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INTRODUCTION 
 
Endometrial cancer (EC) is one of the most common 
gynecological tumors in the United States, Europe, and 
other developed countries. Most patients with EC are 
diagnosed at an early stage and have enhanced survival 
with effective treatment. However, most patients with 
advanced EC are incurable [1, 2]. Therefore, identifying 
novel molecular players that function as diagnostic and 

prognostic biomarkers and potential therapeutic targets 
for EC is crucial. 
 
The tumor microenvironment (TME), comprising cancer 
cells, non-tumor cells, and the extracellular matrix, plays 
significant roles in intra-tumoral crosstalk [3]. Cancer 
stem cells (CSCs), capable of self-renewal and 
differentiation [4], contribute to cancer recurrence, 
chemotherapy resistance, and tumor progression [5]. 
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ABSTRACT 
 
Inflammatory response is an important feature of most tumors. Local inflammation promotes tumor cell immune 
evasion and chemotherapeutic drug resistance. We aimed to build a prognostic model for endometrial cancer 
patients based on inflammatory response-related genes (IRGs). RNA sequencing and clinical data for uterine 
corpus endometrial cancer were obtained from TCGA datasets. LASSO-penalized Cox regression was used to 
obtain the risk formula of the model: the score = esum(corresponding coefficient × each gene’s expression). The “ESTIMATE” and 
“pRRophetic” packages in R were used to evaluate the tumor microenvironment and the sensitivity of patients 
to chemotherapy drugs. Data sets from IMvigor210 were used to evaluate the efficacy of immunotherapy in 
cancer patients. For experimental verification, 37 endometrial cancer and 43 normal endometrial tissues samples 
were collected. The mRNA expression of the IRGs was measured using qRT-PCR. The effects of IRGs on the 
malignant biological behaviors of endometrial cancer were detected using CCK-8, colony formation, Transwell 
invasion, and apoptosis assays. We developed a novel prognostic signature comprising 13 IRGs, which is an 
independent prognostic marker for endometrial cancer. A nomogram was developed to predict patient survival 
accurately. Three key IRGs (LAMP3, MEP1A, and ROS1) were identified in this model. Furthermore, we verified 
the expression of the three key IRGs using qRT-PCR. Functional experiments also confirmed the influence of the 
three key IRGs on the malignant biological behavior of endometrial cancer. Thus, a characteristic model 
constructed using IRGs can predict the survival, chemotherapeutic drug sensitivity, and immunotherapy response 
in patients with endometrial cancer. 
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The inflammatory response is an important feature of 
tumors [6]. Both local and systemic inflammation 
contribute to tumor-related inflammation. Local 
inflammation promotes immune evasion and 
chemotherapeutic drug resistance by forming an 
inflammatory microenvironment, thereby promoting 
angiogenesis and metastasis to advance tumor 
progression [7]. The increased tumor mutational burden 
contributes to a chronic inflammatory response [8]. Our 
team previously developed the Naples  
score using blood inflammatory and nutritional 
indicators and demonstrated that this score could 
predict survival in patients with EC [9, 10]. However, 
only a few studies have investigated the role of 
inflammation in EC [11, 12]. Thus, the role of 
inflammatory response-related genes (IRGs) in EC 
prognosis remains unclear. 
 
Herein, we hypothesized that IRGs could affect EC 
progression and patient prognosis. Thus, this study 
aimed to build an IRGs-based signature to predict patient 
prognosis and the effects of immunotherapy and 
chemotherapy. We also experimentally verified the 
effects of IRGs on the malignant biological behavior of 
EC cells to provide novel insights regarding the 
prognosis and efficacy of immunotherapy and precision 
medicine in EC. 
 
RESULTS 
 
In this study (Supplementary Figure 1), an IRG-based 
gene signature was constructed to predict patient 
prognosis better than the existing models. This 
signature can also predict the curative effect of patients 
with EC to immunotherapy and commonly used 
chemotherapeutic drugs. Finally, we verified  
that the characteristic genes (LAMP3, MEP1A, and 
ROS1) in the IRGs could affect the malignant behavior 
of EC.  
 
Construction of a prognostic model 
 
Univariate Cox regression analysis showed that 39 of 
the 200 IRGs were associated with overall survival (OS; 
OS was the duration from surgery to death expressed in 
months) (Figure 1A). We screened 39 prognostic IRGs 
using LASSO-Cox regression analysis (Figure 1B, 1C). 
Risk score = e(0.1286 × Exp [GABBR1]) + (0.0212 × Exp [LAMP3]) + 

(−0.1382 × Exp [LCK]) + (−0.1231 × Exp [LPAR1]) + (0.0951 × Exp [MEP1A]) 

+ (0.3928 × Exp [MXD1]) + (−0.0676 × Exp [NDP]) + (−0.2482 × Exp [P2RX4]) 

+ (0.0128 × Exp [P2RY2]) + (−0.2786 × Exp [PSEN1]) + (0.1288 × Exp [ROS1]) 

+ (−0.1594 × Exp [SLC11A2]) + (0.1905 × Exp [TNFSF10]). 
Kaplan−Meier (KM) analysis of the training group 
showed differences in survival between the high- and 
low- risk groups (Figure 1D). In the training group, the 
areas under the receiver operating characteristic curves 

(AUCs) for 1-, 3-, and 5-year OS were 0.715, 0.801, and 
0.805, respectively (Figure 1D). Patient survival status 
and risk score distribution in the training group are 
shown in Figure 1E. This model exhibits a certain 
predictive ability. The same formula was used for the 
test group. This risk score also showed a good 
predictive ability in the test group (Figure 1F, 1G).  
 
Establishment of the nomogram  
 
The risk score was an independent prognostic factor 
(Figure 2A, 2B). We then built a nomogram to 
quantitatively predict the prognosis patients with EC 
(Figure 2C). Calibration curves showed high accuracy 
and validity (Figure 2D). The AUCs for 1-, 3-, and 5-year 
OS were 0.778, 0.793, and 0.814, respectively (Figure 
2E). 
 
Comparison between models 
 
To verify the effectiveness of the constructed model, we 
also compared it with existing models. Figure 3A, 3B 
displays the models constructed by our group. The C-
index results showed that the model constructed using the 
IRGs was superior to the models constructed by Cai, Liu, 
and Liu J [13–15] (Figure 3C).  
 
Association analysis between functional characteristics 
and risk score 
 
Association analysis between risk score and clinical 
characteristics showed that the risk score was higher in 
the >65 age groups (P < 0.001), tumor stage III–IV (P < 
0.001), or tumor grade 3–4 (P < 0.001) than in the ≤65 
age groups, tumor stage I–II, or tumor grade 1–2 (Figure 
4A–4C). Moreover, this risk score was higher in the 
immune subtypes (C2) with a poorer prognosis (Figure 
4D).  
 
Single-sample Gene Set Enrichment Analysis (ssGSEA) 
revealed that the fractions of CD8+T cells, DCs, iDCs, 
pDCs, T helper cells, and TIL were significantly 
decreased in the high-risk group (Figure 4E). Moreover, 
CCR, type II IFN response score, and T cell co-
stimulation were significantly decreased in the high-risk 
group (Figure 4F). 
 
RNA stemness scores (RNAss) and DNA stemness 
scores (DNAss) were used to evaluate CSCs [16]. The 
results revealed that the risk score significantly positively 
correlated with RNAss, but negatively correlated with 
immune and stromal scores (Figure 4G). In addition, we 
assessed the relationship between pathway enrichment 
and risk scores. GO and KEGG enrichment analyses 
showed that nucleosome assembly, DNA packaging 
complex, presynapse, protein-DNA complex, ECM 
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receptor interaction, and cell adhesion molecules were 
significantly enriched in the high-risk group (Figure 4H, 
4I).  
 
Predicting the effects of anti-cancer treatment and 
immunotherapy sensitivity  
 
To further verify the relationship between risk score and 
immunotherapy sensitivity, we downloaded the dataset 
from the IMvigor210 database. Figure 5A shows that the 
risk scores were significantly higher in patients with 
progressive diseases (PD) or stable disease (SD) than in 
those with complete response (CR) or partial response 
(PR). Figure 5B–5F showed that the high-risk group was 
more sensitive to the chemotherapeutic drugs cisplatin, 
dasatinib, doxorubicin, gefitinib, and gemcitabine than 
the low-risk group. Therefore, those patients with EC in 

the low-scoring group were more likely to benefit from 
immunotherapy. Although patients in the high-risk group 
have a poor survival prognosis, we can use more sensitive 
chemotherapy drugs in the high-risk group to improve 
their prognosis. 
 
Identification of differential genes 
 
We identified 16 differentially expressed IRGs (DEIRGs) 
(Figure 5G). Figure 5H, 5I shows that the intersection of 
the DEIRGs and 13 IRGs (in the prognostic model) 
yielded three common genes (MEP1A, LAMP3, and 
ROS1). The expression of MEP1A, LAMP3, and ROS1 
was upregulated in the uterine corpus EC (UCEC) tissue-
based TCGA datasets (Figure 5J, 5K). The qRT-PCR 
results showed that MEP1A, LAMP3, and ROS1 
(Supplementary Figure 2A–2C) were highly expressed 

 

 
 

Figure 1. Screening of prognosis RBP and construction of prognosis model. (A) Univariate Cox regression analysis to identify the 
candidate prognosis-related hub IRGS in UCEC. (B) Partial likelihood deviation was plotted relative to the logarithm of lambda in 13-fold cross-
validation. (C) The trajectory graph of each variable. (D) Survival curves and ROC curves of high and low risk groups in the training group. (E) 
The risk score value of each sample, the survival status ranked from low to high-risk scores in the training group. (F) Survival curves and ROC 
curves of high and low risk groups in the test group. (G) The risk score value of each sample, the survival status ranked from low to high-risk 
scores in the test group. 
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Figure 2. Test of risk prediction model for UCEC patients and nomogram quantitative prediction of survival time and correction 
of UCEC patients. (A) Univariate and multivariate analysis were performed to assess the clinicopathological prognostic value of the prediction 
model in the training group. (B) Univariate and multivariate analysis were performed to assess the clinicopathological prognostic value of the 
prediction model in the test group. (C) Nomogram for predicting the 1-, 3-, and 5-year OS of UCEC patients.  
(D) Calibration curves for the prediction of 1-, 3- or 5-year overall survival of UCEC patients. (E) ROC curves for predicting the 1-, 3-, and 5-year 
OS of UCEC patients. 
 

 
 

Figure 3. The comparison between model for IRGs and the existing model for signatures. (A, B) Survival curves and ROC curves of 
high and low risk groups in the model constructed by us. (C) C-index comparison of inflammatory models with other models. 
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in human EC tissues, which is consistent with our analysis 
of the TCGA-UCEC dataset. Analysis of 
clinicopathological parameters of EC patients showed that 
the expression of the three genes (LAMP3: Supplementary 
Figure 2D–2F, MEP1A: Supplementary Figure 2G–2I, 
and ROS1: Supplementary Figure 2J–2L) were higher in 
the >65 age (P > 0.05), tumor stage III–IV (P < 0.05), or 
lymph node (LN) metastasis (P < 0.05) groups than in the 
≤65 age groups, tumor stage I–II, or no LN metastasis 
groups. 
 
Cell functional experimental validation of three key 
genes  
 
To further verify the role of LAMP3, MEP1A, and ROS1 
in EC, we knocked down the expression of LAMP3 
(Figure 6A), MEP1A (Figure 6E), and ROS1 (Figure 7A) 

in EC cells (Ishikawa cells) and examined their siRNA 
effects on the cells using PCR. Silencing of these three 
genes inhibited proliferation (LAMP3: Figure 6B, 6C, 
MEP1A: Figure 6F, 6G, and ROS1: Figure 7B, 7C) and 
invasion (LAMP3: Figure 6D, MEP1A: Figure 6H, and 
ROS1: Figure 7D) of ECs. In Ishikawa cells, LAMP3 and 
ROS1 knockdown promoted apoptosis, whereas MEP1A 
knockdown did not (Figure 7E). These results suggested 
that LAMP3, MEP1A, and ROS1 function as oncogenes 
in EC. 
 
DISCUSSION 
 
EC is one of the most common tumors affecting the female 
reproductive system. Currently, EC treatment mainly 
employs surgical intervention alone in the early stages and 
combines surgery with other adjuvant  treatments in  advan-

 

 
 

Figure 4. Gene set enrichment analysis (GSEA) of biological functions and the association between risk score and tumor 
microenvironment. The risk score in different groups divided by age (A), grade (B), stage (C) and immune subtype (D). Comparison of the 
risk score in different immune infiltration. (E, F) The relationship between risk score and the scores of 16 immune cells and 13 immune-
related functions were showed in boxplots. (G) The relationship between risk score and DNAss, RNAss, Stromal Score and Immune Score.  
(H, I) GSEA showed eleven pathways enriched in the high-risk group. P values were showed as: ns, not significant; *P < 0.05; **P < 0.01; ***P 
< 0.001. 
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ced stages [17]. However, last-stage EC is highly 
invasive and migratory, and the efficacy of treatments is 
low [18]. If EC is not effectively diagnosed and treated 
in its early stages, the five-year survival rate for advanced 
endometrial cancer drops to 16–45% compared with 95% 
in its early stages [1, 2]. Therefore, it is important to 
explore novel prognostic biomarkers and druggable 
targets for EC. 
 
The main risk factors for EC are exposure to endogenous 
and exogenous estrogen, diabetes, obesity, late-onset 
menopause, nulliparity, and older age [19]. However, 
recent research has suggested that inflammation is an 
important risk factor for EC [20–23]. Interestingly, in our 
independent retrospective cohort study, we reached 
similar conclusions, suggesting that inflammatory markers 
in the blood are strongly associated with EC prognosis [10, 
24]. Although multiple clinical cohorts and retrospective 
studies have revealed that inflammation is a risk factor for 

EC, there are few studies on the underlying mechanisms 
of the inflammatory response in the occurrence and 
development of EC. Using second-generation sequencing 
technology, it is now possible to reveal the association 
between the inflammatory response and EC at the gene 
level. Precision medicine requires new and improved 
models to predict the survival and efficacy of 
immunotherapy and chemotherapy drugs in patients with 
EC. 
 
The TCGA-UCEC dataset was downloaded for this study. 
Univariate analysis of TCGA-UCEC dataset identified 39 
prognostic IRGs, and LASSO regression was used to 
build a new gene signature containing 13 IRGs. We then 
constructed a nomogram based on the clinical information 
of UCEC patients (age, stage, and grade) and compared 
this signature with the models constructed by Cai [13], 
Liu [14], and Liu J [15]. The results showed that our 
model is superior to the existing models. The survival of 

 

 
 

Figure 5. Risk scores are associated with immunotherapy and chemotherapeutic drug response and identification of 
differentially expressed genes. (A) The correlation between risk scores and immunotherapy response. (B–F) The correlation between risk 
scores and Chemotherapeutic drug sensitivity. (G) volcano plot of Differentially expressed IRGs (DEIRGs): upregulated DEIRGs are indicated 
by red dots, and downregulated DEIRGs are indicated by green dots. (H) The DEIRGs were intersected with the genes included in the model. 
(I) Heat map of LAMP3, MEP1A and ROS1 between tumor and normal tissues. Box plots showed the expression of LAMP3  
(J), MEP1A (K) and ROS1 (L) in normal and UCEC tissues from TCGA. 
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Figure 6. LAMP3 and MEP1A regulates the biological behavior of Ishikawa cell lines. (A) PCR was used to verify knockdown efficiency 
of LAMP3. (B, C) CCK-8 and colony formation assays were used to evaluate the proliferation effect of LAMP3. (D) Effect of LAMP3 on invasion 
assessed using the Transwell assay. (E) PCR was used to verify knockdown efficiency of MEP1A. (F, G) CCK-8 and colony formation assays were 
used to evaluate the proliferation effect of MEP1A. (H) Effect of MEP1A on invasion assessed using the Transwell assay. 
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Figure 7. IRGs regulates the biological behavior of Ishikawa cell lines. (A) PCR was used to verify knockdown efficiency of ROS1.  
(B, C) CCK-8 and colony formation assays were used to evaluate the proliferation effect of ROS1. (D) Effect of ROS1 on invasion assessed using 
the Transwell assay. (E) Cell apoptosis assay was used to determine the effect of LAMP3, MEP1A and ROS1. 
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EC patients is dependent on predictive factors such as age, 
stage, and grade [25, 26]. Therefore, our final nomogram, 
based on these clinical data and risk scores, had a better 
predictive power. Furthermore, we analyzed the risk score 
and clinical information of the patients, and the results 
revealed that patients with clinical risk factors (> 65, 
grade 3–4, stage III–IV) also had higher risk scores, 
proving that risk scores were consistent with clinical risk 
factors. A study based on TCGA database categorized 
tumors into six immune infiltration subtypes (C1–C6) 
[27]. Immune subtypes were closely related to 
progression-free survival (PFS) and OS; C1 and C2 had 
poor prognoses, C3 had the best survival, and C4 and C6 
had the worst prognoses. In this study, high-risk scores 
with worse prognoses were associated with immunotypes 
C1, C2, and C4.  
 
Inflammation and the inflammatory TME drive tumor 
growth, metastasis, progression, and initiation [28]. 
However, there have been few studies on inflammation 
in EC, and the mechanisms of IRGs in EC remains 
unclear. The effects of the risk scores and IRGs included 
in the model on the prognostic mechanism of patients 
with EC have not been clarified. Therefore, we further 
explored this model. Results of ssGSEA showed that the 
fractions of TIL, T helper cells, pDCs, DCs, iDCs, and 
CD8+T cells, and were significantly decreased in the 
high-risk group. This suggests that our model is sensitive 
to changes in immune function. Previous studies have 
shown that changes in these immune-related cells affect 
the prognosis of cancer patients [29, 30]. CSCs are 
resistant to therapeutic drugs, and their presence may 
affect patient outcomes [31–33]. Our results showed that 
the risk score was negatively correlated with the immune 
and stromal scores and significantly positively correlated 
with RNAss. This suggests that the risk score may predict 
EC patient prognosis by analyzing their stemness 
characteristics. Previous studies have shown that T and 
B cells affect tumor progression in EC by activating the 
IFN and TFN inflammatory pathways via the IgA 
pathway [34, 35]. These findings suggest that immune 
cells in the TME may function by influencing 
inflammatory pathways in EC tumor cells. 
 
Currently, clinical treatments exist for only some types of 
endometrial carcinomas [36, 37]; however, only a few 
studies have evaluated the sensitivity of patients with EC 
to chemotherapeutic agents and immunotherapy [38]. 
Interestingly, in this study, patients in the high-risk group 
had a lower response rate to immunotherapy, but more 
sensitive to chemotherapy drugs (cisplatin, dasatinib, 
doxorubicin, gefitinib, and gemcitabine) than the low-risk 
group. To date, cyclophosphamide, doxorubicin, and 
cisplatin (CAP) combination chemotherapy is used as a 
first-line treatment for treating patients with EC [19, 39–
42]. Therefore, in our model, conventional CAP 

chemotherapy regiments are recommended over 
expensive immunotherapy for high-risk groups. These 
data can guide clinical chemotherapeutic drug application 
and predict drug sensitivity in advance. Although 
immunotherapy is not the preferred treatment for patients 
with EC, it has shown great therapeutic potential in Food 
and Drug Administration-approved phase I 
immunotherapy trials [43]. The high-risk group in our 
model was more likely to be unresponsive to 
immunotherapy, which may be related to the disturbance 
of inflammatory pathways downstream of the 
immunotherapy targets. In summary, the risk scores 
constructed in this study show great potential for 
predicting immunotherapy responses and 
chemotherapeutic drug sensitivity. This suggests that the 
risk scores can be used to predict the efficacy of 
chemotherapy drugs and immunotherapy in patients with 
EC, thereby contributing to the development of precision 
therapy. 
 
However, this study has some limitations. There was no 
external validation due to the lack of other datasets with 
UCEC clinical data. In addition, the effectiveness of the 
model in clinical practice is unknown, and we intend to 
conduct further research in the future. Nonetheless, our 
exploration of IRGs also provides a reference for 
studying inflammatory responses in UCEC. Thus, these 
findings might have potential clinical application for 
better prognostic management of patients with EC. 
Additionally, the genes in this model may serve as 
molecular targets for EC therapy. 
 
CONCLUSIONS 
 
The IRGs-based model that we constructed for the first 
time have stable predictive power for patient prognosis. 
This model can be used as a potential prognostic index 
for patients with EC. Meanwhile, we also provide a 
theoretical basis for the future studies on inflammatory 
response in EC. Overall, this study could help reveal the 
role of IRGs in TME, immunotherapy response, and 
chemotherapeutic drug resistance, which is crucial for 
personalized tumor treatment and precision medicine. 
These findings might have potential clinical application 
for better prognostic management of patients with EC. 
 
MATERIALS AND METHODS 
 
Data acquisition 
 
The clinical information and RNA sequencing datasets 
(FPKM) of patients with UCEC were downloaded from 
TCGA (https://portal.gdc.cancer.gov/) database. We 
obtained an RNA sequencing dataset of 552 UCEC and 35 
normal tissues (23 tumors had matching adjacent normal 
tissues). After excluding patients with EC with incomplete 

https://portal.gdc.cancer.gov/
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clinical information or who were lost to follow-up, 541 
patients with EC were enrolled. The IRGs were selected 
from the Molecular Signatures database 
(HALLMARK_INFLAMMATORY_RESPONSE (gsea-
msigdb.org)). Immunotherapy data were obtained from 
IMvigor210. 
 
Construction of model and nomogram 
 
We used univariate Cox regression analysis to analyze 
the 200 IRGs from the Molecular Signatures database 
to identify prognostic IRGs associated with OS. 
Because only TCGA contained prognostic information 
for patients with EC, we could only test our model 
internally. The TCGA-UCEC patients were randomly 
and equally divided into training (n = 272) and test (n = 
269) groups. We then used LASSO-penalized Cox 
regression analysis on the training set [44]. Risk score 
was calculated as esum(expression of each gene × corresponding 

coefficient). The UCEC patient prognostic data in the 
training group were divided into high- and low-risk 
subgroups based on the median risk score as the cutoff 
value. The test group was used to verify the validity of 
the proposed model. R packages “regplot” and “rms” 
were used to build a nomogram by combining the 
clinical information of patients with EC and compared 
with previously established models. GSEA was used to 
analyze KEGG and GO enrichment in this model. 
Correlation analysis of immune function was based on 
ssGSEA [45]. 
 
Tumor microenvironment analysis 
 
The R (version 4.1.1) package “ESTIMATE” was used 
to analyze infiltration of immune and stromal cells [46]. 
We extracted Cancer stem cells (CSCs) data for each 
patient from their epigenomic and transcriptomic data 
to measure CSCs characteristics. Spearman analysis 
was used for statistical analysis. 
 
Predicting the chemotherapeutic immunotherapy 
response 
 
The packages in R were used to evaluate the sensitivity 
of patients to chemotherapy drugs. Half-maximal 
inhibitory concentration (IC50) was calculated to 
compare drug sensitivity. Wilcoxon rank test and the 
“ggplot” package was used to visualize the result. Data 
sets from IMvigor210 were used to evaluate the efficacy 
of immunotherapy in cancer patients. 
 
Screening of key genes in the model 
 
We utilized the “limma” package in R software to 
identify the differentially expressed IRGs (DEIRGs) 
among the 200 selected genes. Our selection criteria for 

DEIRGs were |log2 fold change (FC)| ≥ 2 and false 
discovery rate < 0.05. Subsequently, we generated 
heatmaps and volcano plots using the “pheatmap” 
package. We then overlapped the DEIRGs with the 
genes in the model to identify the key genes. These key 
genes not only play a significant role in the model but 
may also contribute to tumor development, and further 
experiments will be conducted to verify their 
importance. 
 
Human tissue specimens 
 
We obtained 43 samples of normal endometrial tissues 
and 37 samples of uterine corpus EC tissues from 
Shengjing Hospital of China Medical University, 
China, between 2019 to 2021. Complete 
clinicopathological information was obtained for 32 
patients with EC. All patients provided informed 
consent. The pathologic type of all cases of EC was 
endometrial adenocarcinoma, and the pathological 
diagnosis was made by two experienced pathologists in 
accordance with the International Federation of 
Gynecology and Obstetrics (FIGO 2009). None of the 
patients received any form of hormone, radiotherapy, 
chemotherapy, or treatment prior to surgery.  
 
Transfection of cells 
 
SiRNA sequences targeting LAMP3, MEP1A and 
ROS1, along with their respective negative control 
(NC) counterparts, were procured from GenePharma 
(Shanghai, China). Lipofectamine 3000 (Invitrogen) 
was used to transfect cells with the siRNA according to 
the manufacturer’s instructions for subsequent 
experiments. Sequences of siRNA are listed in 
Supplementary Table 1. 
 
qRT-PCR 
 
Total RNA was extracted using TRIzol reagent 
(Vazyme, Nanjing, China). Subsequently, cDNAs were 
synthesized using Prime Script RT-polymerase 
(Vazyme). SYBR Green Premix (Vazyme) with 
specific PCR primers (Sangon Biotech, Shanghai, 
China) were used to detect the expression level of 
corresponding gene RNA. The primer sequences are 
provided in Supplementary Table 2. The fold-changes 
were calculated using the 2−ΔΔCT method. 
 
Cell culture 
 
The Ishikawa cells were cultured in RPMI 1640 
medium (Gibco, Carlsbad, CA, USA), supplemented 
with 10% fetal bovine serum (FBS) (Gibco) and 1% 
penicillin–streptomycin. The cells were maintained in a 
humidified incubator at 37° C with 5% CO2. 
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Colony formation assay 
 
To investigate the impact of LAMP3, MEP1A and ROS1 
expression on cell proliferation, Ishikawa cells were 
transfected with NC-siRNA or siRNA targeting the 
genes of LAMP3, MEP1A, and ROS1. Additionally, a 
blank group without siRNA was included. Following 
transfection, 1000 cells were seeded to each well of 6-
well culture plates and incubated for two weeks. 
Afterward, the cells were stained with 0.1% crystal 
violet, and the number of colonies was counted using 
light microscopy. 
 
CCK-8 assay 
 
Ishikawa cells were seeded in 96-well plates, and to each 
well, CCK-8 reagent (10 µL) (Dojindo, Kumamoto Japan) 
was added. The cells were then incubated at 37° C with 
5% CO2 for 3 h. The OD 450 nm was measured using a 
microplate reader at 0, 24, 48, and 72 hours after treatment 
to determine the cell viability. 
 
Cell invasion assay 
 
Transwell chambers (Corning, NY, USA) (pore 
size:8μm) were utilized to evaluate cell invasion ability. 
Prior to seeding cells, the chambers were coated with 
Matrigel solution (BD, Franklin Lakes, NJ, USA), and 
the upper chamber was filled with 200μl serum-free 
medium. The lower chamber was supplemented with 
10%FBS serum. After incubation for 24 hours, the 
invading cells that penetrated the Matrigel and reached 
the lower surface of the membrane were fixed with 4% 
paraformaldehyde and stained with 0.1% crystal violet. 
Images were obtained using a fluorescence inversion 
microscope (200× magnification) and subsequently 
analyzed. 
 
Apoptosis assay 
 
After cell transfection, 106 cells from each group were 
washed and stained Annexin V-APC and 7AAD 
(Elabscience, Wu Han, China) at room temperature for 
15 min. Flow cytometry (BD FACSCalibur, New Jersey, 
USA) was used to evaluate the proportion of apoptotic 
cells (low right corner of the flow cytometry graph 
regarded as apoptotic cells). 
 
Statistical analysis 
 
The GraphPad Prism 8 (GraphPad Software, CA, United 
States) were used for statistical analysis. Each 
experiment was repeated three times independently. Data 
are presented as mean ± standard deviation (SD). Two-
way comparisons between groups were analyzed using 
the t-test, and multiple group comparisons were analyzed 

using one-way ANOVA. Statistical significance was set 
at p < 0.05. 
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SUPPLEMENTARY MATERIALS 
 
Supplementary Figures 
 
 
 

 
 

Supplementary Figure 1. Comprehensive prognostic value analysis framework of inflammatory response-related genes (IRGs) 
in uterine corpus endometrial carcinoma (UCEC) patients based on TCGA database. 
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Supplementary Figure 2. Relationships between three key IRGs expression in EC and clinicopathological parameters. The results 
of qRT-PCR showed the expression of LAMP3 (A), MEP1A (B) and ROS1 (C) in normal endometrial tissue (n=43) and human endometrial 
carcinoma tissue (n=37). The expression of LAMP3 in different groups divided by age (D), stage (E) and LN-metastasis (F). The expression of 
MEP1A in different groups divided by age (G), stage (H) and LN-metastasis (I). The expression of MEP1A in different groups divided by age (J), 
stage (K) and LN-metastasis (L).   
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Supplementary Tables 
 

Supplementary Table 1. Primer sequence. 

Gene name Primer sequence 
LAMP3 Forward: GAACAGAGCCTCCAGTTGTCAGC 
 Reverse: TCAGACGAGCACTCATCCACATTTC 
MEP1A Forward: TTTACCCAAAGAGGAAGCAGCAGTG 
 Reverse: CCTTCACCAACTTGCGAACATTGC 
ROS1 Forward: AGCTGTGCGTATTGTGGAGAGTTG 
 Reverse: TGCGAGGTAGGATGAGATGGGAAG 
GAPDH Forward: CAGGAGGCATTGCTGATGAT 
 Reverse: GAAGGCTGGGGCTCATTT 

 

Supplementary Table 2. Sequence of siRNA. 

Name Sequence 

LAMP3-Homo-280 
Sense (5’-3’): CACGAUGGCAGUCAAAUGATT 

Antisense (5’-3’): UCAUUUGACUGCCAUCGUGTT 

MEP1A-HOMO-606 
Sense (5’-3’): GCACAACUUUGACACCUAUTT 

Antisense (5’-3’): AUAGGUGUCAAAGUUGUGCTT 

ROS1-Homo-499 
Sense (5’-3’): CCUACCAACUGCUCCCUUUTT 

Antisense (5’-3’): AAAGGGAGCAGUUGGUAGGTT 
 


