test (CCK-8 assay) 

 

Cells were inoculated into 96-well plates and cultured 

overnight, followed by transfection of cells with si-

ANXA1 and si-NC. Ten microliters of CCK-8 were 

added to each well, and all experimental procedures 

were performed according to the instructions of the 

CCK-8 kit (Sigma‒Aldrich, St. Louis, MO, USA). 

 

Cell proliferation test (EdU assay) 

 

Cells were inoculated into 24-well plates, and EdU 

reagent was added to each well at a ratio of 1:1000. The 

cells were fixed and stained according to the instructions 

of the EdU Cell Proliferation Kit (Beyotimebio, 

Shanghai, China), followed by observation of the cells 

using a fluorescence microscope. 

 

RNA extraction and real-time quantitative PCR 

 

The TRIzol (Ambion LLC, Austin, TX, USA) was used 

to extract total RNA from cells, which was reverse 

transcribed into cDNA using a reverse transcription kit 

(Service Bio, Guangzhou, China). Real-time quantitative 

PCR was performed using Universal Blue SYBR Green 

qPCR Master Mix (Service Bio, Guangzhou, China). 

After brief centrifugation, reverse transcription was 

performed on a general PCR instrument under the 

following conditions: denaturation at 95° C for 20 s, 

annealing at 55° C for 20 s, and extension at 72° C for  

30 s. The expression levels of GAPDH were used as  

an internal control. The primer sequences are listed in 

Table 2. 

 

Protein extraction and Western blotting analysis 

 

RIPA lysis buffer (Servicebio, Wuhan, China) 

supplemented with phosphatase inhibitor (Servicebio, 

Wuhan, China) was used to extract total cellular 

proteins from cultured cells on ice for 10 min. The 

above lysates were centrifuged for 15 min at 16,000 

rpm to remove cellular debris, and the supernatant 

containing proteins was collected and separated into 80 

μl aliquots. A BCA Protein Assay Kit (Beyotimebio, 

Shanghai, China) was used to measure the protein 

concentration in the supernatant, and the separated 

proteins were transferred to PVDF membranes 
(Millipore, MA, USA). Subsequently, the membranes 

were blocked with 5% (w/v) skimmed milk (Servicebio, 

Wuhan, China) in Tris-buffered saline with Tween 20 

https://cistrome.shinyapps.io/timer/
http://cis.hku.hk/TISIDB/
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Table 2. The primer used for hub gene and module genes. 

Targeted gene  Forward (5′-3′) Reverse (3′-5′) 

ANXA1 CTTTCTCTTGCTAAGGGTGA TGGTGGTAAGGATGGTATTG 

COL1A2 CAAAGGAGAGAGCGGTAACA GAAGACCACGAGAACCAGGA 

S100A4 CCACCTTCCACAAGTACTCG GCTTCATCTGTCCTTTTCCC 

VIM TGACCGCTTCGCCAACTA TTCGGCTTCCCCTCTCTG 

S100A11 CCCTGATTGCTGTCTTCC GGGTCCTTCTGGTTCTTT 

MMP9 ATGAGCCTCTGGCAGCCCCTGGTCC GGACCAGGGGCTGCCAGAGGCTCAT 

GAPDH CCCATCACCATCTTCCAGG CATCACGCCACAGTTTCCC 

 

(TBST; Solarbio, Beijing, China) for 60 min at 37° C. 

Primary antibodies were then probed overnight at 4° C 

in 1% (w/v) skimmed milk in TBST. After three washes 

with TBST, membranes were incubated with the 

appropriate horseradish peroxidase (HRP)-linked 

secondary antibodies for 60 min. Antibody reactivity 

was detected using the ECL Chemiluminescent 

substrate (Millipore, MA, USA). Gray values were 

analyzed using ImageJ software. Blots were 

representative of 3 independent experiments, with 

quantified results expressed as the means ± standard 

deviations (SD). The primary antibodies were as 

follows: ANXA1 (YT0234; Immunoway, Suzhou, 

China, 1:1500), MMP9 (YT1892; Immunoway, Suzhou, 

China, 1:1500), COL1A2 (YM4409; Immunoway, 

Suzhou, China, 1:1500), S100A4 (YM1458; 

Immunoway, Suzhou, China, 1:1000), VIM (YT4879; 

Immunoway, Suzhou, China, 1:1500), S100A11 

(10237-1-AP; Proteintech, Wuhan, China, 1:1500), and 

β-Actain (66009-1-Ig; Proteintech, Wuhan, China, 

1:25000). 

 

Statistical analysis 

 

The external validation of the genes was repeated three 

times. Statistical analysis was performed using 

GraphPad Prism (version 8.0), and Student’s t-test was 

used for comparisons between two groups. 

Bioinformatics analysis was performed using R 4.1.3. 

 

Availability of data and materials 

 

The microarray data used to support the findings of  

this study can be downloaded from the GSE17679, 

GSE63157, GSE45544 and GSE73166 datasets 

(https://www.ncbi.nlm.nih.gov/geo). The processed data 

are available from the corresponding author upon request. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. The survival analyses were performed in primary ES, recurrent ES, and metastatic ES patients from 
the GSE17679 dataset. The OS time of ANXA1 low expression group was significantly lower than that of high expression group in primary 

(A) and metastatic ES patients (B), while there was no significant difference in recurrent ES patients (C). 
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Supplementary Figure 2. Correlation of ANXA1 expression with infiltrating abundance of 15 immune cells in sarcoma. 
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Supplementary Figure 3. Correlation of ANXA1 expression with remained 12 immunoinhibitors in sarcoma. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Table 3. 

 

Supplementary Table 1. The results of 64 genes were screened by Cox regression 
analysis. 

Id HR HR.95Low HR.95High P value 

SSR4P1 0.0946393 0.0253896 0.3527656 0.0004446 

BTD 0.1668399 0.0585303 0.475575 0.0008063 

CFI 2.784123 1.5546975 4.9857549 0.0005724 

ATE1 0.2609063 0.119842 0.5680153 0.0007121 

8-Mar 0.2054615 0.0876747 0.4814893 0.0002705 

DNAJB12 0.0240698 0.0027312 0.2121219 0.0007894 

OR1L1 0.0524297 0.009376 0.2931806 0.0007878 

NFASC 5.8062737 2.3898553 14.106634 0.0001029 

NUMB 0.1843926 0.0712345 0.4773054 0.0004938 

HMGCS1 2.4803271 1.4925393 4.1218495 0.000456 

SLC11A2 6.3468759 2.1559216 18.68474 0.0007953 

ANXA1 0.4654845 0.3108985 0.6969341 0.0002046 

CTSC 1.8600218 1.2947126 2.6721612 0.0007872 

CHN1 1.9746884 1.3864601 2.812482 0.0001627 

CTPS1 4.8559463 2.1468725 10.983519 0.0001479 

INHA 0.2915138 0.1628967 0.5216821 3.30E-05 

KCNS3 2.3154706 1.4402569 3.7225332 0.0005283 

MAP2 1.7018774 1.241727 2.332547 0.0009461 

PSMA7 6.7942523 2.3111685 19.973388 0.0004964 

RBMS2 0.2031346 0.0906346 0.4552746 0.0001084 

BEST1 4.293332 2.110563 8.733546 5.78E-05 

MARS 5.051995 2.2224331 11.484104 0.0001106 

SLC20A1 3.3130711 1.6815334 6.5276373 0.0005363 

DNAJC4 0.0985114 0.0271812 0.3570295 0.0004192 

ATP8B1 0.6241602 0.4780785 0.8148786 0.0005306 

NFYB 2.5735752 1.5496411 4.2740796 0.0002598 

CHL1 1.5858409 1.2146507 2.0704645 0.0007009 

EIF2D 0.0662968 0.0164734 0.2668104 0.0001336 

ZHX2 0.2079355 0.085234 0.5072762 0.0005574 

YTHDF2 9.4767684 2.5705217 34.938098 0.0007296 

KIF21B 2.1792797 1.3965846 3.4006245 0.0006007 

PDPR 0.2766747 0.1417277 0.5401123 0.0001667 

NETO2 1.9259348 1.4275289 2.5983536 1.79E-05 

FAM63A 0.1917146 0.0726714 0.5057627 0.000846 

H2AFY2 0.5248026 0.3617387 0.761372 0.0006838 

DDX55 10.282556 3.2278459 32.75589 8.07E-05 

CLSPN 2.6456275 1.5176065 4.6120946 0.0006013 

AUNIP 5.2853782 2.6188816 10.666852 3.37E-06 

ADIPOR2 14.145382 3.0340257 65.949288 0.0007436 

ACTR5 15.301172 3.2723971 71.545673 0.0005274 

KIAA0226L 1.7733205 1.2643501 2.4871794 0.0009037 

TET1 0.2975943 0.1634802 0.5417316 7.32E-05 

NBR1 0.1905661 0.0787456 0.4611745 0.0002365 
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FAXDC2 0.224197 0.1146697 0.4383399 1.24E-05 

FBXL20 0.0994482 0.035282 0.2803108 1.27E-05 

COX15 0.1551205 0.0549719 0.4377209 0.0004301 

BRI3BP 7.1090019 2.4195744 20.887107 0.0003614 

FGD4 1.9144158 1.3700471 2.6750817 0.0001422 

CYB5D2 0.1317974 0.045288 0.3835571 0.0002007 

IL20RB 2.0743551 1.4175644 3.0354523 0.0001724 

APOBEC3F 0.2262472 0.1001547 0.5110875 0.0003511 

CDRT4 0.2739683 0.1355931 0.553558 0.0003087 

ZDHHC21 0.5290647 0.3717798 0.7528904 0.0004051 

KRTAP12-2 1.6354243 1.2517914 2.1366279 0.0003104 

LSMEM1 12.346787 4.5333341 33.627158 8.80E-07 

SUMF1 0.036109 0.0058661 0.2222713 0.0003412 

SLC6A15 1.6407141 1.3189495 2.0409749 8.77E-06 

RPS19BP1 5.8278403 2.0542064 16.533744 0.0009228 

E2F7 4.731335 2.2577636 9.9149138 3.83E-05 

SERTM1 0.5016163 0.3405438 0.7388738 0.0004804 

ZBTB18 6.0914927 2.6841604 13.824168 1.55E-05 

ANKRD18DP 0.7070647 0.5772076 0.8661363 0.0008138 

FOXP2 2.8732711 1.8082392 4.5655944 7.93E-06 

CARS 9.8798473 3.3842589 28.842764 2.79E-05 
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Supplementary Table 2. The results of 50 genes were further screened by survival analysis. 

Gene KM HR HR.95Low HR.95High coxPvalue 

ANXA1 0.0017564 0.0925683 0.0334393 0.2562527 4.63E-06 

FOXP2 0.0128039 2.8935373 1.8359108 4.5604382 4.71E-06 

LSMEM1 0.0060463 9.7600715 3.67649 25.91031 4.79E-06 

SLC6A15 0.003197 1.6474721 1.3263386 2.0463586 6.39E-06 

ZBTB18 0.0096835 6.2167395 2.7463182 14.072605 1.17E-05 

AUNIP 0.000659 4.3322096 2.2412261 8.374006 1.30E-05 

CARS 0.0365124 10.768978 3.6693034 31.605695 1.52E-05 

BEST1 0.0103564 4.3078835 2.204553 8.4179698 1.93E-05 

FAXDC2 0.0026379 0.2333351 0.1192799 0.4564497 2.13E-05 

TET1 0.0003299 0.3419903 0.2084827 0.5609932 2.15E-05 

NETO2 0.0046757 1.8102402 1.3520919 2.4236294 6.72E-05 

DDX55 0.0006837 10.72174 3.3290666 34.530912 7.03E-05 

MARS 0.0061805 5.019813 2.2498657 11.200012 8.14E-05 

INHA 0.0255581 0.3017491 0.1659517 0.5486689 8.58E-05 

E2F7 0.011152 4.1732237 2.0446938 8.517557 8.68E-05 

NFASC 0.0162706 5.5638996 2.3606329 13.113847 8.73E-05 

EIF2D 0.0292688 0.0715743 0.0186022 0.2753909 0.0001252 

C5 0.0142821 0.4790135 0.3282701 0.6989792 0.0001348 

CTPS1 0.0029741 4.6378642 2.0835264 10.32374 0.0001713 

NBR1 0.0044568 0.1883685 0.0785576 0.4516775 0.0001832 

8-Mar 0.0082468 0.200569 0.0864332 0.4654218 0.0001835 

RBMS2 0.0053486 0.2005834 0.0864395 0.4654551 0.0001836 

PDPR 0.0060672 0.2759143 0.1400358 0.5436375 0.0001982 

CDRT4 0.0391983 0.2715201 0.1365126 0.5400464 0.0002023 

KRTAP12-2 0.0090707 1.6503582 1.2656646 2.1519777 0.0002157 

IL20RB 0.0058562 2.0682706 1.4029601 3.0490842 0.0002428 

CYB5D2 0.0272408 0.137426 0.0474605 0.3979292 0.0002535 

FGD4 0.0049209 1.819467 1.318601 2.5105853 0.0002689 

BRI3BP 0.0181313 7.0769188 2.45832 20.372767 0.0002864 

SUMF1 0.0046908 0.0354402 0.0056778 0.2212143 0.0003508 

CFI 0.0044534 2.8362982 1.5931671 5.0494309 0.0003963 

APOBEC3F 0.0084779 0.240844 0.109472 0.5298691 0.0004021 

ATE1 0.0023368 0.2528916 0.1177655 0.5430636 0.0004224 

COX15 0.0344881 0.1615047 0.0584243 0.4464543 0.0004408 

KIF21B 0.0080593 2.1930646 1.4136768 3.4021443 0.0004562 

PBLD 0.003586 0.2494869 0.1127873 0.5518685 0.0006091 

PSMA7 0.0339508 6.395707 2.2105609 18.504384 0.0006184 

NFYB 0.0168299 2.3355333 1.4358686 3.7988962 0.000632 

CHN1 0.0007542 1.7888529 1.2810915 2.4978659 0.0006397 

H2AFY2 0.0055528 0.5237169 0.3595369 0.7628685 0.0007507 

ATP8B1 0.0075006 0.6321832 0.4841666 0.8254506 0.0007533 

KCNS3 0.0196467 2.2566179 1.4051509 3.6240409 0.0007592 

FAM63A 0.0193894 0.1946105 0.0745663 0.5079135 0.0008257 

SSR4P1 0.0057688 0.1350519 0.0416813 0.4375832 0.0008442 

KIAA0226L 0.0346281 1.8031518 1.2754683 2.549147 0.0008458 

ANKRD18DP 0.0006898 0.7192489 0.5925809 0.872993 0.0008554 

BTD 0.0006534 0.1731531 0.0617068 0.4858784 0.0008651 

NUMB 0.0328087 0.2323718 0.0984309 0.5485745 0.0008685 

ASB9P1 0.0055941 4.1440697 1.7917938 9.5844253 0.0008897 

CTSC 0.0012302 1.8596511 1.289374 2.6821561 0.0008997 

 

Supplementary Table 3. The results of 50 genes were significantly associated with two clinical features, and 324 
genes were significantly associated with only one clinical feature through clinical correlation analysis. 


