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ABSTRACT 
 

Background: Recently, endoplasmic reticulum stress related gene (ERS) markers have performed very well in 
predicting the prognosis of tumor patients. 
Methods: The differentially expressed genes in Oral squamous cell carcinoma (OSCC) were obtained from TCGA 
and GTEx database. Three prognosis-related and differentially expressed ERSs were screened out by Least 
Absolute Selection and Shrinkage Operator (Lasso) regression to construct a prognostic risk model. Receiver 
Operating Characteristic Curve (ROC), riskplots and survival curves were used to verify the model’s accuracy in 
predicting prognosis. Multi-omics analysis of immune infiltration, gene mutation, and stem cell characteristics 
were performed to explore the possible mechanism of OSCC. Finally, we discussed the model’s clinical 
application value from the perspective of drug sensitivity. 
Results: Three genes used in the model (IBSP, RDM1, RBP4) were identified as prognostic risk factors. 
Bioinformatics analysis, tissue and cell experiments have fully verified the abnormal expression of these three 
genes in OSCC. Multiple validation methods and internal and external datasets confirmed the model’s excellent 
performance in predicting and discriminating prognosis. Cox regression analysis identified risk score as an 
independent predictor of prognosis. Multi-omics analysis found strong correlations between risk scores and 
immune cells, cell stemness index, and tumor mutational burden (TMB). It was also observed that the risk score 
was closely related to the half maximal inhibitory concentration of docetaxel, gefitinib and erlotinib. The 
excellent performance of the nomogram has been verified by various means. 
Conclusion: A prognostic model with high clinical application value was constructed. Immune cells, cellular 
stemness, and TMB may be involved in the progression of OSCC. 
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INTRODUCTION 
 

Oral squamous cell carcinoma (OSCC) is one of the 

cancers with the worst prognosis among head and neck 

cancers [1]. Because most cancers are advanced and 

have extensive metastases, their prognosis remains poor 

despite new diagnostics and treatments [2]. Although 

some progress has been made in surgery, radiotherapy, 

and chemotherapy of OSCC in recent years, the 5-year 

survival rate of OSCC is still only about 50% [3]. The 

standard treatment for OSCC is active resection of the 

primary tumor followed by adjuvant chemotherapy [4, 

5]. Due to the biological characteristics of OSCC, such 

as engraftment and metastasis, the recurrence rate of 

patients is very high, and most patients are resistant to 

chemotherapy [6, 7]. 

 

Endoplasmic reticulum stress (ER stress) is 

characterized by the accumulation of misfolded and 

unfolded proteins in the endoplasmic reticulum cavity 

[8–11]. Unfolded protein reaction (UPR) play a key 

process in ER stress [12, 13]. UPR is crucial in 

regulating cell adaptation to ER stress by increasing ER 

content, improving ER protein folding ability and 

reducing misfolded protein [14, 15]. 

 

Cancer’s high metabolic demand, hypoxia, nutritional 

deficiency, and acidosis often lead to ER stress [16]. 

The intensity and duration of ER stress determine the 

fate of tumors [17]. Many studies have found the role of 

ER stress in cancer development [16]. ER stress can 

promote tumor proliferation and increase tumor cell 

invasiveness in hepatocellular carcinoma and bladder 

cancer [18, 19]. Some studies also found that ER stress 

has a positive effect on tumor treatment [20]. In renal 

cell carcinoma, some ER stress pharmacological 

modulators can change the ER stress response from pro-

survival to pro-apoptosis, although this study still has 

defects [21]. In addition, studies also have shown that 

ER stress is closely related to tumor immunotherapy 

and tumor-infiltrating immune cells [22]. Studies have 

found that ER stress has multiple functions in OSCC, 

which can affect the proliferation and invasion of OSCC 

by blocking ER stress pathway, but also can inhibit the 

growth and reduce the survival rate of OSCC by 

inducing ER stress [23, 24]. Taken together, ER stress 

plays a crucial role in tumorigenesis and therapy, 

providing a new option for cancer prognosis prediction. 

 

ER stress plays a vital role in many kinds of cancer. In 

addition, an increasing number of studies have 

confirmed the significant predictive value of ER stress 

related genes. Therefore, due to the limitations of 

various therapeutic approaches, coupled with the 

aggressiveness and frequent metastatic recurrence of 

OSCC, it is necessary to identify the abnormally 

expressed ER stress-related genes associated with 

prognosis in OSCC and construct a predictive model 

that can effectively predict the prognosis and treatment 

effectiveness of OSCC. 

 

RESULTS 
 

Identification of DE-ERSs and construction of PPI 

network 

 

The volcano maps and clustered heatmaps in Figure 1A, 

1B showed 1,777 DEGs obtained by differential 

analysis, including 825 up-regulated and 925 down-

regulated DEGs, respectively. We found 58 common 

up-regulated DE-ERSs and 105 common down-

regulated DE-ERSs in the Venn diagram generated by 

the intersection of DEGs and ERSs in Figure 2A, 2B. 

They are further visualized in Figure 1C, 1D. 

 

As shown in Figure 2C, our study generated a PPI 

network for DE-ERSs based on the STRING database. 

Not only the top 20 genes (CSF2, GRP, CCL11, NPSR1, 

CXCL11, IFNG, IL1A, CHRM1, HTR2C, TAC1, 

GAST, GRIA2, DRD2, PYY, IL11, TLR9, CCL7, 

EDN3, GPRC6A and MMP1) as a hub gene (Figure 

2D), and their interaction relationships were also 

visualized by the NetworkAnalyzer tool (Figure 2E). 

 

Gene function annotation of DE-ERSs 

 

To explore the role of DE-ERSs, we employed GO 

functional enrichment analysis to enrich the biological 

processes that DE-ERSs might participate in (Figure 3A). 

 

The analysis results showed that DE-ERSs were 

significantly enriched in biological processes (BP) such 

as digestive system process, signal release, hormone 

transport, digestion, regulation of hormone secretion, 

hormone secretion, anatomical structure homeostasis 

and hormone metabolic process (Figure 3B). DE-ERSs 

were also significantly associated with cellular 

components (CC) such as nucleosome, DNA packaging 

complex, protein-DNA complex, basolateral plasma 

membrane, collagen-containing extracellular matrix, 

synaptic membrane, integral component of synaptic 

membrane and nuclear nucleosome (Figure 3C). In 

addition, many molecular functions (MF) such as 

receptor ligand activity, hormone activity, cytokine 

activity, channel activity, passive transmembrane 

transporter activity, G protein-coupled receptor binding, 

neurotransmitter receptor activity and growth factor 

activity was enriched (Figure 3D). DE-ERSs may also 

be involved in many pathways, including neuroactive 

ligand-receptor interaction, systemic lupus erythema-

tosus, IL-17 signaling pathway, pancreatic secretion, 

Salivary secretion, chemical carcinogenesis, alcoholism, 
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neutrophil extracellular trap formation, nicotine 

addiction, cAMP signaling pathway (Figure 3E). To 

further explore the impact of DE-ERSs on disease, we 

also performed a DO analysis of DE-ERSs. The results 

showed that DE-ERSs were significantly enriched in 

pancreatitis, chronic, immediate hypersensitivity, 

adenomatous colonic polyps, secondary liver 

malignancies, polycystic ovary syndrome, and other 

diseases (Figure 3F). 

 

GSEA enrichment analysis of DE-ERSs 

 

GSEA pathway enrichment analysis showed that DE-

ERSs were significantly enriched in G protein-coupled 

receptor (GPCR), innate immune system, GPCR 

ligand binding, nuclear receptor signaling, and 

signaling in other pathways (Figure 4A, 4B). Figure 

4C–4F showed biological processes of the innate 

immune system, GPCR signaling, GPCR ligand 

binding, and nuclear receptor signaling, respectively. 

These figures were downloaded from the REACTOME 

database (http://reactome.org/). 

 

Identification of 110 prognosis-related DE-ERSs 

 

We obtained 18 common DE-ERSs for subsequent 

analysis in 110 prognoses related DE-ERSs and ER 

stress-related genes. Figure 5 and Table 1 showed

 

 
 

Figure 1. Identification of DEGs and DE-ERSs. (A) Heat map of DEGs based on TCGA OSCC data. (B) Volcano map of DEGs based on TCGA 

OSCC data. (C) Heat map of DE-ERSs based on TCGA and GeneCards OSCC data. (D) Volcano map of DE-ERSs based on TCGA and GeneCards 
OSCC data. 

http://reactome.org/
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the univariate Cox regression results for the top 20 DE-

ERSs. 

 

Construction and verification of prognostic risk model 

 

After running Least Absolute Selection and Shrinkage 

Operator (Lasso) regression and multiple Cox 

regression, we constructed a prognostic risk model 

using the 3 prognosis-related DE-ERSs (Supplementary 

Figure 1A, 1B, Table 2). Finally, we applied the 

coefficients obtained by the lasso regression algorithm 

to the following risk scoring equation: risk score = IBSP 

× 0.428 + RDM1 × 0.962 + RBP4 × 0.305. 

 

To evaluate the predictive ability of our risk model, we 

used the training set, test set, and all dataset 

simultaneously. It can be observed that as the risk score 

increased, the number of dead samples gradually 

increased. We observed that the Area Under Curve 

(AUC) in 1-, 3-, and 5-year Receiver Operating 

Characteristic Curve (ROC) for the risk model based on 

all dataset data were 0.576, 0.598 and 0.707, respectively 

(Figure 6A). In the test set, they are 0.506, 0.514, and 

0.670 respectively, when they are identified as 0.651, 

0.694, and 0.707 in the training set (Figure 6D, 6G). 

These results all indicated that our risk model has a good 

predictive value. Figure 6B, 6E, 6H showed the risk 

scores, survival status, and expression of three 

prognostic-related DE-ERSs in OSCC patients from all 

training and testing sets. The Kaplan-Meier survival 

curve also identified the excellent ability of risk model in 

distinguishing prognosis (Figure 6C, 6F). Unfortunately, 

we did not observe similar statistically significant results 

in training set (Figure 6I). To assess whether our model 

could be used as an independent predictor of prognosis 

in patients with OSCC, we performed univariate and 

multivariate Cox regression analyses based on risk 

scores and clinical factors. The results in Table 3 

suggested that our risk model can be used as an 

independent prognostic indicator of prognosis in OSCC 

patients. 

 

Hierarchical analysis based on clinicopathological 

features and construction of nomogram for predicting 

prognosis 

 

We observed higher risk scores in higher clinical grade 

samples (Figure 7B). In addition, no significant 

differences in risk scores were seen between/among 

subgroups of other clinical characteristics (Figure 7A, 7C). 

 

 
 

Figure 2. PPI network analysis of DE-ERSs. (A, B) Venn diagram of DE-ERSs obtained by intersecting DEGs and ERSs. (C) The PPI 

network of DE-ERSs. (D) Maximum correlation analysis on the top 20 hub genes by CytoHubba plug-in. (E) Network Diagram of top 20 hub 
genes visualized by NetworkAnalyzer tool. 
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In a stratified analysis of clinicopathological features, 

we found that the risk model had a good ability to 

discriminate prognoses in patients with older than 50 

years old (Figure 7E), tumor grades G1 and G2 (Figure 

7F), or Clinical stage III and IV (Figure 7I). 
Unfortunately, we did not observe significant results in 

other subgroups of patients (Figure 7D, 7G, 7H). 

 

Finally, we constructed a nomogram including four 

factors (age, stage, grade and risk group) that might 

affect prognosis (Figure 8A). The calibration plots 

showed that nomogram accurately estimated survival 

probabilities at 1, 3, and 5 years (Figure 8B–8D). The 

multivariate ROC curve also showed that the nomogram 

model had the highest AUC at 1, 3, and 5 years (0.576, 

0.598, 0.707) compared with a single clinical factor 

(Figure 8E–8G). After evaluating the nomogram 

model’s benefit rate, the Decision Curve Analysis 

(DCA) was used to calculate the net benefit of model 

(Figure 8H). It could be seen from the figure that the 

combined model had a higher net benefit in the range of 

Pt of about 0.3~0.65 (Figure 8H). 

 

GEO database verification 

 

We used the GSE41613 dataset containing clinical data 

for external validation of the model. The AUCs for 1-, 3-, 

and 5-year OS based on risk scores were 0.584, 0.533, 

and 0.537, respectively (Figure 9A–9C). The calibration 

curve of the nomogram also showed satisfactory 

agreement between the predicted and observed values of 

the 5-year OS probability in this cohort (Figure 9D–9F). 

 

 
 

Figure 3. Functional enrichment analysis of DE-ERSs. (A–D) The GO function enrichment analysis results of DE-ERSs including BP, CC 
and MF. (A) When z-score was defined as the abscissa, -log (p.adjust) was defined as the ordinate. The first, second, and third parts 
represent BPs, CCs, and MFs. (B–D) The results of BP, CC and MF, respectively. The color of the node gene represented the level of 
expression in the tumor tissue. Blue indicated down-regulation of the expression value, while red indicated up-regulation of the expression 
value. The middle quadrilateral represented the effect of the gene on the enriched GO terms. Dark colors showed inhibition, while light 
colors indicated activation. (E) The results of KEGG pathway enrichment analysis. The node size and color indicated the number of genes 
enriched in the pathway and -log10 P-value. (F) The first five results of DO enrichment analysis of DE-ERSs. 
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Figure 4. GSEA pathway enrichment analysis of DE-ERSs. (A) The mountain map shows the enrichment results of the GSEA pathway. 

(B) The top five enrichment results in the GSEA pathway enrichment analysis. (C–F) Biological process diagrams of the four pathways that 
GSEA pathway enrichment analysis obtained. 
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Table 1. Univariate Cox regression analysis of top 20 DEGs. 

Gene Hazard_Ratio CI P-value 

H3C12 1.656 1.25–2.193 0.000 

H3C7 1.638 1.213–2.21 0.001 

RDM1 2.026 1.335–3.074 0.001 

SHISA3 1.369 1.129–1.66 0.001 

DUSP9 2.136 1.326–3.441 0.002 

C14orf180 1.497 1.158–1.935 0.002 

AC104088.1 1.383 1.114–1.718 0.003 

AC079160.1 1.304 1.088–1.563 0.004 

PPIAP78 0.765 0.639–0.917 0.004 

H2BC13 1.641 1.173–2.296 0.004 

FP236383.3 1.496 1.141–1.964 0.004 

MMP27 0.772 0.647–0.921 0.004 

AC126755.1 2.138 1.276–3.582 0.004 

RBP4 1.312 1.093–1.575 0.004 

OFCC1 1.507 1.12–2.027 0.007 

AC018641.1 1.398 1.098–1.779 0.007 

ACTL8 1.261 1.064–1.494 0.007 

AP000695.2 2.073 1.215–3.537 0.007 

PADI3 1.94 1.199–3.139 0.007 

POLR2F 1.468 1.108–1.945 0.007 

 

 
 

Figure 5. Forest plot showing the top 20 prognosis-related DE-ERSs obtained by univariate regression analysis. Protective 

genes and risk genes were located on the left and right sides of the vertical dotted line, respectively. 
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Table 2. Multivariate Cox regression analysis of endoplasmic reticulum stress related genes in oral squamous 
cell carcinoma. 

Gene Coefficient Hazard_Ratio CI P-value 

IBSP 0.428 1.535 1.017–1.276 0.041 

RDM1 0.962 2.617 1.023–2.315 0.009 

RBP4 0.305 1.357 1.800–5.367 0.034 

 

Differences of tumor-infiltrating immune cells 

between different risk groups 

 

To investigate the correlation between ERSs-based 

predictive risk model and the tumor immune 

microenvironment (TME), we visualized the differences 

in tumor-infiltrating immune cells between different 

risk groups (Figure 10A). There were significant 

differences in the contents of monocytes, resting mast 

cells and eosinophils between different risk groups (p = 

0.015, p = 0.02 and p = 0.014), revealing the regulatory 

mechanism of TME in the occurrence and development 

of OSCC. Figure 10B showed the average score of each 

immune infiltrating cell. 

 

Correlation analysis of cell stemness 

 

SsGSEA evaluated the dryness index (mRNAsi) of each 

OSCC sample of TCGA for us. Then we further 

explored the relationship between mRNAsi and 

classification/clinical characteristics/risk scores of 

patients (Figure 11A–11D). Unlike higher mRNAsi in 

OSCC patients (Figure 11A), we also observed 

significant differences in mRNAsi between different 

 

 
 

Figure 6. Results of assessment of the risk model's ability to predict prognosis. (A–C) ROC curve, riskplot and Kaplan-Meier curve 

of 3 DE-ERSs based on the all dataset. (D–F) ROC curve, riskplot and Kaplan-Meier curve of 3 DE-ERSs based on the training set; (G–I) ROC 
curve, riskplot and Kaplan-Meier curve of 3 DE-ERSs based on the testing set. 
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Table 3. Univariate/multivariate Cox regression analysis based clinical factors and risk score. 

Variables 
Univariate analysis 

P 
Multivariate analysis 

P 
HR 95% CI HR 95% CI 

TCGA training set 

Stage (I and II vs. III and IV) 1.38 0.84–2.28 0.21 1.29 0.77–2.15 0.33 

Grade (G1 and G2 vs. G3 and G4) 1.26 0.75–2.10 0.38 1.26 0.75–2.11 0.38 

Age (≤50 vs. >50) 1.27 0.66–2.45 0.47 1.36 0.70–2.65 0.36 

Risk group (high/low) 2.38 1.48–3.84 0.001 2.35 1.45–3.82 0.001 

TCGA testing set 

Stage (I and II vs. III and IV) 2.90 1.57–5.35 0.001 2.99 1.61–5.55 0.00 

Grade (G1 and G2 vs. G3 and G4) 1.23 0.73–2.06 0.43 1.31 0.77–2.22 0.31 

Age (≤50 vs. >50) 1.20 0.65–2.19 0.56 1.24 0.67–2.28 0.49 

Risk group (high/low) 1.21 0.76–1.92 0.43 1.18 0.73–1.90 0.49 

TCGA all dataset 

Stage (I and II vs. III and IV) 1.89 1.29–2.76 0.001 1.92 1.31–2.82 0.001 

Grade (G1 and G2 vs. G3 and G4) 1.24 0.86–1.78 0.25 1.26 0.88–1.82 0.21 

Age (≤50 vs. >50) 1.27 0.82–1.97 0.29 1.45 0.93–2.28 0.10 

Risk group (high/low) 1.63 1.18–2.26 0.001 1.65 1.18–2.29 0.001 

 

 
 

Figure 7. The hierarchical analysis based on clinicopathological features. (A–C) Differences of risk scores between patients with 

different clinicopathological characteristics (age, grade and stage), respectively. (D–I) Survival curves were used to assess the model’s 
ability to discriminate outcomes among subgroups of patients with different clinicopathological features. Blue and green represented low-
risk and high-risk samples, respectively. 
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Figure 8. Construction and verification of a nomogram for predicting the overall survival rate of patients with OSCC. (A) 

Nomogram composed of age, grade, stage and risk group. (B–D) The calibration curve of Nomogram. The Y-axis represented the actual 
survival rate, while the X-axis represented the survival rate predicted by the Nomogram. (E–G) Multivariate ROC curves of 1, 3 and 5 years 
were used to predict prognosis based on nomogram. (H) The Decision Curve Analysis of the nomogram. The y-axis represents the net 
benefit. The blue and gray curves represented the net benefit of the model predictions and all interventions for all patients, respectively. In 
contrast, the horizontal line represented the net benefit of not accepting intervention for all patients. The intersection of the model curve 
and the All curve was the starting point, while the corner of the model curve and the None curve was the endpoint. Patients within this 
range could benefit. 
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tumor grades and risk groups (Figure 11B, 11D). 

mRNAsi was observed to be higher in the G3 and high-

risk groups. 

 

Drug sensitivity analysis 

 

After comparing the IC50 differences between different 

risk groups, it was found that the high-risk group 

samples had higher IC50 of docetaxel, gefitinib and 

erlotinib (Figure 12A–12D). This means that low-risk 

patients are more sensitive to these three drugs. Perhaps 

in the future, we can predict the effect of these three 

drugs based on a patient’s risk score, leading to better 

treatment outcomes. 

 

Mutations associated with predictive model and 

prognosis 

 

We identified the top 20 most common gene mutations 

in both high- and low-risk groups. The corresponding 

statistical results were shown in Figure 13A, 13B. In 

addition, TMB in the high-risk group was significantly 

higher than in the low-risk group (Figure 13C). It can 

also be seen from the survival curve that there was a 

significant difference in the survival rate between the 

high TMB group and the low TMB group (Figure 13D). 

Patients with low TMB had a higher survival rate, 

suggesting that high TMB may have a negative 

influence on the prognosis of OSCC patients. 

 

Abnormal expression of three modeling genes in 

OSCC tissues and cells 

 

From the results of paired t-test, we observed that the 

RNA levels of IBSP and RDM1 were significantly 

higher in OSCC tissues (Figure 14A, 14B). 

Furthermore, relative RNA levels of RBP4 were 

observed to be lower in OSCC tissues (Figure 14C). In 

addition, further cell experiments also confirmed 

significantly higher IBSP, higher RDM1 and lower 

RBP4 relative RNA levels in scc9 and cal27 (Figure 

14D–14F). Unfortunately, we did not detect differential 

protein expression of RDM1 and RBP4 between normal 

oral and tumor tissues (Figure 14G, 14H). 
 

DISCUSSION 
 

As the most common oral cancer, OSCC has a poor 

prognosis and high mortality [25]. The molecular 

pathogenesis of OSCC is complex, and there is a lack of 

accurate biomarkers to predict the prognosis of patients. 

At present, some studies have analyzed the link between

 

 
 

Figure 9. Validation of the risk model and the ability of the nomogram to predict prognosis using the GSE41613 cohort.  

(A–C) The ROC curve for predicting 1, 3 and 5-year survival rate based on the GSE41613 validation cohort, respectively. (D–F) Internal 
Calibration Curve of nomogram at 1-year, 3-year and 5-year based on the GSE41613 validation cohort, respectively. 
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ER stress and cancer. Previous studies have found that 

ER stress can promote potential pancreatic tumor 

metastasis [26]. Wu et al. found that ER stress can drive 

tumorigenesis and progression of HCC [18]. ER stress 

also plays a dynamic reprogramming role in promoting 

tumor growth, invasion, therapeutic resistance, and 

infiltration of immune cells in brain tumors [27]. After 

we checked the database, we found that the use of ERSs 

to predict the prognosis of OSCC patients is very rare, 

so it is necessary to identify prognostic markers related 

 

 
 

Figure 10. Differences in tumor-infiltrating immune cells between different risk populations. (A) The violin chart showed the 

difference in immune cells between the low-risk and high-risk group. Blue and green represented the low-risk group and the high-risk 
group, respectively. (B) The lollipop graph respectively showed the average relative content of the 22 immune cells in all TCGA samples. 
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to ER stress in OSCC. In this study, the DE-ERSs 

generated by the string database was used to construct a 

PPI network, and the MCC algorithm was used as the 

hub gene. 

 

To clarify the biological processes involved in DE-

ERGs, we ran GO and KEGG enrichment analysis. 

After running lasso regression and multiple Cox 

regression analysis, a prognostic risk model was 

constructed using the three prognostic-related DE-

ERSs. Prognostic evaluations based on the training set, 

test set, and all datasets all confirmed the good 

prognostic prediction performance of the risk model. In 

addition, risk score was identified as an independent 

prognostic factor. The nomogram composed of multiple 

factors provided an accurate quantitative tool for 

prognosis prediction. 

Through enrichment analysis of the GSEA pathway, we 

were surprised to find that DE-ERSs were significantly 

enriched in signaling through GPCR, GPCR ligand 

binding, nuclear receptor signaling, and other pathways. 

Our further study and analysis found that the activation 

of GPCRs expressed in various cells can stimulate ER 

stress [28]. Furthermore, OGR1 was identified as an 

example of GPCR protein expression in gut-related 

inflammatory diseases that regulates ER stress through 

the IRE1 α-JNK signaling pathway, a body of evidence 

that forms a strong understanding between GPCRs and 

ER stress [29]. Epithelial-Mesenchymal Transition 

(EMT) is a process in which epithelial cells lose apical-

basal polarity and strong cell contacts and gain spindle 

shape and greater motility [30]. We found that both 

GPCR and ER stress plays a role in EMT [31, 32]. This 

process is critical in physiological phenomena such as 

 

 
 

Figure 11. Cell stemness correlation analysis. (A) The differences of mRNAsi between OSCC samples and normal samples. (B) The 

differences of mRNAsi among different tumor grade subgroups. (C) The differences in mRNAsi among different clinical stage subgroups. (D) 
Differences in mRNAsi between other risk groups. 



www.aging-us.com 10027 AGING 

embryogenesis and wound healing and pathological 

events [33, 34]. Chemotactic migration is a crucial 

aspect of EMT and cancer progression [35]. 

Undoubtedly, this will provide a guiding direction for 

the corresponding research in the future. On the other 

hand, the coordinating role of ER stress in EMT 

initiation has been well established [36–38]. Hypoxia is 

a driver that promotes EMT transcription factors and 

activates ER stress markers in rat lungs and alveolar 

epithelial cells [38]. Hypoxia and intracellular calcium 

are involved in the EMT induction of AECs, mainly by 

activating ER stress and the hypoxia-inducible factor 

signaling pathway [39]. 

 

Interestingly, we found the significant differences in the 

content of monocytes, resting mast cells, and 

eosinophils between high- and low-risk groups. After 

intensive research, we discovered that ER stress affects 

the response of human monocytes to their ability to 

differentiate into macrophages [40]. The ability of 

monocytes to differentiate into macrophages is affected 

by inhibition, monocytes are less responsive to 

endotoxin. Monocytes are progenitor cells that 

differentiate into mature resident macrophages in 

various human tissues and have emerged as important 

immune regulators controlling adaptive immune 

responses [41]. An obstacle to nuclear cells is becoming 

macrophages [42]. We also found that chronic insulin 

exposure induces ER stress and lipid volume 

accumulation in mast cells, disrupting the secretory 

degranulation response of mast cells, thereby reducing 

mast cells in high-risk populations [43]. The RDM1 

gene is identified through database searches for proteins 

similar to RAD52. Like RAD52, RDM1 participates in 

DNA double strand break repair and homologous 

recombination [44, 45]. Increased RDM1 mRNA 

 

 
 

Figure 12. Drug sensitivity analysis. (A–D) Box plots showed the differences in IC50 of cisplatin, docetaxel, Gefitinib and erlotinib 

between the high-risk group and the low-risk group, respectively. Green represented the high-risk group, while yellow represented the low-
risk group. 
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expression was closely associated with decreased 

overall survival and progression-free survival [44, 46]. 

In addition, the increased expression of RDM1 mRNA 

was closely associated with the infiltration levels of 

macrophages, CD8-T cells, and B cells. RDM1 can 

regulate the expression of p53 [46–49]. P53 plays an 

essential role in regulating cell growth and apoptosis 

[47]. The negative regulation of p53 by IBSP is a 

binding molecule that plays a crucial role in protein 

migration and cell surface adhesion [50]. It promotes 

the formation of transfer factor precursors by 

stimulating molecular signals to form adherent plaques 

[51–53]. According to our research, IBSP is also 

associated with EMT. In addition, studies have also 

shown that IBSP can enhance the proliferation and 

tumor metastasis of ESCC cells [54]. In our study, 

bioinformatics analysis, tissue and cell experiments 

have fully verified the significantly higher expression 

of IBSP, RDM1 in OSCC. The significantly lower 

expression of RBP4 in OSCC was also well confirmed. 

These results fully showed that these three genes may 

play an important biological role in OSCC. In 

addition, the evidence also supported the contribution 

of these three modeling genes to the stability of the 

model. 

 

This study found that TMB in the high-risk group was 

significantly higher than that in the low-risk group 

through differential analysis. Patients with low TMB had 

a higher survival probability, indicating that high TMB 

may play a negative role in the prognosis of OSCC 

patients. It is well known that TMB has been regarded as 

an effective predictor of the efficacy of immunotherapy, 

like PDL1 [55]. This also reveals that high-risk patients 

with high TMB may benefit more from immunotherapy. 

In the drug sensitivity analysis, we observed a higher 

sensitivity to docetaxel in the low- risk group. Therefore, 

we speculate that, in low-risk patients, docetaxel may 

 

 
 

Figure 13. Mutation profiled of low-risk and high-risk populations and TMB associated with model and OS. (A) Mutation 

status of the high-risk population. (B) Mutation status of the low-risk population. (C) TMB associated with model based on DE-ERSs. (D) 
TMB associated with OS of OSCC samples. 
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induce endoplasmic reticulum-mediated activation of 

ER stress signaling-related proteins GRP78, ATF6, 

IRE1α, and PERK/eIF2α, resulting in docetaxel-induced 

Apoptosis [56]. 

Our study constructed a prognostic risk model with 

good predictive performance in OSCC. It was also 

assessed to have outstanding value in guiding treatment. 

We also found that it may participate in the progression 

 

 
 

Figure 14. Validation of abnormal expression of 3 modeled genes in OSCC. (A, B) Higher relative mRNA expression levels of IBSP 

and RDM1 detected by QRT-PCR in OSCC tissues. (C) Lower relative mRNA expression levels of RBP4 detected by QRT-PCR in OSCC tissues. 
(D, E) Higher relative mRNA expression levels of IBSP and RDM1 detected by QRT-PCR in cal27 and scc9. (F) Lower relative mRNA 
expression levels of RBP4 detected by QRT-PCR in cal27 and scc9. (G, H) IHC images reflecting the expression of RDM1 and RBP4 proteins in 
normal oral tissues and head and neck squamous cell carcinoma tissues. *p < 0.05; **p < 0.01; ***p < 0.001. 
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of OSCC through immune infiltrating cells, cell stemness 

and TMB. But our study was statistically significant for 

OS to predict prognosis in OSCC. However, our study 

also has some limitations: 1. Many conclusions are 

indeed difficult to carry out basic experiments to verify 

their reliability; 2. Limited data sets limit further 

verification of model performance. 3. The performance 

of the prognostic risk model we established needs to be 

tested by clinical samples in the future. 

 

MATERIALS AND METHODS 
 

Data sources 

 

The process of our study was presented as a flow chart 

in Figure 15. To carry out the next analysis, we first 

downloaded the corresponding data of head and neck 

squamous cell carcinoma (HNSC) from The Cancer 

Genome Atlas (http://cancergenome.nih.gov/, TCGA) 

database. Next, we centrally extracted 331 cases whose 

main sites were in the oral cavity (tongue, lips, cheek, 

palate, gums, floor of mouth, etc.) with somatic 

mutations, RNA sequencing and corresponding clinical 

data. In addition, we obtained transcriptome data of 55 

normal minor salivary gland tissue samples in the 

Genotype Tissue Expression (http://gtexportal.org/, 

GTEx) database [57]. To lay the foundation for follow-

up research, we carried out log2 transformation of the 

RNA sequencing value of each gene. [58]. From the 

gene card database (http://genecards.org/, GeneCards) 

that automatically integrated gene-centric data from 

~150 web sources, including genomic, transcriptomic,

 

 
 

Figure 15. Research workflow. 

http://cancergenome.nih.gov/
http://gtexportal.org/
http://genecards.org/


www.aging-us.com 10031 AGING 

proteomic, genetic, clinical and functional information, 

we obtained 5885 endoplasmic reticulum stress-related 

genes (ERSs) with correlation coefficient >1 [59]. 

 

Identification of differentially expressed genes 

 

After integrating the data of TCGA and GETx, we used 

the “limma” R package to analyze the difference in 

gene expression value between OSCC and normal 

tissues. The genes filtered according to the threshold 

|log2(FC)| >1 and P-value < 0.05 were defined as 

differentially expressed genes (DEGs) [60]. While the 

genes with log2(FC) >1 were identified as DEGs with 

up-regulated expression, genes with log2(FC) < −1 

were identified as DEGs with down-regulated 

expression. 

 

Construction of protein-protein interaction network 

 

The DEGs of OSCC and 5885 ERSs were intersected 

to obtain the common differentially expressed genes of 

endoplasmic reticulum stress (DE-ERSs). The STRING 

was known as a database for searching known proteins 

and predicting protein-protein interactions [61]. We 

selected De-ERSs with a combined score >400 to 

construct a protein-protein interaction network (PPI), 

which was visualized by Cytoscape [62]. According to 

previous studies, the Maximal Clique Centrality (MCC) 

algorithm has been identified as the most effective 

method for finding hub genes in the co-expression 

network [63]. After calculating the MCC of each node 

through the CytoHubba plug-in in Cytoscape, the 

top 20 genes with MCC values were regarded as hub 

genes and the corresponding network diagram was 

visualized through the NetworkAnalyzer online tool 

[64]. 

 

Functional enrichment of DE-ERSs 

 

KEGG was known as a database that was widely used 

to store information about genomes, biological 

pathways, diseases and drugs, etc. GO functional 

annotation analysis was widely used to enrich gene 

functions on a large scale, including biological process 

(BP), molecular function (MF) and cellular component 

(CC). Disease Ontology (DO), a kind of enrichment 

analysis of diseases based on genes, played an 

important role in understanding the pathogenesis of 

complex diseases based on similar relationships 

between diseases, early prevention and diagnosis of 

major diseases, new drug development, and drug safety 

assessment [65]. In our study, we not only used the R 

package “cluster profiler” to perform GO functional 
annotation analysis and KEGG pathway enrichment 

analysis on De-ERS, but also applied the “DOSE” 

package to enrich diseases [66, 67]. 

Enrichment analysis of DE-ERSs 

 

To judge the contribution of gene sets to phenotypes, 

we used Gene Set Enrichment Analysis (GSEA), which 

can be used to assess gene distribution trends in 

predefined gene sets ranked by phenotypic relevance in 

the gene table [68]. We applied the “c2.cp.v7.4. 

symbols” gene set obtained in the MSigDB database 

(http://gsea-msigdb.org/gsea/msigdb) to the DE-ERSs-

based GSEA analysis. In this process, we used the R 

package “cluster profile” and got the biological process 

map related to the enrichment pathway results from the 

REACTOME database (http://reactome.org/) [69]. 

 

Univariate Cox regression analysis for prognosis- 

related DE-ERSs 

 

Univariate Cox regression analysis was applied to 

assess the association between expression values of 

DEGs and Overall Survival (OS) in 330 samples with 

complete survival data. And based on the screening 

condition with a threshold of p < 0.05, DEGs with a 

significant impact on prognosis were selected. We 

further extracted the common genes of these De-ERSs 

and ERSs and defined them as prognosis-related DE-

ERSs [69]. 

 

Construction and verification of prognostic risk model 

 

After screening out patients with incomplete clinical 

data, we finally obtained 330 samples with complete OS 

information and divided these 330 samples into a 

training set (n = 160), test set (n = 170). In the following 

analysis, the data of three sets will be used to verify this 

model. 10 DE-ERSs obtained by running univariate cox 

regression on the training set data were used to run lasso 

regression (lasso) and multivariate Cox regression 

analysis for construction of prognostic risk model. As a 

shrinkage estimation method, lasso aims to minimize 

the residual sum of squares under the constraint that the 

sum of the absolute values of the regression coefficients 

is less than a constant, so as to generate some regression 

coefficients strictly equal to 0 to construct model. 

According to the calculation method: risk score = exp 

gene 1 × β gene 1 + exp gene 2 × β gene 2 + exp gene 3 

× β gene 3 + exp gene n × β gene n (where exp gene n 

represents gene expression level, β gene n represents 

the regression coefficient calculated by multivariate 

COX regression), we calculated the risk score of all 

samples. Patients were divided into high- and low-risk 

groups for subsequent validation based on the median 

risk score. The distribution of survival status for each 

patient was shown separately on a dot plot according to 
the risk score ranking for each sample. Kaplan-Meier 

survival curves and time-dependent ROC curves were 

used to assess the accuracy of predicting prognosis with 

http://gsea-msigdb.org/gsea/msigdb
http://reactome.org/
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risk scores. In addition, univariate and multivariate  

Cox were used to identify independent prognostic 

factors. 

 

Hierarchical analysis based on clinicopathological 

features and construction of nomogram for predicting 

prognosis 

 

To assess the relationship between clinicopathological 

features and risk scores, we compared the differences of 

risk scores among different subgroups of clinico-

pathological features, such as age, grade and stage. In 

addition, we performed a stratified analysis of 

clinicopathological characteristics to assess the ability of 

the prognostic risk model to predict the prognosis in 

different subgroups. We used potential prognostic factors 

to establish a nomogram to predict the 1-, 3- and 5-year 

survival rates of patients with OSCC. By comparing the 

predicted value of the nomogram with the observed actual 

survival rate, a calibration curve was generated to evaluate 

the performance of the nomogram. Furthermore, the 

multi-factors ROC curve was not only used to verify the 

accuracy of the nomogram, but also the optimality in 

predicting 1-, 3-, and 5-year survival rate. The DCA curve 

is a simple method to evaluate clinical predictive models, 

diagnostic tests and molecular markers. After confirming 

the accuracy, we assessed and visualized the net benefit 

of the nomogram model through the DCA curve. 

 

Verification based on GEO database 
 

The dataset GSE41613 from the Gene Expression Omnibus 

(http://ncbi.nlm.nih.gov/geo/, GEO), containing data 

from 97 patients with OSCC, was used as the validation 

cohort. ROC curves were again used to assess the ability 

of the prognostic risk model in predicting prognosis. 

Internal calibration curves were further used to evaluate 

the accuracy of the nomogram in prognostic prediction. 

 

Correlation between model and immune infiltrating 

cells 
 

The RNA sequencing data of the OSCC dataset was 

used to estimate the proportion of immune infiltrating 

cells in each sample based on the CIBERSORT 

algorithm, which was widely known for deconvoluting 

the expression matrix of immune infiltrating cell 

subtypes based on the principle of linear support vector 

regression. Subsequently, we compared the differences 

in the proportion of each type of immune infiltrating 

cells between different risk groups. 

 

Correlation between model and cell stemness 
 

The Single-Sample Gene Set Enrichment Analysis 

(ssGSEA) algorithm is an algorithm that associates a 

specific cell type with a set of signature genes. As a 

special GSEA, ssGSEA is mainly used for a single 

sample that cannot be a GSEA [70]. As an extension of 

the GSEA principle, it calculates the rank value of each 

gene based on the expression profile file for subsequent 

statistical analysis [70]. Unlike GESA, ssGSEA does 

not prepare expression profile files in gct format, but 

each sample’s score is under the corresponding 

background gene set [70]. Based on ssGSEA, the 

mRNA expression-based stemness index (mRNAsi) of 

OSCC samples was evaluated using tumor stem cell 

gene collection. In addition, mRNAsi was mapped to 

the 0–1 range by a linear transformation that subtracted 

the minimum value and divided it by the maximum 

value. 

 

Drug sensitivity analysis 

 

In the study, to evaluate whether our model can be used 

as a marker for predicting clinical efficacy, we used the 

Genomics Database of Cancer Drug Sensitivity 

(http://cancerrxgene.org/, GDSC) to estimate the 

sensitivity of four chemotherapeutic drugs (cisplatin, 

docetaxel, gefitinib, and erlotinib) routinely used to 

treat OSCC in each sample of OSCC [71]. After setting 

all parameters to default values, use the R package 

“pRRophetic” to run ridge regression. A prediction 

model was designed based on the GDSC cell line 

dataset using ridge regression, and its satisfactory 

prediction accuracy was evaluated using 10-fold cross-

validation. Based on the predictive models for these 4 

drugs, the half maximal inhibitory concentration (IC50) 

was estimated for each OSCC sample in the TCGA 

dataset. 

 

Mutation analysis 

 

An analysis was performed using somatic mutation 

data from 330 MAF-formatted OSCC samples in the 

TCGA database to assess the relationship between 

gene mutations and prognostic risk model. The R 

package “maptools” is an efficient way to aggregate, 

analyze, annotate and visualize MAF files from TCGA 

sources or any in-house study. We use R-packet 

“maptools” to count and visualize the top 20 genes’ 

mutations in high-risk and low-risk populations. 

Tumor mutational burden (TMB), defined as the total 

number of somatic mutations with substitutions, 

insertions/deletions per Mb in the exon coding region 

of the genome, was calculated for differential analysis. 

To explore the effect of TMB on survival rate, we first 

divided the samples into low and high groups by 

median TMB. The difference in survival rate between 

the two groups was then compared by Kaplan-Meier 

analysis. 

http://ncbi.nlm.nih.gov/geo/
http://cancerrxgene.org/
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Table 4. All primer sequences used in QRT-PCR experiment. 

Gene Forward primer Reverse primer 

β-Actin TGGCACCCAGCACAATGAA CTAAGTCATAGTCCGCCTAGAAGCA 

IBSP CCCCACCTTTTGGGAAAACCA TCCCCGTTCTCACTTTCATAGAT 

RDM1 TCCAGTCAAGGTTCGTCTTGG TGGCATTTGGAACTGTTCAGG 

RBP4 AGGAGAACTTCGACAAGGCTC GAGAACTCCGCGACGATGTT 

 

 
Abnormal expression of three modeling genes in 

OSCC was verified by in vivo and in vitro experiments 
 

To further verify the differences in the transcription 

levels of these three genes between OSCC and normal 

oral tissue, we further detected the relative mRNA 

expression levels of these genes by quantitative real-time 

PCR (QRT-PCR) experiment. The Ethics Committee of 

the Affiliated Stomatological Hospital of Nanchang 

University (2021-08-015) approved this study and 

patients consented to specimen collection. 24 matched 

pairs of OSCC and adjacent paracancerous oral tissues 

came from the subjects who underwent surgery. The 

primer sequences of all genes were listed in Table 4. 

 

Total RNA extracted from tissues using the TransZol 

Up Plus RNA Kit (TRANS, Beijing, China) was reverse 

transcribed into cDNA using EasyScript First-Strand 

cDNA Synthesis SuperMix (TRANS, Beijing, China). 

QRT-PCR was performed using the Roche Light Cycler 

96 Real-time Fluorescent Quantitative PCR System 

(Roche Applied Science, Mannheim, Germany) and Taq 

Pro Universal SYBR qPCR Master Mix (Vazyme, 

Nanjing, China). After normalizing all measured values 

to relative expression levels of β-actin using the 2−ΔΔCt 

method, we compared differences in the expression 

levels of 3 modeling gene between paired tissues using 

paired t-tests. 

 

Human tongue squamous cell lines cal27 and scc9 were 

purchased from Shanghai Anwei Biotechnology Co., 

Ltd. (Shanghai, China). Normal oral gingival epithelial 

cell line HEGC were purchased from Shanghai  

Baiye Biotechnology Center (Shanghai, China). HGEC 

and cal27 were cultured in DMEM (Gibco, 

Cat#C11995500BT), while scc9 was cultured in 

DMEM/F12 (Gibco, Cat#C11330500BT). All media 

contain 10% Fetal Bovine Serum (Excell, Cat#FSP500) 

and 1% Penicillin-Streptomycin Liquid (Solarbio, 

Cat#P1400). All cells were cultured at 37°C in 5% 

CO2’s humidified incubator. To further verify the 

abnormal expression of the three modeling genes in 

OSCC cells, we again used QRT-PCR to detect the 

relative RNA expression of the three modeling genes in 

scc9, cal27 and HEGC. 

Immunohistochemical (IHC) staining verifies the 

abnormal expression of modeling genes in tumor 

 

We downloaded IHC images reflecting the expression 

of RDM1 and RBP4 proteins in normal oral tissues and 

head and neck squamous cell carcinoma tissues in the 

Human Protein Atlas (http://proteinatlas.org/, HPA) 

database. Next, we compared the differences between 

the protein expression of these two genes in normal oral 

tissue and tumor tissue. 

 

Statistical analysis 

 

All data calculations and statistical analyses were 

performed in R software (version 3.6.2). Depending on 

the distribution characteristics, we used Student’s t-test 

or Mann-Whitney test to compare the difference 

between continuous variables. The chi-square test or 

Fisher’s exact test was used to compare the difference 

between categorical variables. All statistical P-value are 

two-sided, and the results with P < 0.05 are regarded as 

statistically significant. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figure 
 

 
 

Supplementary Figure 1. The process of screening modeling genes by Lasso and univariate Cox regression. (A) The vertical 

dashed line represented the lambda value with the minimum error and the maximum lambda value. (B) The forest map showed the results 
of univariate Cox regression analysis of three risk model genes. The left and right sides of the vertical dotted line represent protective genes 
and risk genes, respectively. 

 


