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INTRODUCTION 
 

Prostate cancer (PCa) is the second most common 

malignancy and the sixth leading cause of cancer deaths 

in the world [1]. Due to the growth and aging of the 

population, the global burden of PCa is increasing year 

by year. Some epidemiological studies have shown that 

obesity is associated with increased risk and death of 

many types of cancer, including PCa in recent years  

[2, 3]. In addition, dysfunctional adipose tissue behavior, 

often seen in obesity, has been widely recognized as the 

main cause of cancer [4]. Obesity affects many men just 
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ABSTRACT 
 

Background: The role of obesity related genes (ORGs) in the immune checkpoint inhibitors (ICIs) treatment of 
prostate adenocarcinoma (PRAD) has not yet been proved by research. 
Methods: We comprehensively evaluated the ORGs patterns in PRAD based on tumor microenvironment (TME) 
phenotypes and immunotherapy efficacies. Then we constructed an ORGs risk score for prognosis and an ORGs 
signature for accurate prediction of TME phenotype and immunotherapy efficacy in order to evaluate individual 
patients. 
Results: Two distinct ORGs patterns were generated. The two ORGs patterns were consistent with inflammatory 
and non-inflammatory TME phenotypes. ORGs patterns had an important role for predicting immunotherapy 
efficacies. Next, we constructed an ORGs risk score for predicting each patient’s prognosis with high performance 
in TCGA-PRAD. The ORGs risk score could be well verified in the external cohorts including GSE70769 and 
GSE21034. Then, we developed an ORGs signature and found it was significantly positively correlated with tumor-
infiltrating lymphocytes in TCGA-PRAD. We found that each patient in the high-risk ORGs signature group 
represented a non-inflamed TME phenotype on the single cell level. The patients with high ORGs signature had 
more sensitivity to immunotherapy. And those ORGs were verified. 
Conclusions: ORGs pattern depicts different TME phenotypes in PRAD. The ORGs risk score and ORGs signature 
have an important role for predicting prognosis and immunotherapy efficacies. 
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like PCa. Two-thirds of Americans are classified as 

overweight and one-third as obese. These trends have 

stabilized and become a permanent feature of American 

society [5]. Similarly, in Europe, the prevalence of 

overweight and obesity continues to rise [6].  

 

Since both obesity and PCa affect a considerable 

number of men, the association between them is of great 

significance. Although in the era of PSA, obesity may 

be negatively related to the overall risk of PCa, it has  

a certain correlation with the increased risk of death of 

PCa, the pathological characteristics of poor prognosis 

and the risk of biochemical recurrence after radical 

prostatectomy [7].  

 

Anatomically, the prostate is a capsule-like structure 

surrounded by adipose tissue. Physiologically, prostate 

tumor cells often infiltrate the periprostate fat pad through 

transposition or infiltration capsule [8], which lead to 

invade adipose tissue directly. If PCa cells extend beyond 

the capsule, factors secreted by periprostate adipose tissue 

around the prostate, extracellular matrix components or 

direct cell-cell contact may affect the phenotypic behavior 

of malignant cells.  

 
More and more attention has been turned to elucidate the 

potential molecular mechanism. The study in periprostate 

adipose tissue found that tumor related factors affect  

its metabolic activity and increase the production of local 

adipose factors and the thickness of periprostate fat, which 

are related to the invasiveness of PCa [9–12]. Adiponectin 

and leptin are proteins synthesized by adipocytes  

and involved in energy regulation and apoptosis [13].  

There are even some research evidences that there is a 

correlation between adipocyte-derived proteins and the 

risk or severity of PCa [14]. Obesity is a risk factor for 

invasive PCa [2, 15]. PPARG affects insulin sensitivity, 

while TCF7L2 affects insulin secretion. Because of the 

negative correlation between type 2 diabetes and PCa, 

both may affect the risk of PCa [16]. The variants of these 

genes have been confirmed and are related to diabetes  

[17, 18]. 

 
Tumor microenvironment (TME) is composed of 

malignant cells and non-malignant cells. Based on the 

existence of tumor infiltrating lymphocytes (TILs), it 

can be divided into two phenotypes. Inflammatory 

tumors are tumors with high TILs infiltration, while 

non-inflammatory tumors are tumors with low infiltration 

[19]. For tumors with a high degree of TILs invasion, 

patients will have a significantly higher response to 

immune checkpoint inhibitors (ICIs) treatment [20, 21]. 

At present, mCRPC clinical trials use a mixture of ICIs 

as an alternative method [22]. The increase of body 

mass index caused by obesity leads to various metabolic 

disorders, which affect the TME and then promote the 

occurrence of tumors [23]. Therefore, we hypothesized 

that obesity related genes (ORGs) also affect TME. 

However, the comprehensive analysis of these ORGs in 

prostate adenocarcinoma (PRAD) is still lacking. 

 

In this study, we firstly used comprehensive bioinformatics 

analysis to correlate ORGs with TME phenotype, precise 

immunotherapy efficacy and prognosis in PRAD. 

 

MATERIALS AND METHODS 
 

Data sources 

 

From UCSC Xena (https://xenabrowser.net/) downloaded 

TCGA-PRAD’s the fragments per kilobase per million 

mapped fragments (FPKM), count value and clinical 

data. We transformed FPKM value into transcript of 

one thousand base millions (TPM) value, and exclude 

duplicate patients or patients without matching RNA 

seq data and survival data. Finally, 494 patients  

in TCGA-PRAD were used for further analysis. And 

GSE70769 and GSE21034 were downloaded from GEO 

database (https://www.ncbi.nlm.nih.gov/geo/).  

 

Unsupervised clustering 

 

The obesity related genes (ORGs) included genes 

associated with monogenic obesity and the leptin-

melanocortin signalling pathway, genes associated 

with insulin signalling pathway, genes associated with 

lipid metabolism, other genes associated with appetite 

regulation. They were collected from the studies of 

Catarina et al. [24] and Ricardo et al. [25]. We used the 

“ConsensuClusterPlus” R package (maxK=4, reps=1000, 

pItem=0.8, distance=“euclidean”, clusterAlg=“km”) to 

perform consensus clustering and repeat 1000 times. 

ORGs were summarized in Supplementary Table 1. 

 

Pathway enrichment analysis 

 

We collected 4 immune-related signatures and 21 

signatures related to the efficacy of immune checkpoint 

blockade (ICB) therapy from previous studies [26–28]. 

Then, we used the single sample gene set enrichment 

analysis (ssGSEA) implemented in the “GSVA” R 

package to calculate the sample level enrichment scores 

of these signatures. The differential gene expression 

analysis adopted empirical Bayesian algorithm (“limma” 

R package). The standard of differential expression genes 

(DEGs) was set as absolute log2 fold change (FC) greater 

than 2.5, and the adjusted p-value was less than 0.05. 

From MSigDB [29] (http://www.gsea-msigdb.org/gsea/ 

index.jsp) downloaded the Hellmark, gene ontology (GO) 

and Kyoto Encyclopedia of Genes and Genomes (KEGG) 

gene sets, and then conducted GSEA analysis using the 

“GSVA” R package [30]. 

https://xenabrowser.net/
https://www.ncbi.nlm.nih.gov/geo/
http://www.gsea-msigdb.org/gsea/%20index.jsp
http://www.gsea-msigdb.org/gsea/%20index.jsp
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Tumor immune microenvironment depiction 

 
The anti-cancer immunity cycle was a seven step anti-

tumor immune cell activation process, so we downloaded 

the levels of each step from the tracking tumor immuno-

phenotype (TIP) (http://biocc.hrbmu.edu.cn/TIP/) [31]. 

Based on the gene set reported by Sharoneton, we used 

the ssGSEA algorithm to calculate the relative abundance 

of 28 immune cells in TCGA-PRAD and GEO cohorts 

[32]. 

 
Construction and verification of ORGs model 

 
The TCGA-PRAD, GSE70769 and GSE21034 datasets 

were divided into training and verification sets 

according to the inclusion of patients in the 

experiment. In the training set (TCGA-PRAD), we 

used univariate Cox analysis to analyze common 

DERs, and then used LASSO algorithm to screen the 

best candidate DERs. Next, we used multivariate Cox 

regression coefficient to select the best candidate 

DERs, and established ORGs model based on ORG 

RNA expression pattern and weighted using the 

formula: ORGs=Σβi * RNAi, where βi represented the 

expression pattern coefficient of the ‘i’th ORG RNA. 

Finally, logarithmic rank test and Kaplan-Meier 

analysis were employed to evaluate the prognostic 

predictive value of ORGs model.  

 
Single cell RNA sequencing 

 
We downloaded the scRNA-seq dataset containing  

two PRAD samples from the Supplementary Materials  

of GSE157703 [33]. Then we created a Seurat object 

by using the “Seurat” R package on the raw count 

matrixes, and set the inclusion criteria for high-quality 

cells as follows: the numbers of unique molecular 

identifiers (UMI) more than 1000, the number of  

genes more than 250, the log10GenePerUMI more 

than 0.80, and the percentage of mitochondria less  

than 20%. Next, the raw data count was normalized, 

identified variable genes, and scaled by using the 

SCTransform function. Based on the Anchors generated 

by top 3000 variables (FindIntegrationAnchors function), 

2 samples were integrated. After integration, we used 

the RunPCA function for principal component analysis 

(PCA), and then used the top 40 PCs to perform  

manifold approximation and projection (UMAP) 

reduction. At the same time, we used the FindClusters 

function to identify the main cell clusters with a 

resolution value of 0.4, and annotated the cell clusters 

according to the gene markers of the relevant research 

[34]. Finally, we used the AddModoleScore function 

to generate ORGs signature at the single cell level. In 

addition, based on GSE70769 and GSE21034, the 

effectiveness of ORG model in predicting prognosis 

was verified. 

 
Cell culture 

 
Human normal prostate cell lines (RWPE-1) and  

PCa cell lines (22RV1 and PC3) were from China 

Center for Type Culture Collection and cultured in 

RPMI 1640 (Gibco, Grand Island, NY, USA), which 

contained 10% fetal bovine serum (Gibco, Grand 

Island, NY, USA), 100U/ml Penicillin and 100mg/ml 

streptomycin (Invitrogen). They both were cultured in 

a humidified incubator at 37° C and 5%CO2.  

 
RNA isolation, cDNA synthesis, and RT-qPCR 

 
Total RNA was isolated and extracted by TRIzol 

reagent (Thermo, Waltham, MA, USA). Then we used 

the ReverTra Ace qPCR RT kit (Toyobo, Osaka, Japan) 

to synthesize the first-strand cDNA from 1 µ g total 

RNA. Fast SYBR Green Master Mix was used for RT-

qPCR (Applied Biosystems, Foster City, CA, USA). The 

cycle conditions were that the polymerase was activated 

at 95° C for 30 s followed by 40 cycles at 95° C for 5s 

and 60° C for 30s. And we use GAPDH as an internal 

loading control. The relative level was calculated by the 

relative quantification 2-∆∆ CT method. All the primers 

were as listed as (Supplementary Table 2). 

 
Statistical analysis 

 
The unpaired t-test was used to compare the differences 

of continuous variables with normal distribution, and 

the Wilcoxon rank-sum test was used to compare the 

differences of continuous variables with non-normal 

distribution. χ2 or Fisher’s exact test was used to compare 

categorical variables. Then we used Kaplan-Meier method 

and log-rank test (“surveyor” R package) to generate 

survival curves and survival differences of the two 

groups of patients. Pearson correlation coefficients were 

used for correlation analysis. Time dependent receiver 

operating characteristic (ROC) analysis (timeROC 

function in “tROC” R package) was used to judge the 

accuracy of prediction. Furthermore, we adjusted the p-

value for DEG and GSEA analysis using the false 

discovery rate (FDR) method. The criteria of the 

significant difference were that the two-tailed p-value 

was less than 0.05. All analyses were performed using 

R 4.1.2. 

 
Data availability statement 

 
The data of this study were from publicly available 

datasets. They could be found here: https://portal.gdc. 

cancer.gov/; https://www.ncbi.nlm.nih.gov/geo/. 

http://biocc.hrbmu.edu.cn/TIP/
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
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RESULTS 

 
Obesity related genes (ORGs) regulated patterns in 

PRAD 

 
ORGs had dysregulation between PRAD and normal 

tissues (Figure 1A). In these dysfunctional ORGs, com-

bined with relevant researches, ABCG1 is a potential 

target for treating ovarian cancer associated with 

ECM1-activated signaling [35], while LEPR is the one 

of breast cancer risk factors [36], indicating ORGs 

might play important roles in PRAD. Furthermore, we 

described the CNV alterations locations of ORGs on 

chromosomes (Figure 1B). Based on these results, we 

analyzed whether ORGs had a comprehensive regulatory 

pattern in PRAD and performed unsupervised clustering. 

In addition, TCGA-PRAD patients could be well divided 

into two clusters, namely ORGs cluster 1 and cluster 2 

(Figure 1C). Significantly, patients in ORGs cluster 2 

shown significantly favorable survival probability than 

patients in cluster 1(Figure 1D). The GSEA results of 

the landmark pathway showed that some epithelial-

mesenchymal transition (TME) related pathways were 

activated in cluster 2 (Figure 1E), revealing that there 

might be different EMT states between the two clusters. 

 
Different immune characteristic between ORGs 

regulated patterns 

 
In ORGs cluster 2, the positive regulation of most T cell 

activation pathways could be significantly suppressed 

(Figure 2A and Supplementary Table 2). In order to 

understand whether cluster 2 can represent the non-

inflammatory TME phenotype of PRAD, we compared 

the cancer immune cycle between the two clusters. 

Figure 2B shown that most cancer immune cycles in 

cluster 2 are significantly lower than cluster 1, suggesting 

that patients in cluster 2 might inhibit cancer immune 

activation and immune cell infiltration into TME. 

According to ssGSEA results, we found that most TILs 

like activated CD4+T cells, dendritic cells (DCs), 

CD8+T cells and natural killer (NK) cells were 

significantly reduced in ORGs cluster 2 (Figure 2C). 

These above results supported that cluster 2 represented 

the non-inflammatory TME phenotype and was not 

sensitive to ICIs treatment, while cluster 1 represented 

the inflammatory phenotype and might be sensitive to 

ICIs treatment. At the same time, we found that four 

immune related pathways, including IMmottion150T-

effector (Teff) signature, IMmottion150 Myeloid 

signature, JAVELIN signature and Tumor inflammation 

signature (TIS), were significantly suppressed in ORGs 

cluster 2 (Figure 2D). The above results showed that 

ORGs cluster 2 could not be sensitive to ICIs treatment. 

But unsupervised clustering was performed based on a 

cohort of patients, which could not evaluate the regulation 

pattern of a single patient. Therefore, our aim was to 

screen new genes to predict the prognosis of individual 

patients, the infiltration of TILs and the efficacy of 

immunotherapy. 

 
Construction and validation of ORGs risk score and 

its clinical significance 

 
The RNA levels of ORGs were presented as heatmaps 

in Figure 3A. These ORGs were enriched or 

downregulated in cluster 1 and cluster 2, respectively. 

The ORGs model was based on these ORGs (Figure 3B, 

3C). By implementing the LASSO Cox regression 

analysis, the gene signature was built based on the 

optimum λ value. We divided 494 patients into low-risk 

and high-risk subgroups according to the median score 

calculated by the risk scoring formula. Compared with 

patients in the low-risk group, the patients of high-risk 

group had more deaths and shorter survival time (Figure 

3D). In the TCGA training group, the low-risk group 

showed a significant progression free survival advantage 

compared with the high-risk group (Figure 3E). The 

AUC of the ORGs model in 1-, 3-, and 5-year survivals 

was 0.712, 0.729, and 0.745, respectively (Figure 3F). 

We also found that ORGs had great potential in 

predicting the prognosis of GSE70769 validation cohort 

and GSE21034 validation cohort (Figure 3G–3J).  

 
The signatures of ORGs could better predict PRAD 

prognosis in clinical scenarios 

 
We investigated whether ORGs signatures could better 

predict the clinic-pathological characteristic of PRAD. 

Firstly, the nomogram was constructed to predict 180- 

and 365-days biochemical recurrence (BCR) using 380 

PRAD cases by incorporating prognostic factors, including 

age, pathological T stage, pathological N stage, Gleason 

score and risk score (Figure 4A, 4D). Then the ROC 

analysis indicated that the risk score was better than 

other models for predicting the 3- or 5- survival condition 

of PRAD patients (Figure 4B, 4C). And calibration plot 

was drawn to show the possibility of overestimation or 

underestimation of mortality by the nomogram (Figure 

4E). Finally, Figure 4F showed that the ORGs model 

had better net benefit than other models in the quantity 

of false positives. 

 
The prognostic value of ORGs risk score algorithms 

was evaluated. The results showed that ORGs risk score 

had superior performance in predicting BCR prediction 

to other factors for GSE70769 and GSE21034 cohorts 

(Supplementary Figure 1). Based on these results, the 

risk score of ORGs model could play a notable role in 

clinical prediction.  
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Figure 1. Development of obesity related genes (ORGs) regulated patterns in prostate adenocarcinoma (PRAD). (A) The 

expression of ORGs in PRAD and normal prostate tissues, Normal, blue; Tumor, red. (B) The comprehensive interactions between ORGs. The 
size of circles represented the different effects of genes on the prognosis. Blue dots in the circles showed favorable factors for progression 
free survival (PFS), while red dots showed risk factors. (C) Two clusters were generated by unsupervised clustering based on those ORGs.  
(D) Kaplan-Meier plots between two ORGs regulated patterns. Blue line showed ORGs cluster 1, while red line showed ORGs cluster 2.  
(E) Gene set enrichment analysis (GSEA) of hallmark pathways between ORGs cluster1 and cluster2. *p < 0.05; **p < 0.01; ***p < 0.001; 
****p < 0.0001. ns, not significant. 
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ORGs signature for immune cell infiltration 

evaluation 

 

ORGs signature was found to be closely correlated  

with a large number of immunomodulators. We found 

that effector genes of Chemokine, Immunostimulator, 

MHC and Receptor were up-regulated in the high  

ORGs signature group (Figure 5A). In addition, TILs 

infiltration was generally positively correlated with  

ORGs signature by ssGSEA algorithm (Figure 5B). In 

 

 
 

Figure 2. Consistency between ORGs patterns, tumor microenvironment (TME) phenotypes and immunotherapy efficacy.  

(A) T cell regulated pathways in gene ontology (GO) pathways using GSEA analysis. (B) The location of CNV alteration of ORGs on 43 
chromosomes in the PRAD cohort. (C) Different infiltration status of immune cells into TME between two ORGs regulated patterns. Tumor, 
red; Normal, azure. (D) Box plots of IMmotion150 Myeloid signature, Tumor inflammation signature, JAVELIN and IMmotion150 T-effector 
(Teff) signature respectively between two ORGs regulated patterns. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. ns, not significant. 
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addition, the four immune-related pathways including 

JAVELIN signature, Tumor inflammation signature 

(TIS), IMmotion150 T-effector (Teff) signature and 

IMmotion150 Myeloid signature were all significantly 

corrected with ORGs signature cohort (Figure 5C). 

These results could help immunotherapy efficacy 

predicting. What’s more, ORGs signature was positively 

correlated with 18 immune checkpoint inhibitors (ICIs)

 

 
 

Figure 3. Construction and validation of ORGs risk score. (A) The expression levels of ORGs in two clusters. The darker color indicates 

a higher expression, where up-regulated genes were marked as red, and down-regulated genes were marked as blue. (B) LASSO regression of 
the ORGs possessing prognostic value. (C) Cross-validation for turning parameter selection via minimum criteria LASSO regression model.  
(D) Distribution of risk score, survival status and the expression of nine prognostic ORGs in PRAD. (E) Progression free survival (PFS) for PRAD 
patients in high-/low-risk group. (F) The ROC curve of measuring the predictive value. (G) The Kaplan-Meier survival plot of each patient in 
GSE70769 cohort. (H) The time-dependent ROC curves of ORGs risk score in GSE70769 cohort. (I) The Kaplan-Meier survival plot of each 
patient in GSE21034 cohort. (J) The time-dependent ROC curves of ORGs risk score in GSE21034 cohort. 
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Figure 4. ORGs risk score associated with immune microenvironment is a valuable prognostic model in TCGA cohort. (A) In 

the multivariate COX regression, age, Pathologic_T, Pathologic_N, Gleason_score and ORGs risk score were used to construct a forest map. 
(B) The ROC curve of indicating that the risk score was better than other models for predicting the 3-year survival condition of PRAD patients. 
(C) The ROC curve of indicating that the risk score was better than other models for predicting the 5-year survival condition of PRAD patients. 
(D) A nomogram was constructed using independent prognostic factors such as age, Pathologic_T, Pathologic_N, Gleason_score and ORGs 
risk score. (E) The calibration diagrams were applied to evaluate 3- and 5-years overall survival probabilities. (F) The Net Benefit plot showed 
that the ORGs model had better net benefit than other models in the quantity of false positives.  
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Figure 5. Developing an ORGs signature for individual patient’s tumor microenvironment (TME) phenotypes evaluation.  
(A) Differences in the expression of 122 immunomodulators (chemokine, receptor, MHC and immunostimulators) between high-risk and low-
risk cohorts in PRAD. (B) Correlation between ORGs signature and immune cells infiltration in TCGA-PRAD. (C) Correction between ORGs 
signature, JAVELIN, Tumor inflammation, IMmotion 150 T-effector response and IMmotion 150 Myeloid gene expression signatures 
respectively. (D) Correlation between ORGs signature, immune checkpoint (ICI) genes (topper right) and tumor inflammation signature (TIS) 
genes (lower left) respectively. (E) Correlation between ORGs signature and pan-cancer T cell inflamed score. (F) Heatmap of effect genes of 
CD8+ T cell, dendritic cell (DC), macrophage, natural killer (NK) cell and type 1 T helper (Th1) cell between high-risk and low-risk ORGs 
signature cohorts. (G) Correlation between ORGs signature and the individual genes included in the T cell inflamed signature.  
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genes (Figure 5D, right upper) and 22 TIS genes  

(Figure 5D, left bottom). ORGs signature was also 

positively correlated with the pan-cancer T cell inflamed 

score (R=0.19, P=1.9e-0.5) (Figure 5E). Similarly, ORGs 

signature was positively correlated with the effector 

genes of these tumor-infiltrating immune cells (TIICs) 

(Figure 5F). Consistently, ORGs signature was found  

to be positively correlated with a majority of ICIs 

including LAG-3, CTL4, PDCD1, HAVCR2, PVR, 

CD80, CD86 and so on (Figure 5G).  

 

Analysis of immune status by GO and GSEA 

analysis 

 

Functional enrichment analysis showed that GO 

enrichment terms for the up-regulated and down-

regulated ORGs signature by GOCircle plot (Figure  

6A). Furthermore, we performed GSEA analysis and the 

results showed that Biocarta NAK pathway, Reactome 

TNFs their physiological receptors, Reactome signaling 

by the B Cell receptor bcr, Reactome interleukin 12 

signaling, Reactome interleukin 2 family signaling, 

KEGG toll like receptor signaling pathway, KEGG 

leukocyte trans-endothelial migration and KEGG fc 

gamma r mediated phagocytosis were enriched in high-

risk cohort compared with the low-risk cohort (Figure 

6B–6I). In a word, the ORGs prognostic risk signature 

model was closely correlated with the immune status of 

PRAD patients. 

 

The role of ORGs signature on the single cell level 

 

The above analysis was based on a large number of 

RNA-seq, so we further used scRNA-seq to determine 

whether our ORGs signature had immune predictive 

value on the single cell level. Figure 7A showed that the 

 

 
 

Figure 6. Functional enrichment analysis and GSEA analysis. (A) GO circle plots displayed scatter plots of log fold change (logFC) for 
the most statistically significant GO terms. Red dots represented up-regulated genes and blue dots represented down-regulated genes. The 
inner circles displayed z-scores calculated as the number of up-regulated genes minus the number of down-regulated genes divided by the 
square root of the count. (B–I) GSEA analysis exhibited that Biocarta NAK pathway (B), Reactome TNFs their physiological receptors  
(C), Reactome signaling by the B Cell receptor bcr (D), Reactome interleukin 12 signaling (E), Reactome interleukin 2 family signaling (F), KEGG 
toll like receptor signaling pathway (G), KEGG leukocyte trans-endothelial migration (H) and KEGG fc gamma r mediated phagocytosis (I) were 
enriched in the high-risk group compared with low-risk group. 
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Figure 7. The role of ORGs signature on the single cell level. (A) UMAP plots of GSE157703 and each cluster were visualized and 

marked by different cell types. (B) Distribution of ORGs signature on the single cell level. (C) The expression of ORGs on the single cell level. 
(D) The heatmap revealed that significant connection probability of ORGs related signaling pathways on single cell level. (E) Gene ontology 
(GO) enrichment of chemokine related signatures identified by gene set enrichment analysis (GSEA) on the single cell level. (F) Gene ontology 
(GO) enrichment of T cell activation related signatures identified by gene set enrichment analysis (GSEA) on the single cell level. (G) Kyoto 
Encyclopedia of Genes and Genomes (KEGG) enrichment of T cell activation related signature identified by GSEA on the single cell level.  
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PRAD samples from GEO datasets were annotated into 

Mast cell, Epithelial-NE, T/NK, Plasma_B, Epithelial, 

Neuron, SMC, Fibroblasts and Pericytes, Myeloid and 

Endothelial. It was obvious that ORGs signature was 

specifically high in Epithelial-Nk, T/Nk and SMC  

cells (Figure 7B, 7C). Meanwhile, Figure 7D revealed 

that significant connection probability of ORGs related 

signaling pathways in cell clusters which showed 

specifically high ORGs signature. Furthermore, we chose 

epithelial cell for analysis. Chemotaxis related pathways 

including cell chemotaxis, leukocyte chemotaxis, 

regulation of chemotaxis and regulation of leukocyte 

chemotaxis were significantly up-regulated in the  

high ORGs signature group (Figure 7E). What’s more, 

immune related pathways were all up-regulated in the 

high ORGs signature group both in GO (Figure 7F) and 

KEGG (Figure 7G) analysis.  

 

The expression levels of ORGs in PRAD cell lines 

detected by RT-qPCR 

 

We performed cytological verification on several ORGs 

(LPL, CEP290, TMEM67, ADCY3, NR3C1, CPE, 

PCSK1, LRP2 and SLC6A14) in the ORGs signature. 

LPL’s higher expression in PRAD cell than normal 

prostate cell confirmed by our RT-qPCR, which was 

consistent with TCGA analysis result (Figure 8A). 

Similarly, several other ORGs were also verified to be 

consistent with TCGA analysis results by RT-qPCRs 

(Figure 8B–8I).  

DISCUSSION 
 

In recent years, more and more evidence show that 

obesity is a related risk factor for a variety of malignant 

tumors, including invasive PCa [2, 15]. The proteins 

encoded by LEP and ANGPT1 may have functions 

other than adipose tissue itself. Leptin receptor is 

expressed in PRAD and leptin staining is significantly 

increased [37]. Angiopoietin 1 and its receptor Tie-2 are 

also found in PRAD cells and their capillaries, which 

could induce tumor angiogenesis [38, 39]. But all these 

studies only focused on one or a small number of new 

genes, and the comprehensive relationship between 

ORGs, cancer immunity and immunotherapy was 

lacking. 
 

At present, many studies have shown the complexity 

and co-regulation characteristics of TME by analyzing 

the relationship between TME and gene list. For 

example, Li et al. generated m6A modified clusters 

based on 24 m6A modified genes, and associated them 

with TME and immunotherapeutic efficacy of renal cell 

carcinoma [40]. The other study divided bladder cancer 

patients into 5 hypoxia response modes and generated 

individual hypoxia response modes. Li et al. also  

found that cuproptosis patterns depicted different  

TME phenotypes in bladder cancer [30]. Wan et al. 

systematically analyzed their relationship with glioma 

prognosis and immunotherapy efficacy by constructing 

two ferroptosis groups [41]. To our knowledge, this is 

 

 
 

Figure 8. The expression levels of LPL (A), CEP290 (B), TMEM67 (C), ADCY3 (D), NR3C1 (E), CPE (F), PCSK1 (G), LRP2 (H) and SLC6A14 (I) in 
LUAD cell lines and normal prostate cell lines detected by RT-qPCR. Human prostate cell line: RWPE-1. PRAD cell line: 22RV1 and PC-3.  
*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. ns, not significant. 
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the first study to systematically link ORGs with TME, 

prognosis and immunotherapy efficacy in PRAD. We 

identified high- and low-risk clusters of ORGs, and 

found that there were different survival outcomes 

behind the two clusters. In addition, high-risk cluster 

and low-risk cluster represent different TME pheno-

types and immune response rates. For individual PRAD 

patients, we also constructed ORGs risk score and ORGs 

signature for prognosis and cancer immune prediction 

respectively. 

 
PRAD is one of the most common solid tumors in men 

worldwide [42]. With the increase of incidence rate of 

PRAD, it poses a huge threat to human health and 

economy. Prostate specific antigen (PSA) testing is 

widely used in the United States and Europe, but due to 

the high rate of false positives, misdiagnosis and 

overtreatment, it soon became obsolete. The significant 

increase and decrease in PRAD mortality can be 

attributed to these factors [43, 44]. In addition, studies 

have found that metastatic castration-resistant prostate 

cancer (mCRPC) patients with high tumor mutational 

burden (TMB) have better overall survival (OS) after 

receiving ICIs treatment [45]. Graf et al. evaluated a 

cohort of patients treated with ICIs or taxanes through a 

comparative effectiveness study, and found that the time 

to next therapy and OS of patients with high TMB 

treated with ICIs were improved compared with those 

treated with taxanes [45]. In addition, the largest single 

study evaluated MSI-H or mismatch repair defect mCRPC 

patients receiving anti-PD-1 or anti-PD-L1 treatment, 

and found that PSA levels in 6 of 11 patients decreased 

by 50% or more [46]. A trend for superior PFS and OS 

was observed in this cohort of PRAD patients with bone-

predominant disease compared with those assessable for 

both response evaluation criteria in solid tumors and 

PD-L1 [47]. These clinical trials have promoted the 

approval of ICIs for PRAD and revealed the important 

role of ICIs. But, at present, not all patients responded 

to the treatment of ICIs in the trial, which indicated the 

urgent need to find biomarkers to predict the efficacy of 

ICIs. 

 
Recent studies have revealed that TME promotes the 

development of cancer biology and immunology by 

affecting the immune system of the host [48–51]. 

Patients with immunosuppression micro-environment 

and less TILs had poor response rate to ICIs treatment 

and poor OS [45]. In addition, the study believed  

that distinguishing non-inflammatory tumors from 

inflammatory tumors can not only predict the efficacy 

of ICIs, but also transform “cold” into “hot”, so as to 
obtain higher efficacy of ICIs [48]. Many studies on 

PRAD have linked the signatures of pyroptosis and 

ferroptosis with TME and immunotherapy efficacy [52–

54]. In this study, we first generated an ORGs signature 

of accurate TME phenotype prediction. Importantly, 

this result was also well verified in the external data 

set, which made our results more reliable. More 

importantly, our ORGs signature model could directly 

predict the efficacy of immunotherapy, which was 

crucial for accurate ICIs treatment of PRAD.  

 
This study had some limitations. First of all, all our 

results were from a retrospective public database, which 

needs to be further verified by prospective research. In 

addition, although we have verified the ORGs signature 

in TME and immunotherapy through external data, the 

specific therapeutic mechanism needs to be further 

studied in vivo and in vitro. 

 
CONCLUSIONS 

 
ORGs patterns depict different TME phenotypes in 

PRAD. ORGs risk score and signature have potential 

role for predicting prognosis and the efficacy of immuno-

therapy that could guide accurate medicine. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figure 

 

 

 

 
 

Supplementary Figure 1. Validation of the accuracy of the ORGs risk score algorithm for predicting BCR probability of 
GSE70769 and GSE21034 datasets. (A, B) Kaplan-Meier curve analysis was used to analyze the BCR of patients with high and low ORGs 
risk score. Time-dependent ROC curves were used to compare the 1-, 3-, 5-year BCR between high and low ORGs risk score. 
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Supplementary Tables 
 

Supplementary Table 1. 
ORGs were summarized 
in this study. 

LEP 

LEPR 

MC4R 

POMC 

PCSK1 

ADCY3 

SIM1 

BDNF 

NEGR 

TCF7L2 

IRS1 

FTO 

RPTOR 

MAP2K5 

NPY 

SLC6A4 

MCHR1 

ADIPOQ 

LPL 

PPARG 

IGF2/H19 

HSD2 

GR 

SREBF1 

ABCA1 

TNFA 

CD36 

PHGDH 

TOMM20 

ABCG1 

PHOSPHO1 

PER3 

HIF3A 

TXNIP 

PEG3 

LY86 

ADRB3 
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Supplementary Table 2. The primers for q-PCR in this study. 

 Primer Sequence (5’ to 3’) 

1 LPL For TCATTCCCGGAGTAGCAGAGT 

2 LPL REV GGCCACAAGTTTTGGCACC 

3 CEP290 For AGATGCTCACCGAACAAGTAGA 

4 CEP290 REV ATGAGTCTGTTGAGAAAGGGTTG 

5 TMEM67 For CTTGGCTGTTTTATGGAGACCA 

6 TMEM67 REV ACCTCCTTCTAAAGTTTGCCAC 

7 ADCY3 For TTCTCCGAGCCCGAATACTC 

8 ADCY3 REV GACTCCGGCACGAAAGTCA 

9 NR3C1 For ACAGCATCCCTTTCTCAACAG 

10 NR3C1 REV AGATCCTTGGCACCTATTCCAAT 

11 CPE For CATCTCCTTCGAGTACCACCG 

12 CPE REV CCGTGTAAATCCTGCTGATGG 

13 PCSK1 For CTGGATGGCATTGTGACGGAT 

14 PCSK1 REV GCCCCAGCTTGCACTGTAAA 

15 LRP2 For GTTCAGATGACGCGGATGAAA 

16 LRP2 REV TCACAGTCTTGATCTTGGTCACA 

17 SLC6A14 For ACCGTGGTAACTGGTCCAAAA 

18 SLC6A14 REV CGCCTCCACCATTGCTGTAG 

 


