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INTRODUCTION 
 

Protein turnover via the lysosome/autophagy system is a 

crucial regulator of aging [1–6]. Lysosomal proteolysis 

in mammalian cells occurs through at least three distinct 

pathways: macroautophagy (MA), microautophagy 

(mA), and chaperone-mediated autophagy (CMA). Each 

branch of autophagy is regulated independently, and 

each is responsible for degrading a different subset  
of intracellular cargoes. Drug treatments or genetic 

modifications that enhance macroautophagy reliably 

extend the lifespans of invertebrates [7]. 

Studies of autophagy and aging in mouse models are not 

yet as comprehensive as those in invertebrates. 

However, a few mouse studies do suggest a strong link 

between MA and longevity. The first study to show that 

genetic activation of macroautophagy could extend 

lifespan in mice was published in 2013, when Pyo et al. 

showed that two strains of C57BL/6J mice over-

expressing ATG5 (ATG5 TG) had a 17% increase in 

median lifespan, with no sex differences [8]. ATG5 TG 
mice develop normally, show no differences in food 

intake, and have normal memory (as evaluated by Y-

maze tests) [8]. However, ATG5 TG mice have reduced 
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ABSTRACT 
 

Chaperone-mediated autophagy (CMA) selectively degrades proteins that are crucial for glycolysis, fatty acid 
metabolism, and the progression of several age-associated diseases. Several previous studies, each of which 
evaluated males of a single inbred mouse or rat strain, have reported that CMA declines with age in many 
tissues, attributed to an age-related loss of LAMP2A, the primary and indispensable component of the CMA 
translocation complex. This has led to a paradigm in the field of CMA research, stating that the age-associated 
decline in LAMP2A in turn decreases CMA, contributing to the pathogenesis of late-life disease. We assessed 
LAMP2A levels and CMA substrate uptake in both sexes of the genetically heterogeneous UM-HET3 mouse 
stock, which is the current global standard for the evaluation of anti-aging interventions. We found no evidence 
for age-related changes in LAMP2A levels, CMA substrate uptake, or whole liver levels of CMA degradation 
targets, despite identifying sex differences in CMA. 
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adiposity, increased insulin sensitivity, increased oxygen 

consumption rates, and reduced circulating leptin levels 

[8]. At 6 and 12 months of age, ATG5 TG mice have 

improved performance on wire hang tests [8]. 

 

Additional support for the role of macroautophagy  

in extending healthy lifespan in mice comes from 

inbred C57BL/6J mice with a homozygous F121A 

knock-in mutation to the gene encoding BECN1 

(becn1F121A/F121A). The autophagy inhibitor BCL2 binds 

to BECN1, reducing its ability to nucleate phagophore 

formation. The F121A mutation reduces the interaction 

between BECN1 with BCL2, boosting the initial step 

of macroautophagy. BECN1F121A/F121A mice have 

significantly extended median lifespan (roughly 11% 

for females and 12% for males), have a significant 

reduction in the formation of neoplastic lesions, and 

show reduced signs of age-associated degeneration in 

multiple tissues [9]. 

 

While it is clear that boosting MA in C57BL/6J mice is 

sufficient to extend lifespan, the relationship between 

CMA and lifespan is far less clear. Many review papers 

claim that CMA decreases with age in most cell types 

and tissues of mice and rats (key results are 

summarized below) [4, 10–13]. According to this 

paradigm, the main factor responsible for the age-

related decline in CMA is a reduction in LAMP2A, the 

main component of the CMA substrate translocation 

complex. The abundance of the Lamp2a transcript is 

not changed with age [14, 15]. Rather, the stability of 

the LAMP2A protein at the lysosome is reduced, which 

is attributed to an age-related change in lysosomal 

membrane lipid composition [14, 16, 17]. While most 

papers reporting changes in CMA with age have 

focused on age-related declines in LAMP2A protein 

levels, one paper identified an age-related decline in 

HSPA8 in skeletal muscle of male C57BL/6J mice 

[18]. HSPA8 (also known as HSC70 or HSC73) is the 

chaperone that recognizes the pentapeptide consensus 

motif present in proteins targeted for degradation by 

CMA [19, 20]. 

 

There is compelling evidence that CMA degrades 

proteins whose overaccumulation contributes to age-

associated pathologies, including fatty-liver disease, 

atherosclerosis and cancer [21–23]. Moreover, CMA is 

responsible for regulating the abundance of many well-

studied proteins associated with neurodegeneration, 

including SNCA, MAPT, HTT, APP, LRRK2, and 

TARDBP [1, 24–28]. Rats with reduced CMA in the 

brain exhibit death of dopaminergic neurons in the 

substantia nigra and display Parkinson’s disease like 
motor symptoms [29]. Because of the clear link 

between CMA and age-associated diseases, it has been 

hypothesized that an age-related decline in CMA might 

contribute to the pathogenesis of age-associated 

morbidities [1, 10, 13]. 

 

An age-related decline in CMA was first reported over 

20 years ago, when isolated liver lysosomes from 20-

hour fasted 22-month-old male Fisher-344 rats were 

found to have reduced uptake of CMA substrates 

compared to lysosomes from 3-month-old animals [30]. 

The lysosomes from old animals were reported to show 

increased levels of lumenal proteins, such as cathepsins 

and hexosaminidase [30]. Both whole liver lysates and 

liver lysosomes from male FVB mice at 22 months of 

age have sharp reductions in LAMP2A levels, compared 

to samples derived from 6-month-old controls. 

Lysosomes from 22-month-old animals also showed 

significantly less uptake of GAPDH than lysosomes 

from 6-month-old animals [31]. 

 

Evidence for age-related decline in CMA has also been 

reported in tissues other than the liver. Hematopoietic 

stem cells (HSCs) from male C57BL/6J mice 

expressing a KFERQ-Dendra2 CMA reporter showed 

an age-related decline in CMA, with HSCs from  

30-month-old animals showing a reduction in KFERQ-

Dendra2 puncta compared to 4- and 12-month-old 

animals [32]. CMA was induced in CD4+ T cells 

isolated from 4-month-old C57BL/6J mice of 

unspecified sexes, by stimulating them with anti-CD3 

and anti-CD28 [15]. However, this induction failed to 

occur in CD4+ T cells isolated from 22-month-old 

animals [15]. 

 

Contrary to reports that LAMP2A (and CMA) 

decreases in some tissues and cell types with age, other 

papers have reported evidence of increased CMA with 

age. The retinas of 22-month-old and 12-month-old 

C57BL/6J mice of unspecified sexes showed reduced 

LC3 flux (indicating reduced macroautophagy) 

compared to retinas from 3-month-old animals [33]. 

Despite the reduction in LC3 flux, metabolic labeling 

experiments found that there is increased turnover  

of long-lived proteins in retinas of 22-month-old 

animals compared to 3-month-old animals [33]. This 

increased protein turnover might be attributable to 

CMA, because retinas from 12-month-old and 22-

month-old animals have higher expression of LAMP2A 

than retinas from 3-month-old animals [33]. Male 

C57BL/6J mice have reduced protein levels of 

LAMP2A and HSPA8 in skeletal muscle in old age 

(24-29 months), compared to young mice (3.5-7 

months) [18]. However, the same mice have increased 

expression of LAMP2A in the heart in old age, with  

no change in HSPA8 [18]. Although simply measuring 
the abundance of LAMP2A and HSPA8 cannot 

conclusively indicate a change in CMA, the findings 

that LAMP2A levels increase in the retina and cardiac 
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muscle with age stand in contrast to the paradigm that 

an age-related decline in LAMP2A levels causes a 

decrease in CMA. 

 

Independent from its possible role in degrading 

disease-associated and neurodegeneration-associated 

proteins, CMA might modulate aging through other 

pathways. Recently published evidence supports the 

hypothesis that sustained activation of CMA in early 

and mid-life might promote longevity and good health 

by reducing the abundance of proteins that accelerate 

the pace of aging. Long-lived pou1f1 mutant mice 

(Snell dwarf) and long-lived ghr KO mice both have 

constitutively elevated CMA in the liver, when tested 

as young adults [34]. CMA degrades CIP2A, a positive 

regulator of MYC abundance, and thus CMA 

indirectly reduces MYC levels by reducing CIP2A 

[23]. Mice hemizygous for the myc gene are long-lived 

[35]. Snell dwarf mice, which have elevated CMA, 

have reduced protein levels of CIP2A and MYC in 

liver, kidney, and skeletal muscle, without mRNA 

changes [34], suggesting one possible connection 

between the elevation of CMA in Snell dwarf mice and 

their exceptional longevity [34, 35]. 

 

A two-pronged proteomics approach combining 

lysosomal targetomics and whole-liver proteomics 

provided evidence that CMA negatively regulates the 

abundance of ACLY and ACSS2, the two enzymes 

responsible for cytoplasmic acetyl-coA synthesis, in 

the livers of young adult ghr KO mice [36]. These 

proteins are highly sensitive to CMA activity in 

NIH3T3 and AML12 cells [36]. Loss of function in 

either ACLY or ACSS2 is sufficient to extend lifespan 

in Drosophila [37–39]. While the role of ACLY and 

ACSS2 in mammalian longevity is not yet defined, 

some data suggest that small molecule inhibitors of 

ACLY may mimic the metabolic effects of calorie 

restriction, a well-characterized method for extending 

mouse lifespan [40]. 

 

We have now evaluated both sexes of the UM-HET3 

mouse stock for age-related changes in CMA. UM-

HET3 mice are derived from a four way cross of 

inbred mouse strains, making each animal genetically 

unique [41, 42]. We found no evidence of an age-

related decline in CMA or critical CMA proteins in 

these mice. To the contrary, we found that LAMP2A 

increases with age in the livers of UM-HET3 mice. In 

isolated liver lysosomes and in some tissues, we 

identified significant effects of sex on CMA or the 

expression of key CMA proteins. Most of the 

previously published studies on CMA use only one sex 
of mice or rats, usually males. Thus, important effects 

of sex on CMA might exist in other mouse and rat 

stocks, but remain undetected. 

RESULTS AND DISCUSSION 
 

Age does not decrease LAMP2A levels in UM-HET3 

or C57BL/6J mice 

 

Whole liver lysates from male FVB mice at 22 months 

of age have been reported to have sharp reductions in 

LAMP2A levels compared to samples derived from  

6-month-old animals [31]. We assessed whole liver 

lysates from ad libitum fed male and female mice of 

ages 4, 14, and 24 months. There was a marginally 

significant effect of age on whole liver LAMP2A levels 

(p = 0.049 by a main-effects model 2-way ANOVA; the 

interaction term was not significant in the full model). 

However, contrary to previous reports using inbred 

strains of rodents [30, 31], UM-HET3 mice at ages 14 

and 24 months appeared to have more LAMP2A, on 

average, than mice at age 4 months (Figure 1A), and the 

increase between 4 and 14 months was statistically 

significant. There was no effect of age on HSPA8 (the 

chaperone that selects proteins for degradation by CMA) 

levels in the liver of UM-HET3 mice (Figure 1A). 

 

CMA has been implicated in the pathogenesis of age-

associated diseases in the kidney and brain [1, 43, 44]. 

We measured LAMP2A and HSPA8 levels in the 

kidneys of ad libitum fed UM-HET3 mice at ages 4, 14, 

and 24 months. There was no evidence of an age-related 

effect on the abundance of these proteins. However, 

males had significantly more HSPA8, when normalized 

to H3 levels, than females (Figure 1B). We also 

measured LAMP2A and HSPA8 levels in whole brain 

lysates from ad libitum fed 4- and 24-month-old UM-

HET3 mice. There was no effect of age on either 

LAMP2A or HSPA8. However, males had significantly 

less LAMP2A in the brain than females (Figure 1C). 

 

An age-related increase in LAMP2A levels has never 

been reported for liver of mice or rats. We considered 

the possibility that this finding might be specific to UM-

HET3 mice. Several previous studies have identified 

changes in CMA with age in male C57BL/6J mice  

[18, 33, 45]. We evaluated the levels of LAMP2A and 

total LAMP2 in the livers of male C57BL/6J mice at 

ages 2, 8, and 24 months (Figure 1D). We found that 

livers from C57BL/6J mice at 8 months of age had 

significantly more LAMP2A than livers from 2-month-

old animals. However, there were no significant 

differences between any of the other age groups. There 

were no differences in total LAMP2 between any of the 

age groups. 

 

Even though male Fisher-344 rats [30] and male FVB 

mice [31], have age-related declines in LAMP2A in the 

liver, our data suggest that male C57BL/6J and male (and 

female) UM-HET3 mice do not have an age-related 
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Figure 1. Age does not decrease LAMP2A levels in UM-HET3 or C57BL/6J mice. (A) Representative western blots and 

quantifications of LAMP2A and HSPA8 are shown in whole livers lysates from ad libitum fed male and female UM-HET3 mice of ages 4, 14, 
and 24 months. H3 and ENO1 are loading controls. n = 6 animals per group. (B) Representative western blots and quantifications of LAMP2A 
and HSPA8 are shown in whole kidney lysates from ad libitum fed male and female UM-HET3 mice of ages 4, 14, and 24 months. H3 is a 
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loading control. n = 6 animals per group. (C) Representative western blots and quantifications of LAMP2A and HSPA8 are shown in whole 
brain lysates from ad libitum fed male and female UM-HET3 mice of ages 4, and 24 months. H3 and ACTB are loading controls. n = 6 animals 
per group. (D) Representative western blots and quantifications of LAMP2A and total LAMP2 are shown in whole livers lysates from ad 
libitum fed male C57BL/6J mice of ages 2, 8, and 24 months. ACTB is a loading control. n = 9 for 2- and 24-month groups, n = 8 for 8-month 
group. Statistical analysis was performed in GraphPad Prism 9. Lines are drawn at each mean, with error bars showing S.E.M. p-values 
derived from 2-way ANOVAs of both “full models” and “main effects models” are shown beneath each graph. “Estimation plots” are shown 
to the right of each graph; error bars on estimation plots show the 95% C.I. for the difference between the means of the indicated groups.  
p values displayed directly on the graphs are derived from unpaired t tests. 
 

decrease in LAMP2A in the liver. Because an assessment 

of LAMP2A protein levels at the level of the whole tissue 

is not sufficient to draw conclusions about the status of 

chaperone-mediated autophagy, we proceeded to an 

evaluation of lysosome enriched fractions. 

 

Age does not cause a decrease in lysosomal LAMP2A 

levels in UM-HET3 mice 

 

Previous studies have reported the isolation of “CMA+” 

and “CMA-” lysosome subpopulations from the livers 

of mice and rats using metrizamide-based discontinuous 

density gradients [46]. The light “CMA+” lysosome 

fraction is enriched in MTORC2 component RICTOR, 

and the heavy “CMA-” lysosome fraction is enriched in 

the MTORC1 component RAPTOR [47]. We used 

Histodenz-based gradients to prepare subcellular 

fractions of light “CMA+” and heavy “CMA-” 

lysosomes from the livers of ad libitum fed female and 

male UM-HET3 mice of ages 4 and 24 months. These 

gradients separated lysosomes into fractions enriched 

for RICTOR (CMA+) and RAPTOR (CMA-), at the 

expected densities, similar to previous studies using 

metrizamide gradients (Supplementary Figure 1). 

Because the light lysosome fraction is thought to be 

responsible for most CMA activity [46, 47], we 

evaluated this fraction for the abundance of key CMA 

proteins. We analyzed 4 μg of protein for each sample 

by western blot, finding no age-related change in 

LAMP2A, HSPA8, or total LAMP2 (Figure 2A). 

Previous studies have reported age-related increases in 

cathepsins in liver lysosomes [30]. However, the 

changes in the abundances of CTSB and CTSD did  

not reach significance in our experiments (although  

p = 0.07 for CTSD) (Figure 2A). 

 

Many CMA studies examine CMA after prolonged 

fasting. We fasted both male and female UM-HET3 

mice of ages 4 and 24 months for 18 hours and assessed 

CMA+ lysosomes for changes in lysosomal markers. 

We found no age-related decrease in either LAMP2A, 

HSPA8, or total LAMP2 (Figure 2B). In fasted mice, 

the age-related increase in CTSD reached statistical 

significance. Surprisingly, there was an age-related 

increase in LAMP1 in females and an age-related 

decrease in males, with a sex x age interaction effect at 

p = 0.004 (Figure 2B). 

CMA substrate uptake is not changed by age in 

lysosome enriched fractions from UMHET3 mice 

 

Lysosomes from fasted mouse livers have high CMA 

activity that can be measured by in vitro CMA substrate 

uptake assays [46]. Here, “uptake” is defined as the 

difference between the amount of CMA substrate 

MAPT present in lysosomes treated with protease 

inhibitors (PI; to block degradation) and the amount of 

MAPT present in lysosomes without protease inhibitor 

treatment. We found that age did not affect the uptake 

of MAPT, but lysosomes from males had significantly 

higher MAPT uptake than lysosomes from females 

(Figure 2C). Fewer than 10% of lysosomes were 

determined to be broken by hexosaminidase latency test 

[48], meeting the technical criterion for the uptake assay 

(Figure 2C). 

 

Age does not modify the effects of fasting on CMA-

sensitive proteins in UM-HET3 livers 

 

Mice deficient for LAMP2A in the liver have an 

elevation in the abundance of several proteins involved 

in glycolysis, such as GAPDH [22]. We have shown 

that CMA is both necessary and sufficient to regulate 

the abundance of several proteins essential for 

cytoplasmic acetyl-coA generation and fatty acid 

synthesis, including IDH1, ACSS2, and FASN [22, 36]. 

ghr KO mice and pou1f1 mutant (Snell dwarf) mice, 

both of which are long-lived, have constitutively active 

CMA, and have decreased liver levels of IDH1, ACSS2, 

and FASN [36]. We measured the abundance of 

GAPDH, IDH1, ACSS2, and FASN in the livers of 

male and female UMHET3 mice at 4 and 24 months. 

The mice were either fed ad libitum or fasted for 18 

hours prior to tissue sample collection. We reasoned 

that if aging reduces CMA, then there should be an 

increase in the relative abundance of these four CMA-

sensitive proteins in the livers of old mice, relative to 

young controls. Aging caused a small, but significant 

increase in FASN, but did not affect the abundance of 

the other CMA sensitive proteins (Figure 3). 
 

CMA is activated by fasting [20]. We reasoned that 

these CMA-sensitive proteins should decrease in the 

livers of UM-HET3 mice in response to fasting-induced 

CMA activation. If CMA decreases with age, then it 
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Figure 2. CMA differs by sex, but not by age in UM-HET3 mouse liver lysosomes. (A) Representative western blots and 

quantifications are shown for the indicated proteins in 4 μg of the light (CMA+) lysosome fraction from the livers of ad libitum fed male and 
female mice of ages 4 and 24 months. (B) Representative western blots and quantifications are shown for the indicated proteins in 4 μg of 
the light (CMA+) lysosome fraction from the livers of male and female mice of ages 4 and 24 months that were fasted for 18 hours before 
euthanasia. (C) Representative western blots and quantifications are shown for a substrate binding and uptake assay using the light (CMA+) 
lysosome fraction from male and female mice of ages 4 and 24 months that were fasted for 18 hours before euthanasia. The right panel 
shows the fraction of broken lysosomes. In each case, fewer than 10% of lysosomes were broken. n = 3 for each group in every experiment. 
Statistical analysis was performed in GraphPad Prism 9. Lines are drawn at each mean, with error bars showing S.E.M. p-values derived from 
2-way ANOVAs are shown beneath each graph. “Estimation plots” are shown to the right graphs for LAMP2A and HSPA8 (the two proteins 
most important for CMA activity) Error bars on estimation plots show the 95% C.I. for the difference between the means of the indicated 
groups. p values displayed directly on the graphs are derived from unpaired t tests. 
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might be the case that age will blunt the effects of fasting 

on the abundance of CMA-sensitive proteins. We found 

that fasting significantly reduced the abundance of 

GAPDH, ACSS2, and FASN (as predicted), and caused 

a near-significant reduction in IDH1 (p = 0.08) in UM-

HET3 liver (Figure 3). However, age did not modify the 

effects of fasting on the abundance of CMA sensitive 

proteins (Figure 3). This result is consistent with the 

finding that lysosomes from 4- and 24-month-old UM-

HET3 mice have equal CMA substrate uptake activity. 

 

Concluding remarks 

 

This paper examined four parameters pertaining to CMA 

in both sexes of mice in young and old animals, (1) 

whole tissue levels of key CMA proteins LAMP2A and 

HSPA8, in liver, kidney, and brain, (2) liver lysosome 

levels of LAMP2A and HSPA8, (3) lysosomal substrate 

uptake in isolated liver lysosomes from fasted mice, and 

(4) changes in levels of CMA-sensitive proteins in 

mouse liver, in response to fasting. All of these assays 

provide only limited information into changes in CMA 

with age, and none of them monitor CMA activity  

in vivo. However, the assays used in this paper were very 

similar to the assays that yielded the original evidence 

for a change in CMA with age [30, 31, 46]. CMA 

activity in vivo can now be measured directly in mice 

expressing a fluorescently labeled CMA substrate, that 

accumulates on lysosomes when CMA is active [45]. 

Sophisticated proteomics analyses can also be employed 

 

 
 

Figure 3. Age does not modify the effect of fasting on CMA target protein abundance in UM-HET3 liver. Representative western 

blots and quantifications are shown for the indicated proteins in whole liver lysates from male and female UM-HET3 mice of ages 4 and  
24 months. Mice were either fed ad libitum (AL; green circles) or fasted (F; purple circles) for 18 hours prior to euthanasia. n = 6 for every 
group. Age was not found to modify the effects of fasting on CMA-sensitive proteins, by 3-way ANOVA. Statistical analysis was performed in 
GraphPad Prism 9. p-values derived from 3-way ANOVAs are shown beneath each graph. 
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to gather highly detailed information on the lysosomal 

uptake of hundreds or thousands of endogenous CMA 

substrates [36]. However, these expensive and labor-

intensive experiments are difficult to justify since the 

commonly used battery of initial experiments yielded no 

evidence supporting the hypothesis that CMA changes 

with age in the mouse models used by the labs that 

contributed to this study. 

 

Previous studies examining changes in LAMP2A levels, 

CMA substrate uptake activity, or the abundance of 

CMA-sensitive proteins with age, have entirely relied 

upon the use of isogenic mouse or rat strains [15, 31, 46]. 

Recent studies comparing related stocks of genetically 

different mice have clearly demonstrated that results 

obtained from any single isogenic rodent stock cannot 

safely be generalized to other isogenic or inbred stocks, 

or to the species in general [49–52], because results 

observed in any one such stock (such as inbred 

C57BL/6) are frequently not replicated in other stocks, 

even when tested in the same laboratory at the same 

time. UM-HET3 mice are the four-way cross stock used 

by the NIA Interventions Testing Program, and for a 

recent study mapping the genetics of longevity [53]. In 

UM-HET3 mice, we found no evidence for an age-

related decrease in CMA. To the contrary, we found 

evidence of increased LAMP2A expression in the liver 

with age. 

 

The differences in results between this work, and other 

works identifying an age-dependent decrease in 

LAMP2A, might arise because of differences between 

the particular genetic stocks of mice or rats used  

in these studies. However, because we did not 

successfully replicate an age-dependent decrease in 

LAMP2A in any tissues of the two mouse stocks we 

examined, we must acknowledge that the difference 

between our results and the previous studies could also 

arise from idiosyncrasies of the husbandry conditions 

used, such as temperature, proximity of other stocks, 

olfactory or sonic environment, organic or inorganic 

impurities in water, or vivarium microbiota. 

Composition of the chow and composition of the 

bedding and environmental enrichment could also 

contribute to the differences between our work and 

that of others. 

 

The current assumption that age-related decline in 

LAMP2A contributes to the pathogenesis of many 

forms of late-life disease now seems less likely to be 

generalizable to all mouse stocks and all vivaria. It is 

possible that in certain stocks and colonies an age-

related decline in LAMP2A or CMA in one or more 
tissues could contribute to a specific form of age-

dependent disease, but a general assumption that CMA 

declines with age no longer seems warranted. 

There is extensive literature showing organ-specific 

sexual dimorphisms in macroautophagy and lysosomal 

gene expression in mice and rats [54]. These sex 

differences in macroautophagy are especially relevant 

to the progression of cancer and diseases of the heart 

and nervous system [54–56]. Despite the known effects 

of biological sex on macroautophagy, effects of sex on 

CMA have been largely ignored, because most CMA 

studies use only a single sex of mice [31, 46], or 

represent experiments performed in cultured cells, 

where the sex of the donor is not taken into account 

[57, 58]. Knockout of the lamp2a gene in Medaka 

(Japanese rice fish) leads to a female-specific 

dysregulation of carbohydrate metabolism in the liver 

[59], similar to what is observed in mice with a liver-

specific lamp2a deletion [22]. This finding suggests 

that CMA might have sex-specific roles on regulating 

protein expression in Medaka liver. The results of our 

study suggest that sex affects CMA in a tissue-specific 

manner. While it is not the goal of this study to 

characterize the mechanisms that underlie the sex 

differences in CMA, future studies characterizing these 

mechanisms might prove to be very important for the 

ongoing efforts to develop CMA-enhancing therapies. 

All future studies of CMA in vertebrate models should 

include an analysis of both sexes. Sex differences in 

CMA might modify other CMA-related phenotypes in 

important ways that could be missed in studies using 

only a single sex of mice. 

 

MATERIALS AND METHODS 
 

Antibodies 

 

Commercially available antibodies used at University of 

Michigan were acquired as follows: ACSS2 (CST: 

3658S; rabbit host; Lot: 2), ACTB/β-Actin (CST: 

8457L; rabbit host; Lot: 7), CTSB/Cathepsin B (CST: 

31718S; rabbit host; Lot 1), CTSD/Cathepsin D 

(Abcam: 75852; rabbit host; Lot: GR260148-28), ENO1 

(CST: 3810S; rabbit host; Lot: 2; KO validated), FASN 

(Abcam: 22759; rabbit host; Lot: GR3192402-1; KO 

validated), GAPDH (CST: 2118S; rabbit host; Lot: 14), 

H3 (Abcam: 176842; rabbit host; Lot: GR3277361-2), 

HSPA8/Hsc70 (Abcam: 154415; rabbit host; Lot: 

GR307969-3), IDH1 (Abcam: 172964; rabbit host; Lot: 

GR130705-18; KO validated), LAMP1 (Abcam: 24170; 

rabbit host; Lot:GR3255586-1), LAMP2 (Invitrogen: 

MA5-17861; rat host; Lot: WC3211254), LAMP2A 

(Abcam: 125068; rabbit host; Lot: GR23784-34), 

MAPT/Tau (CST: 46687S; rabbit host; Lot: 1), 

RAPTOR (CST: 2280S; rabbit host; Lot: 13), RICTOR 

(CST: 2114S; rabbit host; Lot: 7), TUBA (CST: 2144S; 

rabbit host; Lot: 6). The antibody for LAMP2A (Abcam: 

125068) was validated by siRNA knockdown in our 

previous manuscripts [36, 60]. 
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Commercially available antibodies used at Calico were 

acquired as follows: LAMP2A (Abcam, ab18528, lot# 

GR3265250-2), LAMP2 (Abcam, ab13524, lot# 

GR3245901-11), ACTB/β-actin (Cell Signaling, 8457S, 

lot# 7). 

 

Lysosome isolation 

 

Mice were dissected at approximately the same time for 

each experiment (between 9 and 10 AM, with the dark 

period ending at 6 AM). 

 

For mice collected in the ad libitum condition, the mice 

were allowed free access to food until the time of 

humane euthanasia. Upon dissection, mice were 

qualitatively assessed for the presence of food in the 

stomach (and all mice used in the study had food in the 

stomach). For mice collected in the “fasted” condition, 

mice were placed in a clean cage with no food 18 hours 

prior to dissection. All mice were allowed free access to 

water, until the time of humane euthanasia. 

 

For CMA substrate uptake assays, isolated lysosomes 

were incubated in uptake assay buffer: 300 mM sucrose, 

10 mM MOPS, pH 7.2, 10 mM ATP (Sigma, A26209), 

10 mg/mL recombinant HSPA8 (Abcam, ab78431). 

Recombinant Tau (Sino Biological, 10058-H07E), and/or 

protease inhibitors (Sigma, 11836153001) were added, as 

indicated on the figure panels. Lysosomes were incubated 

at 37° C for 20 minutes, pelleted, and then washed with 

300 mM sucrose, 10 mM MOPS, pH 7.2, and then 

prepared for analysis by western blotting. 

 

To assess lysosomal breakage, lysosomes were diluted in 

uptake assay buffer: 300 mM sucrose, 10 mM MOPS (pH 

7.2), and 10 mM ATP, and treated to the same conditions 

as the lysosomes used in the substrate uptake assay, in 

parallel to that experiment. At the end, the lysosomes 

were pelleted (no washes) and the supernatant was 

collected. The pellets and supernatants were assessed for 

hexosaminidase activity using a 4-nitrophenyl-N-acetyl-b-

D-glucosaminide colorimetric assay, as described by [48]. 

 

Mouse stocks and husbandry 

 

All animal experiments conducted at the University of 

Michigan were approved by the University of Michigan 

Institutional Animal Care and Use Committee. Mice 

were housed in Specific Pathogen Free facilities, with 

sentinel animals checked quarterly for infection (all 

tests were negative). Mice had free access to food 

(5L0D, Lab Diet: 0067138) and water until the start of 

the experiments, unless otherwise stated. The mice were 
maintained on a 12-hour light, 12-hour dark cycle, with 

lights-on starting at 6:00 AM. All mice were euthanized 

between 9:00 AM and 10:00 AM. 

The genetically heterogeneous UM-HET3 mouse  

stock was produced as previously described [41, 42]. 

Briefly, F1 hybrid CByB6F1/J (JAX stock #100009) 

females are crossed to F1 hybrid C3D2F1/J (JAX 

stock #100004) males. The CByB6F1/J mothers  

are generated by crossing BALB/cByJ females to 

C57BL/6J males. The C3D2F1/J fathers are generated 

by crossing C3H/HeJ females to DBA/2J males. All 

test animals are the offspring of these two F1 hybrid 

stocks. 

 

Animal experiments conducted at Calico were 

approved by the IACUC at Calico. For C57BL/6J  

male mice housed at the Calico vivarium, animals 

were also maintained on a regular 12-hour light, 12-

hour dark cycle and had free access to regular mouse 

chow and drinking water. Sentinel animals were 

screened at a monthly basis to monitor and ensure  

that the environment was free of common, known 

pathogens. 

 

Statistical analysis 

 

Statistical analyses and graph generation were 

performed with GraphPad Prism 9. Results of 3-way 

and 2-way ANOVAs are reported directly on the figures 

or in the figure legends. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figure 

 

 

 

 

 
 

Supplementary Figure 1. Data in support of Figure 2 – controls for lysosome enriched fractions. 4 μg of light (CMA+), 4 μg of 

heavy (CMA-), or 40 μg of whole liver lysates were analyzed for LAMP1 (lysosome membrane), LAMP2A (lysosome membrane), CTSB 
(lysosome matrix), RAPTOR (CMA- lysosomes), RICTOR (CMA+ lysosomes), TUBA (cytoplasm), and H3 (nucleus). The representative western 
blot indicates appropriate separation of CMA+ and CMA- lysosomes, similar to what has been observed by previously published methods. 


