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INTRODUCTION 
 

Cutaneous melanoma (CM) is a malignant tumor 

originating from melanocytes and is the third most 

common skin malignancy after basal cell carcinoma and 

squamous cell carcinoma [1–3]. In 2020, over 320,000 

people were diagnosed with CM, and the fatalities are 

nearly 60,000 [4]. CM has become a major problem 

endangering human health [4]. The highly invasive and 

metastatic nature of CM is responsible for the 5-year 

overall survival (OS) of only 23% of CM patients [5].  

As the most aggressive malignant tumor, CM has 

obvious heterogeneity [1, 6]. Invasion and metastasis are 

associated with high mortality in CM owing to the  

lack of effective treatments [7]. Targeted therapy and 

immunotherapy have achieved remarkable results in 

treating CM; however, these therapeutic methods cannot 

solve the problem of tumor invasion and metastasis [8]. 

Notably, CM has high late mortality and early cure rates, 

therefore the early detection, diagnosis, and treatment of 

CM will have great clinical significance [9, 10].  

 

It is well known that the mortality rate of tumors is the 

highest among all diseases and local recurrence or 

metastasis of tumors was the main reason for the poor 

prognosis of patients with malignant tumors [11, 12]. 
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ABSTRACT 
 

Background: Anoikis is involved in many critical biological processes in tumors; however, function in CM is still 
unknown. In this study, the relevance between Anoikis-related lncRNAs (ARLs) and the clinicopathological 
characteristics of patients with CM was comprehensively assessed. 
Methods: Through analysis of TCGA dataset, ARLs were identified by using TCGA dataset. Based on the ARLs, a 
risk model was established to anticipate the prognosis of patients with CM, besides, the prediction accuracy of 
the model was evaluated. The immune infiltration landscape of patients with CM was assessed 
comprehensively, and the correlation between ARLs and immunity was elucidated. Immunotherapy and drug 
sensitivity analyses were applied to analyze the treatment response in patients with CM with diverse risk 
scores. Different subgroups were distinguished among the patients using consensus cluster analysis. 
Results: A risk model based on six ARLs was set up to obtain an accurate prediction of the prognosis of patients 
with CM. There were distinctions in the immune landscape among CM patients with diverse risk scores and 
subgroups. Six prognosis-related ARLs were highly correlated with the number of immune cells. Patients with 
CM with different risk scores have various sensitivities to immunotherapy and antitumor drug treatments. 
Conclusion: Our newly risk model associated with ARLs has considerable prognostic value for patients with CM. 
Not only has the risk model high prediction accuracy but it also indicates the immune status of CM patients, 
which will provide a new direction for the individualized therapy of patients with CM. 

mailto:zhujf@zjcc.org.cn
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/


www.aging-us.com 7656 AGING 

During invasion and metastasis, tumor cells must 

overcome many difficulties, especially death caused by 

detachment from the extracellular matrix (ECM), also 

known as anoikis [13, 14]. Anoikis is a special type of 

programmed apoptosis initiated by cells detaching from 

the ECM and has significant influence in the 

development of the body, tissue homeostasis, disease 

occurrence, and tumor metastasis [15, 16]. Anoikis is 

indispensable for maintaining tissue homeostasis, and 

its main role is to hinder abnormal cell growth or 

adhesion to the abnormal extracellular matrix [15]. 

Normal cells are adhesion-dependent, and their survival 

depends on anchorage-dependent signaling between 

cells and between cells and the matrix [17]. When 

normal cells or solid tumor cells without metastatic 

properties are shed from situ into the blood, apoptosis 

will be triggered, while malignant cells can escape 

anoikis [18, 19]. The mechanism of anoikis resistance in 

malignant tumor cells have elucidated by abundant 

studies, especially in anoikis-resistant tumor cells that 

exhibit stronger invasive and metastatic abilities  

[20, 21]. Therefore, studies on anoikis will contribute to 

the effective treatment of malignant human tumors. CM 

has always plagued us due to its local recurrence and 

metastasis [9, 10]. Tumor invasion and metastasis in 

CM and the impact of anoikis on the prognosis of CM 

are key to CM treatment; the clinical value of anoikis in 

CM has not received extensive attention, however.  

 

Long non-coding RNAs (lncRNAs are functional RNAs 

over 200 nucleotides in length, and have strong 

transcriptional control capabilities during development 

and gene expression [22–24]. Particularly, it plays a 

complex and precise regulatory function in tumorigenesis 

and progression [15, 25, 26]. Recently, increasing 

evidence has suggested that lncRNAs can rule out disease 

heterogeneity and act as markers for many tumors  

[27, 28]. As more lncRNAs have been characterized, it is 

obvious that they play important roles in the tumor 

invasion-metastasis cascade, distant organ colonization, 

and TME [29]. LncRNAs can exert their effects on 

cancer pathways through different mechanisms, but 

unanswered questions remain, such as the role of 

lncRNAs in anoikis [29]. Notably, currently no effective 

risk prediction model is confirmed for patients with CM 

based on anoikis that can comprehensively reflect the 

effect of anoikis-related lncRNAs (ARLs) on prognosis. 

Therefore, it is important to identify reliable biomarkers 

using ARLs to speculate the prognosis and progression of 

patients with CM.  

 

A number of reports have pointed out the influence of 

anoikis-related genes or lncRNAs on immune infiltrating 
microenvironment [30, 31]. However, the mechanism has 

not been reported in depth. The interaction between 

tumor cells and their microenvironment is important for 

cell survival [32]. LncRNAs are important players in the 

crosstalk between cancer cells and the tumor 

microenvironment (TME). By promoting the formation 

of immunosuppressive tumor immune microenvironment 

(TIME), lncRNAs contribute to tumor escape immune 

surveillance, thereby influencing subsequent tumor 

metastasis, development, and drug resistance to treatment 

[33, 34]. LncRNAs affect the development and function 

of immune components including macrophages, T cells, 

and cancer-associated fibroblasts (CAF), which leads to 

the possibility to affect anoikis resistance through the 

regulation of immune components [30]. 

 

According to this study, the relationship between ARLs 

and the clinicopathological characteristics of patients 

with CM was comprehensively assessed through the 

analysis of CM data which was obtained from The 

Cancer Genome Atlas (TCGA) database. Based on 

these 6 ARLs, we established a novel risk model and 

validated its capability to anticipate OS in patients. 

Additionally, we assessed the immune landscape of 

patients through multiple algorithms to further explore 

the relevance and importance of anoikis in tumor 

immunity. Immunotherapy and drug sensitivity analyses 

provided a reference for the treatment of patients with 

CM. In conclusion, new clinical insights into anoikis in 

CM and a new path for the treatment of CM are 

suggested by the results of this study provide suggest.  

 

MATERIALS AND METHODS 
 

Data collection and processing 

 

We followed the methods of Ma et al. [35]. The 

transcriptome data (TPM) as well as clinical 

information of 454 patients involved in this study  

was collected from The Cancer Genome Atlas (TCGA, 

https://portal.gdc.cancer.gov/). 34 anoikis-related  

genes (ARGs) were downloaded from the molecular  

signature database (https://www.gsea-msigdb.org/gsea/). 

LncRNAs were differentiated from expression profiles 

using Perl scripts for subsequent screening and matched 

with relevant clinical information. 

 

Construction and validation of prognostic risk model 

based on ARLs 

 

To screen for prognosis-related ARLs, we analyzed the 

relationships between these 34 ARGs and all lncRNAs. 

Univariate Cox regression as well as least absolute 

shrinkage and selection operator (LASSO) analyses was 

used to evaluate the prognostic value of ARLs (p<0.05), 

which indicated that lncRNAs had significant 

connection with CM prognosis. Multivariate Cox 

regression was applied to screen for ARLs with 

independent prognostic value and to construct risk 

https://portal.gdc.cancer.gov/
https://www.gsea-msigdb.org/gsea/
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models. The sample risk score formula was as follows: 

risk score = ∑i=Coefi ∑ (expression of lncRNAi). 

Patients with CM were distributed into low- and high-

risk groups on the basis of the median risk scores. 

Kaplan-Meier survival curves were analyzed and 

visualized applying the–plan “Meier survivalROC” 

package. Principal component analysis (PCA) was used 

to analyze the segregation patterns in CM patients with 

various risk scores. To obtain a further verity of the 

prediction accuracy of the risk model, the samples were 

distributed into training and test cohorts at a 7:3 ratio, 

and the samples of each group were re-divided into 

high- and low risk groups based on the median value of 

the risk score in each group [36]. 

 

Construction of nomogram based on prognosis-

related ARLs 

 

Univariate and multivariate Cox regression analyses  

were applied to evaluate the independent prognostic 

value of risk scores or related clinical information, 

including age, sex, and stage. On the basis of independent 

prognostic factor, the nomogram was established by the 

“rms” package. The concordance index (C-index) and 

calibration curve were applied to assess nomogram 

accuracy. The prognostic prediction ability of the risk 

model was assessed by the “timeROC” package. 

 

Enrichment analysis 

 

Gene Set Variation Analysis (GSVA) was used to assess 

the enrichment of different signaling pathways across the 

samples. Kyoto Encyclopedia of Genes and Genomes 

(KEGG) was used to identify potential signaling 

pathways. Gene Ontology (GO) can help us have a 

further understanding of the biological effects of genes. 

 

Consensus clustering 

 

The Consensus Clustering method is widely used for 

tumor analysis. Cluster analysis was performed on the 

resampled samples by the “ConsensusClusterPlus” 

package, and CM patients were divided into different 

subtypes for further analysis according to the clustering 

results of K=2 to 9. 

 

Immune landscape analysis 

 

CIBERSORT and ESTTIMER were used to speculate 

the immune infiltration landscape of patients with CM. 

Immune scores as well as tumor purity of CM patients 

were analyzed by the “estimate” package. The 

abundances of 22 immune cells were assessed using the 
CIBERSORT algorithm. The proportions of 23 immune 

cells were evaluated by the Single-Sample Gene Set 

Enrichment Analysis (ssGSEA) algorithm. 

Immunotherapy and drug sensitivity analysis 

 

Immunotherapy results were collected from the TCIA 

database (https://tcia.at/home). The “limma” package is 

used to extract expression data of relevant immune 

checkpoint inhibitors (ICIs) from the matrix. Drug 

sensitivity analysis was used to speculate the 

therapeutic response of patients with CM to different 

drugs and was quantified using the half-maximal 

inhibitory concentration index (IC50). 

 

Statistical analysis 

 

All statistical analyses pertain to this study were 

performed by using R software v4.1.2. We used the 

Pearson correlation method to estimate the correlation of 

anoikis and lncRNAs. The correlation between ARLs 

and immune cell fraction was evaluated utilizing 

Pearson analysis. The Wilcoxon rank-sum test was 

applied to assess the differences between the two groups, 

and p<0.05 would be regarded statistically significant. 

 

Data availability 

 

The datasets used in this study were obtained  

from a public database (The TCGA, https://portal.gdc. 

cancer.gov/). The original contributions presented in this 

study are included in the article or Supplementary 

Material. Further inquiries can be directed at the 

corresponding author. 

 

RESULTS 
 

Identification of prognostic ARLs 

 

In this study, 14,142 lncRNAs were obtained from the 

RNA-Seq matrix of CM. To identify the lncRNAs 

associated with anoikis, the correlation between 34 

anoikis genes and lncRNAs was calculated, and 88 

lncRNAs were identified as ARLs (Figure 1A). Based 

on the univariate Cox regression analysis, 12 ARLs 

which were associated with the OS rate were identified 

via least absolute shrinkage and selection operator 

(LASSO) analysis (Figure 1B–1D). Among these, six 

prognostic ARLs being able to independently anticipate 

the prognosis of patients with CM were selected using 

multivariate Cox regression analysis. Correlation 

analysis suggested that the six prognostic ARLs were 

closely related to anoikis genes (Figure 1E). 

 

Risk model construction of ARLs 

 

A novel risk model was founded to estimate ARL 

prognosis in patients with CM. On the basis of the 

median risk score, patients with CM were ranked and 

distributed into low- and high-risk groups. It was 

https://tcia.at/home
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
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suggested by the scatter dot plot that the risk score  

was inversely correlated with survival time for CM 

(Figure 2A). Kaplan-Meier survival curve analysis 

elaborated that the OS rate of patients with a low-risk 

score was remarkably higher than that of patients with a 

high-risk score (Figure 2B). Principal component 

analysis (PCA) showed an obvious partition between 

the patients in the low- and high-risk groups based on 

prognostic ARLs (Figure 2C). Heatmap visualization 

revealed remarkable differences in the six prognostic 

ARLs between the low- and high-risk groups (Figure 

2D). The low-risk groups exhibited higher AC083799.1, 

VIM−AS1, AC005261.1, and LINC01819 expressions, 

while the expression of DLEU1 and AC090409.1 was 

higher in the high-risk group. It is demonstrated that the 

risk model construction which is based on the 

prognostic signature of the six ARLs can precisely 

predict the prognosis of patients with CM. 

 

Risk model construction in the training cohort and 

validation cohort 

 

To obtain further evaluation of the precision as well as 

independence of the risk model for anticipating the 

prognosis of patients with CM on the basis of the ARLs, 

an internal validation model was used. Patients with 

CM were randomly distributed into training and 

validation cohorts, with 318 and 136 samples in the 

training and validation cohorts, respectively. In line 

with the prognostic signature of ARLs, patients with 

CM were ranked and classified into low- and high-risk 

groups in both cohorts. The scatter dot plot suggested 

that the risk score based on ARLs had an inverse 

correlated with the survival time of patients with CM in 

the training and validation cohorts (Figure 3A, 3B). 

Kaplan-Meier survival curve analysis revealed that the 

OS rate of patients with CM with low-risk scores was 

remarkably longer than that of patients with high-risk 

scores (Figure 3C, 3D). Given the results above it is 

demonstrated that the risk model based on the 

prognostic ARLs for evaluating the prognosis of 

patients with CM is accurate and reliable. 

 

The prognostic signature based on the ARLs was an 

independent prognostic indicator for CM 

 

Univariate and multivariate Cox regression analyses 

were used to investigate the risk score as a reliable 

 

 
 

Figure 1. Identification of prognostic ARLs in CM. (A) Identification of ARLs in CM. (B) Univariate Cox regression analysis shows that 12 
ARLs are associated with OS rate. (C, D) LASSO shows the optimal coefficients and minimum lambda of the prognostic ARLs. (E) Correlation 
analysis of the ARLs and anoikis genes. 
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prognostic indicator of CM. Univariate Cox regression 

analysis showed that age (hazard ratio (HR) = 1.020,  

P< 0.001), stage (HR = 1.473, P< 0.001), T stage  

(HR = 1.445, P< 0.001), N stage (HR = 1.443,  

P< 0.001), and risk score (HR = 1.992, P< 0.001)had a 

close connection with the OS rate in CM (Figure 4A). 

Multivariate Cox regression analysis demonstrated that 

T (hazard ratio [HR] = 1.390, P< 0.001), N (HR = 

1.661, P< 0.001), and risk score (HR = 2.080, P< 0.001) 

were independent prognostic predictors in CM patients 

(Figure 4B). Moreover, a nomogram was founded to 

precisely predict the 1-, 3-, and 5-year survival of 

patients with CMon the basis of the ARLs prognostic 

signature and clinicopathological characteristics (Figure 

4C). Calibration curves showed satisfactory consistency 

between the 1-, 3-, and 5-year OS rates anticipated by 

the nomogram model and the accurate OS rate for 

patients with CM (Figure 4D). Time-dependent ROC 

curves suggested that the AUC at 1, 3, and 5 years were 

0.684, 0.613, and 0.651, respectively (Figure 4E). 

 

 
 

Figure 2. Risk model construction based on the prognostic ARLs in CM. (A) The distribution of the CM patients and the scatter dot 
plot shows the correlation between the risk score and survival time in CM. (B) The Kaplan-Meier survival curve shows that the OS rate of 
patients in the low-risk group is remarkably higher than those in the high-risk group. (C) It is illustrated that there is a clear distribution of 
patients in the low- and high-risk group based on the prognostic ARLs by principal component analysis (PCA). (D) The expression of the 
prognostic anoikis-related lnc7RNAs in the low- and high-risk group can be reflected by the heatmap diagram. 
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Figure 3. Risk model construction in the training cohort and test cohort based on the prognostic ARLs. The classification of the 

CM patients and the scatter dot plot demonstrates the correlation between the risk score and survival time of CM patients in training cohort 
(A) and test cohort (B). (C, D) The Kaplan-Meier survival curve shows the OS rate of patients in the training cohort and test cohort.  
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Collectively, these results demonstrated that the risk 

score based on prognostic ARLs was independent as a 

prognostic indicator and could precisely estimate the 

survival time of patients with CM. 

 

Subgroup analysis of ARLs prognostic signature and 

clinicopathological characteristics 

 

A stratified subgroup analysis was conducted to 

investigate the independence of the risk score in 

evaluating the prognosis of CM patients with 

clinicopathological characteristics. Based on the ARLs 

prognostic signature, the CM patients were distributed 

into the two risk subgroups according to the different 

clinicopathological characteristics, including age (> 65 

vs≤ 65), gender (male vs female), N (N 0–1 vs N 2–3), 

T (T 0–1 vs T 2–4), and stage (stage 0–1 vs stage 2–4). 

As shown in Figure 5, the Kaplan-Meier survival curve 

analysis indicated that the OS rate of patients with CM 

with low-risk scores was remarkably longer than those 

 

 
 

Figure 4. Independent prognosis analysis of the ARLs prognostic signature and clinicopathological characteristics.  
(A) Univariate Cox regression shows that age, stage, T, N, and risk score are connected with OS in CM. (B) Multivariate Cox regression 
suggests that T, N, and risk score are independent prognostic indicators for CM. (C) Nomogram model construction based on the different 
clinicopathological characteristics and ARLs prognostic signature. (D) The calibration curve shows the consistency between the predictive 
power and actual survival of 1, 3, and 5 years. (E) Time-dependent ROC curves show the AUC at 1, 3, and 5 years. 
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patients with high-risk scores among the age ≤ 65, 

gender (male and female), N 0–1, T 2–4, and stage 2–4. 

However, the OS rates of patients with CM aged > 65, 

N 2–3, T 0–1, and stage 0–1 were similar between the 

low- and high-risk groups. These results demonstrate 

that the risk score based on ARLs can independently 

analyze the prognosis related to the different 

clinicopathological characteristics of CM. 

 

Functional enrichment analysis  

 

Enrichment analysis and GSVA were used to analyze the 

potential molecular mechanisms of the differentially 

expressed genes (DEGs) in the low- and high-risk 

groups. The volcano diagram illustrates the DEGs  

in the low- and high-risk groups; most DEGs were 

downregulated in the high-risk group (Figure 6A). The 

KEGG terms of each CM sample were analyzed using 

the GSVA algorithm, and the results suggested that 

immune-related signaling approaches were remarkably 

downregulated in the high-risk group (Figure 6B). GO 

enrichment analysis showed that the DEGs were mainly 

enriched in immunity-related biological processes such as 

positive regulation of cell activation, positive regulation 

of leukocyte activation, and positive regulation of 

lymphocyte activation (Figure 6C). KEGG enrichment 

 

 
 

Figure 5. Subgroup analysis of CM patients with low- and high-risk scores in different clinicopathological characteristics.  
The Kaplan-Meier survival curve shows the OS rate of CM patients in the low- and high-risk group stratified by (A, B) Age (> 65 vs ≤ 65);  
(C, D) Gender (male vs female); (E, F) N (N 0–1 vs N 2–3); (G, H) T (T 0–1 vs T 2–4); (I, J) Stage (stage 0–1 vs stage 2–4). 
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analysis revealed a remarkable enrichment of DEGs in 

cytokine-cytokine receptor interactions and chemokine 

signaling pathways (Figure 6D). It is demonstrated by 

these results that immune-related signaling pathways may 

mediate the role of ARLs in CM. 

 

Consensus clustering analysis of ARLs associated 

with prognosis and immune infiltration landscape 

 

Consensus clustering analysis was conducted to cluster 

patients with CM into various subgroupsaccording to 

the prognostic ARLs. The consensus clustering heatmap 

indicated an optimal and stable classification with K = 

2. Patients with CM were classified into two subgroups 

(Figure 7A). The PCA results revealed a obvious 

partition between Clusters A and B on the basis of 

prognostic ARLs (Figure 7B). The Kaplan-Meier 

survival curve analysis suggested that the OS rate of 

patients in Cluster A higher than that of patients in 

Cluster B (Figure 7C). Thereafter, numerious immune 

assessment algorithms were used to evaluate the 

immune infiltration landscape of patients with CM in 

clusters A and B. The ESTIMATE algorithm indicated 

that patients in Cluster A had higher stromal, immune, 

and ESTIMATE scores, but lower tumor purity than 

those in Cluster B (Figure 7D–7G). The CIBERSORT 

and ssGSEA algorithms were used to evaluate the 

immune infiltration landscape of the patients in Clusters 

A and B. The results of CIBERSORT illustrated that 

patients in Cluster A had a higher proportion of memory 

B cells, plasma cells, T cells CD8, T cells CD4 + 

memory cells, and macrophages M1, whereas the 

fraction of macrophages M0, macrophages M2, and 

resting mast cells was higher in Cluster B (Figure 7H). 

The ssGSEA results revealed that most immune cells 

were significantly higher in Cluster A than in Cluster B 

(Figure 7B). To sum up it is demonstrated that ARLs 

are linked to the prognosis and immune infiltration 

landscape in CM. 

 

Correlation analysis of the risk score and immune 

infiltration landscape  

 

The immune infiltration landscapes of patients in the 

low- and high-risk groups were further investigated. 

The ESTIMATE results suggested that patients with 

 

 
 

Figure 6. Functional enrichment analysis of the differential expressed genes (DEGs) in the low- and high-risk group.  
(A) Volcano diagram shows the DEGs in the low- and high-risk group with the threshold set at |Fold change| ≥ 1 and p-value < 0.05.  
(B) GSVA illustrates the KEGG terms of each CM patient in the low- and high-risk group. (C) GO enrichment analysis shows the top 15 
biological processes (BP) of the DEGs. (D) KEGG enrichment analysis reveals the top 15 enrichment signaling approaches of the DEGs. 
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low-risk scores had higher ESTIMATE, immune, and 

stromal scores but lower tumor purity than those with 

high-risk scores (Figure 8A–8D). The CIBERSORT 

results indicated that the fractions of plasma cells, CD8 

+ T cells, CD4 + memory activated T cells, follicular 

helper T cells, and macrophages M1was significantly 

higher in the low-risk group, whereas the high-risk 

group had a higher proportion of M0, M2, and resting 

 

 
 

Figure 7. Consensus clustering analysis of CM patients based on the prognostic ARLs. (A) The consensus clustering heatmap shows 
the optimal classification when K = 2-9. (B) Principal component analysis clearly demonstrates a obvious distinction between the CM patients 
in Cluster A and Cluster B based on the prognostic ARLs. (C–G) The stromal, immune, ESTIMATE score and tumor purity of patients in Cluster 
A and Cluster B. (H) The fraction of 22-type immune cells of patients in Cluster A and Cluster B via CIBERSORT algorithm. (I) The fraction of 23-
type immune cells of CM patients in Cluster A and Cluster B via the ssGSEA algorithm. 
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Figure 8. Immune infiltration landscape of patients with CM in the low- and high-risk group. (A–D) ESTIMATE, immune, stromal 
score, and tumor purity of patients with CM in the low- and high-risk group. (E) The fraction of 22-type immune cells of patients in the low- 
and high-risk group via the CIBERSORT algorithm. (F) The fraction of 23-type immune cells of patients in the low- and high-risk groups was 
analyzed by the ssGSEA algorithm. (G) Correlation investigation shows the relationship between the prognostic ARLs and 22-type immune 
cells. (H) Correlation investigation shows the relationship between the prognostic ARLs and 23-type immune cells. 
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mast cells (Figure 8E). The ssGSEA results indicated that 

the number of most immune cells was much higher in the 

low-risk group than in the high-risk group (Figure 8F). 

Correlation analysis was performed to evaluate the 

connection between prognostic ARLs and immune cells, 

and the results reveal d a remarkable correlation between 

prognostic ARLs and 22-type immune cells, as calculated 

by the CIBERSORT algorithm (Figure 8G). Notably, the 

six prognostic ARLs were significantly correlated with 

the 23-type immune cells using the ssGSEA algorithm 

(Figure 8H): AC005261.1 and DLEU1 were negatively 

correlated with most immune cells, whereas AC083799.1 

and VIM−AS1 were positively correlated with immune 

cells. It is demonstrated that a risk model on the basis of 

prognostic ARLs has close connection with the immune 

infiltration landscape and can show the immune status of 

patients with CM.  

Risk score was correlated with immunotherapy 

response 

 

It is believed that immunotherapy is the most optimistic 

approach for the clinical management of CM. Given the 

significant differences in the immune microenvironments 

of patients with CM between the low- and high-risk 

groups, the immunotherapy responses of patients in the 

risk subgroups were further estimated. As shown in 

Figure 9A, 9B, the IPS results suggested that patients in 

the low-risk group showed a promising response to anti-

PD-1 and anti-CTLA4/anti-PD-1. Moreover, patients 

with low-risk scores had higher TIDE scores than those 

with high-risk scores, suggesting a better immunotherapy 

response in CM patients with high-risk scores  

(Figure 9C). Immune score analysis suggested that 

patients in the low-risk group got higher immune 

 

 
 

Figure 9. Immunophenoscore (IPS) and immune scores of patients in the low- and high-risk group. (A, B) IPS shows the 
immunotherapy reaction of CM patients in the low- and high-risk group. (C) TIDE score. (D) immune function score. (E) The expression of 
immune checkpoint inhibitors (ICI) in the low- and high-risk group. The expression is transformed by log2(expression + 1). 
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functional scores than those in the high-risk group, such 

as those with cytolytic activity, inflammation promotion, 

and MHC class I (Figure 9D). The results of ICI 

indicated that the LAG3, CTLA4, PD-1, PDCD1LG2, and 

PD−L1 expressions were significantly higher in patients 

with low-risk scores compared to those patients with 

high-risk scores (Figure 9E). These results clarify that the 

risk score in line with prognostic ARLs is associated with 

immunotherapy response, providing a fresh perspective 

for future precision immunotherapy for CM patients 

individually. 

 

Drug sensitivity analysis  

 

Targeted drug therapy is another crucial strategy in the 

clinical management of CM. Several potential 

antineoplastic drugs were identified, which had great 

influence in targeted therapy, and the correlation between 

the antineoplastic drug sensitivities and risk was further 

analyzed, as shown in Figure 10A–10H. The IC50 values 

of AKT inhibitor VIII, Crizotinib, Rapamycin, Sunitinib, 

Dasatinib, Paclitaxel, and Lapatinib were higher in the 

high-risk group, whereas the IC50 value of Linsitinib was 

higher in the low-risk group. Correlation analysis of risk 

score and IC50 value revealed that the risk score had a 

positive correlation with AKT inhibitor VIII, Crizotinib, 

Rapamycin, Sunitinib, Dasatinib, Paclitaxel, and 

Lapatinib, but negatively correlated with Linsitinib  

(Figure 10I–10P). Taken together, the results above 

demonstrate another response to antineoplastic drugs for 

CM patients in different risk subgroups, providing fresh 

insights into the targeted drug therapy for CM patients. 

 

DISCUSSION 
 

Unresolved tumor invasion and metastasis are 

responsible for most cancer-related deaths [37]. CM is 

the most aggressive and metastatic malignant tumor and 

is associated with a high lethality rate [38]. Although 

some modern therapies, such as targeted drugs and 

immunotherapy, can improve the prognosis of some 

patients with CM, the survival rate of patients with 

metastatic CM is still not ideal [8]. Therefore, the 

inchoate detection, diagnosis, and treatment of CM 

should be the focus of future treatment of CM. 

 

Anoikis is indispensable for maintaining tissue 

homeostasis and mainly controls cell adhesion and 

survival through integrin sensing and transduction of 

extracellular matrix signals [15]. In our study, anoikis 

was also strongly associated with risk in patients with 

CM, and patients with high-risk CM were inclined to 

have a lower OS. Combined with the analysis of ARLs 

in this study, it is further indicated that studying the role 

of anoikis in CM will be helpful for the clinical 

diagnosis and treatment of CM. 

According to this study, we identified six ARLs with 

prognostic value by univariate Cox, Lasso, and 

multivariate Cox analyses, including four protective 

factors (AC083799.1, VIM−AS1, AC005261.1, and 

LINC01819) and two risk factors (DLEU1 and 

AC090409.1). A novel prognostic model was 

constructed based on these six ARLs, which had better 

predictive accuracy for the prognosis of CM than other 

clinical features. The enrichment results indicated that 

immune-related signaling approaches may mediate the 

role of ARLs in CM. The differences in the immune 

landscape among patients at different risks suggest that 

not only can prognostic models precisely predict the 

prognosis of CM but also reveal the immune status of 

CM patients. Immunotherapy and drug sensitivity 

analyses provided a reference for treating patients with 

CM. Overall, this study contributes a new model for 

CM that will be helpful to the early detection and 

diagnosis of CM and provide new insights for the 

individualized treatment of CM. 

 

AC083799.1 is considered a protective factor in 

endometrial cancer and its expression is associated with 

autophagy and immunity [39]. Consistent with our 

results, AC083799.1 also accumulates as a protective 

factor in patients with CM with low-risk scores, and it is 

clear that there is a strong connection between anoikis 

and autophagy. Vimentin (VIM) is a mesenchymal 

marker implicated in the development of various tumors 

[40]. VIM-AS1 is transcribed from the VIM locus and 

positively regulates VIM expression [41]. Notably, 

studies have revealed that VIM-AS1 also interferes with 

tumor regulation [41]. In our experiments, the 

regulation of tumors by VIM-AS1 was based on a novel 

regulatory pathway, the anoikis pathway. LINC01819 is 

an lncRNA with prognostic value in the metastasis of 

lung tumors [40], and affected the metastasis of CM in 

our experiments. DLEU1 play an important role in the 

proliferation, migration, invasion, and inhibition of 

apoptosis of cancer cells [42]. The abnormally elevated 

DLEU1 expression in the CM may be directly related to 

anoikis. Our study showed that ARLs have close 

connection with tumorigenesis and metastasis in 

patients with CM. 

 

CM is one of the most immunogenic tumors; therefore, 

immunotherapy has been incorporated into the treatment 

of CM [43]. However, CMs also acquire various 

inhibitory mechanisms to escape immune inspection and 

destruction [43, 44]. Combined with our study, although 

CM patients having had higher immune scores and 

immune cell infiltration were those who were with low 

scores, TIDE suggested that CM patients with low scores 
were inclined to have tumor immune escape, which 

suggested that CM patients with high-risk scores may 

respond better to immunotherapy. Owing to in-depth 



www.aging-us.com 7668 AGING 

research on CM, many new therapeutic targets have been 

discovered, and the synergistic combination of targeted 

therapy and immunotherapy has gradually become the 

mainstream choice for CM treatment [8]. In our study, 

patients with CM with different risk scores showed 

different sensitivities to the same drug. Considering  

our experimental results and the current increasing 

availability of combined immunotherapy for CM, the 

feasibility of individualized treatment for patients has 

likewise increased, which may be beneficial for highly 

aggressive, highly refractory, advanced, and metastatic 

CM. In fact, given the important role of anoikis in early 

metastasis of CM, there are several ongoing CM clinical 

trials targeting anoikis resistance [45]. However, the 

unsatisfactory response rate in CM patients warrants 

further investigation into the causes of the differences. 

 

 
 

Figure 10. Drug sensitivity analysis in the low- and high-risk group. The IC50 classification reveals a remarkable distinction between 

patients in the low- and high-risk groups among (A) AKT inhibitor VIII; (B) Crizotinib; (C) Rapamycin; (D) Sunitinib; (E) Linsitinib; (F) Dasatinib; 
(G) Paclitaxel; (H) Lapatinib. (I–P) Correlation analysis of the drug sensitivity and risk score. 
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Differences in drug resistance between our risk 

stratifications offer the possibility of contributing to 

differences in clinical trial outcomes. For example, the 

results showed differences in the sensitivity of AKT 

pathway inhibitors at different risk stratifications. PI3K-

Akt signaling in CM is thought to contribute to anoikis 

resistance [46, 47]. Specific inhibition of Akt rescues 

anoikis resistance induced by knocking down α2, α3β1, 

or α5β1 integrin [48]. Activation of AKT activity by 

directly inhibiting AKT upstream PTEN may promote 

anoikis resistance [49]. Given the current poor response 

rate of AKT inhibitors to CM, analysis of sensitivity 

differences through anoikis may help in the selection of 

individualized treatment regimens [50].  

 

Resistance to anoikis is a tumor metastasis hallmark, 

enabling tumor cells to spread through the circulatory 

system to distant organs [51]. Tumor cells survive 

anoikis through para-autocrine and paracrine 

mechanisms after detaching from extracellular matrix 

adhesion and cell-to-cell contact and regaining the 

ability to attach, spread, metastasize, and invade [52]. 

Notably, there is growing evidence that poor prognosis 

in malignancies is often associated with anoikis [53, 

54]. The glutamate-lysing enzyme glutamate dehydro-

genase 1 (GDH1) confers anoikis resistance to lung 

cancer cells by enhancing the binding of substrates to 

AMPK, which makes lung cancer prone to metastasis 

[54]. Anoikis also plays an important role in high-grade 

serous ovarian carcinoma (HGSOC), and the inhibition 

of anchorage-independent proliferation and the 

enhancement of anoikis-dependent apoptosis may be 

helpful in the treatment of HGSOC [55]. Anoikis 

promotes cancer stem cell properties of prostate cancer, 

therefore improving the survival of circulating tumor 

cells and promoting early metastasis [56]. In breast 

cancer, it promotes anoikis resistance in tumor cells by 

maintaining redox homeostasis and inhibiting JNK1 

activation [57]. Combined with the ARL-based risk 

model with significant prognostic significance in this 

study, further studies on the role of ARLs in tumors will 

help obtain a better clinical prognosis in CM. 

 

In conclusion, we established and validated a prognostic 

signature on the basis of six prognosis-related ARLs 

that could be used to predict OS and respond to immune 

status in patients with CM. More importantly, they may 

play a key role in treating CM. This study provides  

new perception into the precise diagnosis and treatment 

of CM. 
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