
www.aging-us.com 10236 AGING 

INTRODUCTION 

 
Alzheimer’s disease (AD) is an irreversible degenerative 

disorder of the central nervous system. AD is charac-

terized by aberrant amyloid beta (Aβ) accumulation  

in senile plaques and neurofibrillary tangles consisting 

of highly phosphorylated tau proteins [1–3]. Although 

the amyloid hypothesis, cholinergic hypothesis, and tau 

protein theory are widely accepted, mounting evidence 
indicates a key role of neuroinflammation. Specifically, 

the activated microglia and astrocytes reportedly secrete 

toxic substances and pro-inflammatory cytokines, causing 

the neuronal dysfunction and apoptosis that result in AD 

pathology [4–6]. 

 
The nucleotide-binding oligomerization domain-like 

receptor family pyrin domain-containing 3 (NLRP3) 

inflammasome is a pivotal player in the AD inflammatory 

pathways [7, 8]. As an intracellular, multimolecular 

complex found in microglia, the NLRP3 inflammasome 

contains an NLRP3 scaffold, adaptor protein apoptosis-

associated speck-like protein containing a CARD 

(ASC), and procaspase-1. Under pathological conditions, 

abnormal Aβ aggregation trigger an inflammatory 
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ABSTRACT 
 

The NLRP3 inflammasome is involved in the neuroinflammatory pathway of Alzheimer’s disease (AD). The aim 
of this study is to explore the roles and underlying mechanisms of ginkgolide (Baiyu®) on amyloid precursor 
protein (APP)/presenilin 1 (PS1) transgenic mice and a murine microglial cell line, BV-2. In the present study, 
the APP/PS1 mice were administered with ginkgolide, followed by a Morris water maze test. The mice were 
then euthanized to obtain brain tissue for histological and Aβ analysis. Additionally, BV-2 cells were pretreated 
with ginkgolide and then incubated with Aβ1–42 peptide. NLRP3, ASC, and caspase-1 mRNA and protein 
expression in brain tissue of mice and BV-2 cells were quantified by real-time PCR and western blotting, as well 
as reactive oxygen species (ROS) production, interleukin (IL)-1β and IL-18 levels by lucigenin technique and 
ELISA. Compared with the APP/PS1 mice, ginkgolide-treated mice demonstrated the shortened escape latency, 
reduced plaques, less inflammatory cell infiltration and neuron loss in the hippocampi of APP/PS1 mice. The 
levels of NLRP3, ASC, caspase-1, ROS, IL-1β, and IL-18 were also decreased in the brain tissue of APP/PS1 mice 
or Aβ1–42-treated BV-2 cells following ginkgolide treatment. Ginkgolide exerted protective effects on AD, at 
least partly by inactivating the NLRP3/caspase-1 pathway. 

mailto:liugz@mail.ccmu.edu.cn
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/


www.aging-us.com 10237 AGING 

response followed by a subsequent formation and 

activation of NLRP3 inflammasome, which thus 

generates activated caspase-1 [2, 3] and initiates the 

maturation and secretion of interleukin (IL)-1β and IL-

18. These processes further contribute to AD progression. 

Notably, recent research has shown promising results, 

demonstrating that specific NLRP3 inhibitors attenuated 

the NLRP3 inflammasome activity in vivo, reduced tau 

and Aβ levels, and diminished cognitive impairment [9–

11]. Hence, therapeutic strategies that inhibit NLRP3 

inflammasome signaling as a consequence of neuro-

inflammation may halt or even reverse AD progression 

[12, 13]. 
 

In the past decade, plant-derived bioactive natural products 

have become popular for the development of therapeutic 

drugs for AD owing to their neuroprotective, anti-

inflammatory, antioxidant, anti-amyloidogenic, and anti-

cholinesterase activities [14, 15]. A variety of Chinese 

herbal medicine extracts (e.g., baicalin, schisandrin, 

nootkatone, and resveratrol) may prove beneficial  

in the treatment of AD via inhibition of the NLRP3 

pathway [16–18]. Furthermore, Ginkgo biloba extracts 

have attracted attention due to their efficacy in treating 

dementia and hence have been recommended for AD 

treatment [19]. The active compounds in GB are terpene 

trilactones, which consist of bilobalide and ginkgolides 

A–C, J–N, P, and Q. Increasing evidence suggests  

that ginkgolides and bilobalide have extensive neuro-

protective properties that may effectively treat AD  

[20, 21]. Of note, several in vitro and in vivo studies 

have recently reported that ginkgolide B remarkably 

improved cognitive function in senescence-accelerated 

mouse (SAMP8) or enhanced microglial M2 polarization 

by suppressing NLRP3 inflammasome activation [22, 23]. 
 

With ongoing advancements in technology, a new drug 

of ginkgolide (Baiyu®, Baiyu Pharmaceutical Co., Ltd., 

Chengdu, China) comprising ginkgolide A–C, J, and 

bilobalide has recently been developed and approved 

for treating ischemic cerebrovascular disorder, but  

its treatment efficacy for AD remains uncertain. We 

previously performed an in vitro study to investigate the 

effects of ginkgolide (Baiyu®) using an AD cellular 

model (amyloid precursor protein (APP)/presenilin 1 

(PS1) double-transfected human embryonic kidney 293 

cell line) [24]. The product significantly enhanced cell 

viability, demonstrating its neuroprotective effects  

on AD by suppressing the nuclear factor kappa B (NF-

κB) signaling pathway through anti-apoptosis and anti-

inflammation mechanisms. However, little is known 

about ginkgolide’s neuroprotective activities against 

AD and NLRP3 activation. In the present study, we 

observed the effects of ginkgolide on Aβ accumulation, 

NLRP3 inflammasome activity, neuronal loss, and 

learning and memory impairment in APP/PS1 trans-

genic mice and a murine microglial cell line, BV-2. 

Furthermore, we explored the mechanisms underlying 

its anti-neuroinflammatory activities. 

 
RESULTS 

 
Ginkgolide attenuated cytotoxicity in Aβ1–42-treated 

BV-2 cells 

 
The proliferative activities in different dosage group 

(6.25, 12.5, 25, and 50 μg/ml) displayed an upward-

downward-upward trend after 12, 24, and 48 hours of 

treatment with ginkgolide, respectively. Cell viability at 

12 hours post-treatment was remarkably higher than that 

at 24 hours or 48 hours post-treatment. Furthermore, at 

12 hours post-treatment, the cell viability at 25 μg/ml 

was remarkably increased compared with that of the 

other dosage groups (P < 0.01 and P < 0.01) (Figure 1). 

Based on these findings, 25 μg/ml and 12 hours post-

treatment were selected as the optimal concentration 

and time point for cell proliferation, respectively. 

 

 
 

Figure 1. Effects of different dosages of ginkgolide on BV-2 cell proliferative activity at different time points. Data are presented 
as mean ± standard deviation (n = 3). 
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Ginkgolide inactivated NLRP3 inflammasome 

signaling in Aβ1–42-treated BV-2 cells 

 

To determine whether ginkgolide attenuated Aβ1–42-

induced inflammatory responses by inactivating the 

NLRP3 inflammasome signaling pathway, BV-2 cells 

were pretreated with ginkgolide for 2 hours, and then 

stimulated with Aβ1–42 (2 μm) for 10 hours. As shown 

in Figures 2 and 3, the mRNA and protein expression 

of ASC, NLRP3, and caspase-1 were significantly 

upregulated in BV-2 cells after treatment with Aβ1–42. 

Pretreatment with ginkgolide, as we had expected, 

substantially decreased the mRNA and protein 

expression of ASC, NLRP3, and caspase-1 in BV-2 

cells compared to Aβ1–42-treated group (P < 0.05 and 

P < 0.05, P < 0.05 and P < 0.05, P < 0.01 and 

P < 0.05).  

 

Ginkgolide suppressed production of pro-

inflammatory cytokines and ROS in Aβ1–42-

stimulated BV-2 cells 

 

To investigate the regulatory effects of ginkgolide on 

the production of pro-inflammatory cytokines in Aβ1–42- 

 

 
 

Figure 2. Detection of intracellular protein expression of ASC, NLRP3, and caspase-1 in BV-2 cells by western blotting. (A) 

Western blotting. Lane 1, control group (untreated); lane 2, Aβ group (treated with 2 μM Aβ1–42 for 12 h); lane 3, ginkgolide + Aβ group 
(pretreated with 25 μg/ml ginkgolide for 2 h followed by 2 μM Aβ1-42 for 10 h); lane 4, ginkgolide group (pretreated with 25 μg/ml 
ginkgolide for 12 h). (B–D) Effects of ginkgolide on intracellular protein expression of ASC, NLRP3, and caspase-1 in BV-2 cells. Data are 
presented as mean ± standard deviation. Abbreviations: Aβ: amyloid beta; ASC: apoptosis-associated speck-like protein containing a CARD; 
NLRP3: nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3. 
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stimulated glial cells, BV-2 cells were pretreated with 

ginkgolide for 2 hours, followed by stimulation with 

Aβ1–42 for 10 hours. When compared to the control 

group, Aβ1–42-treated group showed remarkably 

increased supernatant expression of IL-1β and IL-18. 

However, these increases were significantly reduced 

by ginkgolide compared with Aβ1–42-treated group 

(Figure 4A, 4B, P < 0.01 and P < 0.05). ROS levels 

exhibited an increase in Aβ1–42-administrated cells 

compared with control cells (P < 0.01). Further, 

compared with those in Aβ1–42-treated cells, ROS 

levels were significantly decreased in either ginkgolide 

+ Aβ group (P < 0.01) or ginkgolide-treated cells 

(Figure 4C, P < 0.01). 

Ginkgolide ameliorated impaired cognition and 

pathological alterations in APP/PS1 mice 

 

In the memory training experiment, the mean escape 

latencies in all groups of mice were remarkably 

reduced with increasing time. There was a marked 

increase in the escape latencies in the APP/PS1 group 

compared with the WT group (P < 0.01). Furthermore, 

at 5 days post-treatment with ginkgolide at doses of 

0.4375, 0.875, and 1.75 mg/kg, the escape latency in 

each dosage group was significantly shorter than that 

of APP/PS1 group (P < 0.01), particularly at a dose of 

1.75 mg/kg (P < 0.01) (Figure 5). Based on these 

results, post-treatment with ginkgolide (1.75 mg/kg) 

 

 
 

Figure 3. Effects of ginkgolide on mRNA expression levels of (A) ASC, (B) NLRP3, and (C) caspase-1 in BV-2 cells. Data are presented as 

mean ± standard deviation. Abbreviations: ASC: apoptosis-associated speck-like protein containing a CARD; NLRP3: nucleotide-binding 
oligomerization domain-like receptor family pyrin domain-containing 3. 
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Figure 4. Effects of ginkgolide on supernatant levels of (A) interleukin (IL)-1β, (B) IL-18, and on (C) production of reactive oxygen species 
(ROS) in BV-2 cells. Data are presented as mean ± standard deviation. 

 

 
 

Figure 5. Effects of different doses of ginkgolide on mice escape latency at different time points.  Data are presented as mean ± 

standard deviation (n = 5). 
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were selected as the optimal dosage for drug 

intervention study. 

 

Behavioral performance was assessed using the  

Morris water maze method to determine the effect of 

ginkgolide intervention on memory deficits in AD  

mice (Figure 6A). Compared with the WT group, the 

APP/PS1 group exhibited prolonged escape latency; 

furthermore, escape latency was shortened in the 

ginkgolide group compared with that in the APP/PS1 

group (Figure 6B, P < 0.05 and P < 0.05). Relative to 

the WT group, the number of platform crossings and 

time spent in the target quadrant were significantly 

decreased in the APP/PS1 group (P < 0.01 and P < 

0.05), while the time spent in the target quadrant was 

remarkably elevated after ginkgolide or donepezil 

administration compared to APP/PS1 group (Figure 6C, 

6D, P < 0.05 and P < 0.01). 

 

H&E and Nissl staining displayed greater inflammatory 

cell infiltration and neuron loss in the hippocampi and 

cerebral cortex of vehicle-treated APP/PS1 mice than  

in those of vehicle-treated WT mice and a reduction 

thereof with ginkgolide or donepezil administration 

(Figure 7A, 7B). Immunohistochemistry showed that 

vehicle-treated APP/PS1 mice had an over-accumulation 

of brain Aβ plaques, whereas these plaques were 

reduced in ginkgolide- and donepezil-treated AD mice 

(Figure 7C). 

 

Ginkgolide attenuated NLRP3 inflammasome 

activation in APP/PS1 mouse brains 

 

The mRNA and protein expression levels of NLRP3 

inflammasome pathway molecules were detected in 

brain tissue using quantitative real-time PCR (Figure 8) 

and western blotting (Figure 9). As a result, relative to 

the WT group, the mRNA and protein levels of ASC, 

NLRP3, and caspase-1 increased in the hippocampal 

tissue of APP/PS1 group (mRNA: P < 0.01, P < 0.05, 

and P < 0.01; protein: P < 0.01, P < 0.05, and P < 

0.05), but the mRNA and protein levels of NLRP3 

were reduced in ginkgolide-treated group when 

compared to APP/PS1 group (P < 0.05 and P < 0.05). 

Moreover, expression levels of ASC and caspase-1 

were lower in donepezil-treated group than those in 

APP/PS1 group (P < 0.05 and P < 0.05, P < 0.05 and 

P < 0.05). 

 

 
 

Figure 6. Ginkgolide improved learning and memory impairment in APP/PS1 mice. (A) Representative swimming track on day 5 

of the Morris water maze test, (B) escape latency, (C) number of platform crossings, and (D) time spent in target quadrant on day 5 of the 
experiment. Abbreviations: APP/PS1: amyloid precursor protein/presenilin 1; WT: wild-type. 
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Ginkgolide decreased production of pro-inflammatory 

cytokines and ROS in APP/PS1 mice 

 

To evaluate whether ginkgolide could reduce pro-

inflammatory cytokines in the brains of APP/PS1  

mice, we measured brain IL-1β and IL-18 protein 

levels. As shown in Figure 10, levels of IL-1β  

(Figure 10A) and IL-18 (Figure 10B) were significantly 

elevated in the cortex and hippocampus of the APP/ 

PS1 group as compared to those in the WT group (P < 

0.01 and P < 0.01). Relative to the APP/PS1 group, 

ginkgolide treatment significantly reduced IL-1β and 

IL-18 (P < 0.05 and P < 0.05), and donepezil decreased 

only IL-1β levels in the mice brain (P < 0.05). When 

compared to APP/PS1 group, ROS levels in the brain 

tissue of ginkgolide-treated or donepezil-treated mice 

were almost consistent with this group’s qRT-PCR 

and western blotting results (Figure 10C, P < 0.01 and 

P < 0.05). 

 

DISCUSSION 
 

As a murine model of spontaneous AD, APP/PS1 mice 

develop cognitive and behavioral abnormality at 3–8 

months of age [25, 26]. Increased deposition of Aβ and 

Aβ-associated neuroinflammation (e.g., microgliosis 

and astrogliosis) are observed in the cerebral cortex and 

hippocampi of mice [25, 27–29]. Various studies have 

confirmed that treatment with GB extract EGb 761  

in murine AD models improves cognitive deficits and 

reduces Aβ aggregation or tau hyperphosphorylation in 

the brain [30–45], illustrating the therapeutic potential 

of ginkgolides and bilobalide in AD [46]. As expected, 

our in vivo experiments revealed that ginkgolide 

significantly ameliorated the learning and memory 

deficits and reduced Aβ deposition, inflammatory cell 

infiltration, and neuronal loss in the APP/PS1 mice 

brain. Our results, hence, substantiate the potential anti-

AD effects of ginkgolide and its underlying neuro-

protective and anti-inflammatory mechanisms. 

 
Presently, microglia-based neuroinflammatory events 

driven by Aβ include the release of proinflammatory 

cytokines (i.e., IL-1, IL-6, and tumor necrosis factor-α 

(TNF-α)) and chemokines (i.e., monocyte chemotactic-1 

and macrophage inflammatory protein-1) as well as 

ROS production. These events are major contributing 

factors in the pathogenesis of AD [47–50]. Notably, 

activation of the NLRP3 inflammasome in microglia 

and astrocytes within the central nervous system [12, 

51] is believed to have a leading role in AD patho-

genesis [7, 52–54]. Previous studies have shown that 

EGb exerts its anti-inflammatory effects through 

inhibiting microglial production of pro-inflammatory 

factors (e.g., prostaglandin E2, nitric oxide (NO), TNF-

α, IL-1β, and IL-6) [55, 56]. In agreement with these 

findings, our in vivo experiments found that ginkgolide 

treatment resulted in decreased expression levels  

of NLRP3, ASC, and caspase-1, as well as reduced 

production of IL-1β and IL-18 in the AD mice brain, 

 

 
 

Figure 7. Ginkgolides attenuated pathological alterations in the hippocampus and cerebral cortex of APP/PS1 mice. 
Ginkgolides alleviated (A) inflammatory cell infiltration (H&E, ×400, scale bar = 50 μm), (B) neuron loss (Nissl staining, ×400, scale bar = 
50 μm), and (C) the accumulation of Aβ in the brains of APP/PS1 mice shown by immunohistochemistry (×200; scale bar = 50 μm). 
Abbreviations: Aβ: amyloid beta; APP/PS1: amyloid precursor protein/presenilin 1; H&E: Hematoxylin and Eosin; WT: wild-type. 
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indicating the protective effects of ginkgolide  

through inactivation of the NLRP3/caspase-1 pathway, 

possibly in microglia. Indeed, similar results were 

observed in Aβ-treated BV-2 microglial cells following 

administration of ginkgolide, thereby supporting our 

hypothesis. Additionally, lower production of ROS  

was observed in Aβ1–42-stimulated, ginkgolide-treated 

BV-2 cells, suggesting that ginkgolide may promote a 

switch from M1 proinflammatory phenotype to M2 

anti-inflammatory phenotype in BV-2 cells, as The M1 

phenotype is critical for secretion of ROS, inducible 

nitric oxide synthase (iNOS), and pro-inflammatory 

factors (TNF-α, IL-1β and IL-6) to initiate proper 

inflammatory responses [57, 58]. On the other hand, 

changes in anti-inflammatory phenotype of the BV-2 

cells should also be observed after the drug intervention, 

since several recent studies revealed that treatment with 

other drugs, such as fatty acid amide hydrolase inhibitor 

or hydroxysafflor yellow A, induced microglia pola-

rization toward anti-inflammatory phenotype [59, 60]. 

Nonetheless, more efforts are required to investigate  

the state of the cells during drug administration in our 

future study. 

 

Currently, the acetylcholinesterase inhibitors (AChEIs), 

such as donepezil and rivastigmine, have been approved 

 

 
 

Figure 8. Effects of ginkgolide on the mRNA expression levels of (A) ASC, (B) NLRP3, and (C) caspase-1 in the brains (hippocampus and 

cerebral cortex) of APP/PS1 transgenic mice. Abbreviations: ASC: apoptosis-associated speck-like protein containing a CARD; APP/PS1: 
amyloid precursor protein/presenilin 1; NLRP3: nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3; 
WT: wild-type. 
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to treat AD. Aside from their effects on AChE,  

AChEIs possess other biological activities, including 

suppression of Aβ plaque formation and brain 

inflammation [61–64]. Moreover, in this study we  

chose donepezil as anti-inflammatory control, rather 

than other typical medicines, such as Ibuprofen, mainly 

because the data regarding treatment of AD with 

Ibuprofen from epidemiological studies, clinical trials 

and meta-analyses in the past is still controversial [65]. 

Interestingly, several in vitro and in vivo studies have 

reported the anti-inflammatory effects of donepezil  

on various stimulus-induced inflammatory responses  

[66–71]. For instance, use of donepezil can inhibit  

Aβ-mediated upregulation of proinflammatory factors 

(e.g., nitric oxide (NO), iNOS, IL-1β, TNF-α) and 

suppress the p38/p65 signaling pathway in BV-2  

cells, rat primary microglia, and mice brain [71]. 

Importantly, a recent study by Kim et al. illustrated the 

 

 
 

Figure 9. Detection of intracellular protein expression of ASC, NLRP3, and caspase-1 by western blotting. (A) Western 

blotting. Lane 1, WT group (treated with normal saline); lane 2, APP/PS1 group (treated with normal saline); lane 3, APP/PS1 + ginkgolide 
group (treated with 1.75 mg/kg ginkgolide); lane 4, APP/PS1 + donepezil group (treated with 0.65 mg/kg donepezil). (B–D) Effects of 
ginkgolide on the protein levels of ASC, NLRP3, and caspase-1 in the brains (hippocampus and cortex) of APP/PS1 transgenic mice. Data are 
presented as mean ± standard deviation. Abbreviations: ASC: apoptosis-associated speck-like protein containing a CARD; APP/PS1: amyloid 
precursor protein/presenilin 1; NLRP3: nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3; WT: 
wild-type. 
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therapeutic potential of donepezil; in response to 

lipopolysaccharide- and Aβ-induced neuroinflammation, 

the drug suppressed AKT/mitogen-activated protein 

kinase, NLRP3 inflammasome, and NF-κB/signal 

transducer and activator of transcription 3 signaling  

in vitro and in vivo. This suggests that donepezil could 

effectively treat neuroinflammation-associated diseases 

such as AD [63]. Consistent with these findings, our 

experiment found that after treatment with donepezil, 

down-regulated expression of ASC and caspase-1 

occurred in the brains of AD mice, and decreased IL-1β 

and ROS was also observed, supporting a role for 

donepezil in modulating the NLRP3 inflammasome. 

However, unlike ginkgolide, no changes in NLRP3 

expression were observed in donepezil-treated AD 

mice, despite downregulation of ASC and caspase-1 

expression. Thus far, the effects of donepezil on  

Aβ-induced NLRP3 inflammasome pathways have  

not been well established. Hence, we speculate that 

donepezil might exert distinct modulatory action on 

the NLRP3 pathway, as AChE inhibition regulates the 

inflammatory response via the modulation of ACh 

 

 
 

Figure 10. Effects of ginkgolide on (A) IL-1β, (B) IL-18, and (C) production of reactive oxygen species (ROS) in the brains (hippocampus and 

cortex) of APP/PS1 transgenic mice. Data are presented as mean ± standard deviation. Abbreviations: APP/PS1: amyloid precursor 
protein/presenilin 1; IL: interleukin; WT: wild-type. 
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levels and the activation of α7 nicotinic AChRs [71, 72]. 

Nonetheless, further research is needed to ascertain the 

exact roles of AChEIs. 

 

The present study has several limitations. First, APP/ 

PS1 mice were employed because this is a common 

animal model for AD; however, this model may not 

reflect all types of this disease [73]. Therefore, other 

AD animal models should be assessed to validate the 

effects of ginkgolide. Second, the sample size of 

animals included in this study was relatively small,  

and a larger sample size is required to confirm our 

results. Third, pro-inflammatory and anti-inflammatory 

response may coexist in neuroinflammatory process in 

AD [74, 75]; hence, further investigation is warranted to 

address this issue. Finally, while ginkgolide B has been 

investigated [22, 23], analysis of other components, 

such as ginkgolide A, C, J, and bilobalide, is needed  

to determine the role of these specific compounds  

in immunomodulation of the AD-associated NLRP3/ 

caspase-1 pathway. 

 

In conclusion, for the first time, we determined that 

ginkgolide exerted neuroprotection in a mouse model of 

AD, reduced Aβ deposition, and attenuated inflammatory 

cell infiltration and neuronal loss, thus improving 

cognitive function. Furthermore, ginkgolide prevented Aβ-

induced neuroinflammation and ameliorated microglia-

mediated neurotoxicity in BV-2 cells. The neuro-

protective effect of ginkgolide may be mediated by  

its anti-neuroinflammatory activities, at least partially  

via the inactivation of the NLRP3/caspase-1 pathway. 

However, further studies on different animal models of 

AD and human clinical trials are warranted. Nonetheless, 

our findings pave the way for new treatment options for 

AD, and ginkgolide may emerge as a promising drug 

candidate for the treatment of this disease. 

 

MATERIALS AND METHODS 
 

Chemicals and reagents 

 

Ginkgolide and donepezil were provided by Baiyu 

Pharmaceutical Co., Ltd. (Chengdu, China) and  

Eisai Co., Ltd. (Tokyo, Japan), respectively. Aβ1-42  

was obtained from Shanghai Aladdin Biochemical 

Technology Co., Ltd. (Shanghai, China). BCA protein 

assay kit and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-

2H-tetrazolium bromide (MTT) assay kits were 

purchased from Thermo Fisher Scientific (Waltham, 

MA, USA). Mouse IL-1β and IL-18 enzyme-linked 

immunosorbent assay (ELISA) kits were obtained from 

Multisciences (Lianke) Biotech (Hangzhou, China). 

Antibodies were obtained from several companies: anti-

Aβ from Santa Cruz Biotechnology, Inc. (Santa Cruz, 

CA, USA); anti-NLRP3 from and anti-caspase-1 from 

Novus Biologicals (Littleton, CO, USA); anti-ACS 

from Thermo Fisher Scientific (Waltham, MA, USA); 

goat anti-rabbit and anti-mouse immunoglobulin  

G (H + L)-horseradish peroxidase (HRP) from  

Jackson ImmunoResearch Laboratories, Inc. (West 

Grove, PA, USA); and anti-glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) from Tianjin Ringpu  

Bio-Technology Co., Ltd. (Tianjin, China). TRIzol 

reagent was obtained from Tiangen Biotech Co., Ltd. 

(Beijing, China). RNAiso Plus, PrimeScript™ room 

temperature (RT) Reagent Kits with genomic (g)  

DNA Eraser, SYBR Premix Ex Taq (Tli RNase H 

Plus), and a DL 2,000 DNA Marker were purchased 

from Takara Biomedical Technology (Beijing, China). 

Electrochemiluminescence (ECL) kits were obtained 

from Pierce Biotechnology (Rockford, IL, USA). 

 

Cell culture and drug administration 

 

Aβ1–42 was dissolved in double-distilled water at  

a concentration of 50 µM and incubated at 37°C  

for 5 days to promote fibrilization and aggregation. A  

BV-2 murine microglial cell line was obtained from 

Hanheng Biotechnology Co., Ltd. (Shanghai, China) 

and cultured in Dulbecco’s modified Eagle’s medium 

(Sigma-Aldrich, St. Louis, MO, USA) supplemented 

with 10% phosphate-buffered saline (PBS), 100 units/ 

ml of penicillin, and 100 µg/ml of streptomycin. The 

BV-2 cells were cultured at 37°C in a humidified 

atmosphere containing 5% CO2. When the confluence 

of 70–80% was reached, cells were seeded into 6-well 

plates at a density of 5 × 104 cells/ml and stimulated 

with ginkgolide at different concentrations (6.25, 12.5, 

25, and 50 μg/ml, n = 3 each). Detection was carried  

out at 12, 24, and 48 hours post-treatment. In brief, 

MTT assay was conducted to determine the optimal 

time point and concentration for cell proliferation. 

Consequently, cells were treated with or without 

ginkgolide for 1 hour, followed by an incubation with or 

without Aβ1–42 for 12 hours. The experimental groups 

(n = 4 each) were: (1) control group (untreated); (2) Aβ 

group (treated with 2 μM Aβ1–42 for 12 hours); (3) 

ginkgolide + Aβ group (pretreated with 25 μg/ml 

ginkgolide for 2 hours followed by 2 μM Aβ1–42 for 

another 10 hours); and (4) ginkgolide group (pretreated 

with 25 μg/ml ginkgolide for 12 hours). 

 
Mice and drug administration 

 
Eight-month-old male C57BL/6J wild-type (WT) and 

APP/PS1 transgenic mice sharing the same genetic 

background were obtained from the Model Animal 

Research Center of Nanjing University (Nanjing, China). 

APP/PS1 mice at 8 months of age were selected as 

subjects for drug intervention study, because animals 

already demonstrate Aβ pathology and memory deficits 
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[76]. All mice were housed in a pathogen-free room 

with a 12-hour light/dark cycle and had ad libitum 

access to both feed and water. After 1-week adaptation, 

the mice were intraperitoneally administered 0.4375, 

0.875, or 1.75 mg/kg ginkgolide twice a day for 60 

days. Briefly, a Morris water maze test was performed 

to determine the optimal dosage for treatment. Based on 

these experiments, the APP/PS1 mice were randomly 

divided into three groups (n = 8 each): (1) normal  

saline (intraperitoneally administered 5 ml/kg normal 

saline twice a day for 60 days); (2) ginkgolide (intra-

peritoneally administered 1.75 mg/kg ginkgolide twice 

a day for 60 days); and (3) donepezil group (orally 

administered 0.65 mg/kg donepezil once a day for 60 

days). Additionally, a control group comprising four 

healthy WT mice was intraperitoneally injected with  

5 ml/kg normal saline for 60 days (n = 8). Upon 

completion of the behavioral tests, the mice were 

euthanized by cervical dislocation for brain tissue 

collection. All steps were performed to reduce pain, 

suffering and distress. 

 
Morris water maze test 

 
Following drug administration, a Morris water maze  

test was performed (MT-200; Chengdu Taimeng 

Software Co., Ltd., Chengdu, China) and evaluated  

by the automated EthoVision® XT 7.0 video-tracking 

system (Noldus Information Technology, Wageningen, 

The Netherlands). A 150 cm diameter circular pool was 

filled with 23 ± 1°C water and contained a 13 cm 

diameter platform 1 cm below the water surface. The 

animals of the four experimental groups (n = 4 each) 

were trained with space-learning tasks (≤60 seconds) 

four times a day for 5 consecutive days. At day 6, a 

probe trial was conducted for 60 seconds in the absence 

of a hidden platform. The escape latency (time to find 

the hidden platform in the Water Maze) [77, 78] and 

swimming path were recorded. 

 

Brain tissue collection 

 
According to the completely randomized block design, 

mice in the four experimental groups (n = 4 each) were 

randomly chosen. All mice were deeply anesthetized 

with 2% sodium pentobarbital, transcardially perfused 

with normal saline and fixed with ice-cold 4% para-

formaldehyde upon completion of behavioral analysis. 

The cerebral cortex and hippocampus were carefully 

removed, rapidly fixed in 4% paraformaldehyde at  

4°C overnight and cryoprotected for 72 hours in 30% 

sucrose solution. Subsequently, the tissue was embedded 

in paraffin and cut into 5 μm standard sections for 

further morphological analysis. To perform biochemical 

assays (n = 4 each), the remaining mice underwent 

transcardial perfusion with normal saline, followed by 

dissection of the cortex and hippocampus. For western 

blotting experiments, brain samples were immediately 

stored at −80°C. 

 

Hematoxylin and eosin and Nissl staining 

 

As previously described [79], the 5 μm-thick brain 

tissue sections were deparaffinized and rehydrated. 

Stepwise staining was done with hematoxylin and eosin 

(H&E) or Nissl dyes, and the sections were assessed 

under a light microscope (CKX41; Olympus, Tokyo, 

Japan). 

 
Immunohistochemistry 

 

The brain tissue sections of four experimental groups 

were incubated with primary antibodies against Aβ at 

1/1000 dilution at 4°C overnight (n = 4 each), and then 

washed with PBS. The sections were then incubated 

with HRP-conjugated anti-rabbit secondary antibody  

at 25°C for 1 hour, and further incubated with 

streptavidin-HRP complex (BestBio Science, Shanghai, 

China) at 25°C for another hour. Subsequently, the 

slices were counterstained by 5% 3,3′-diaminobenzidine 

tetrahydrochloride solution and hematoxylin (25°C  

for 5 minutes). Photomicrographs were acquired using 

an inverted fluorescent microscope (×40 and ×200 

magnification; Olympus, Tokyo, Japan). 

 
Reactive oxygen species assay 

 

Reactive oxygen species (ROS) production in the BV-2 

cells or brain tissue of four experimental groups was 

detected by the lucigenin technique (n = 4 each). 

Briefly, the BV-2 cells were counted, and 1 × 107 cells 

were homogenized in radioimmunoprecipitation assay 

(RIPA) buffer (PBS, 1% Nonidet P-40, 0.5% sodium 

deoxycholate, 0.1% sodium dodecyl sulfate (SDS),  

and a protease inhibitor cocktail) (Santa Cruz, Santa 

Cruz, CA, USA). For the brain tissue, samples were  

weighed and homogenized in 1:10 w/v RIPA buffer. 

After homogenization, both BV-2 cell and brain  

tissue samples were centrifuged at 12,000 revolutions 

per minute (rpm) for 20 minutes at 4°C. Once  

the supernatant was aspirated, the remaining cellular  

debris was discarded. The supernatant was incubated 

with lucigenin according to the manufacturer’s 

instructions (Genmed Scientifics Inc., Boston, MA, 

USA). The samples were allowed to equilibrate for 15 

minutes, and then luminescence was measured every 

second for 10 seconds with a luminometer (Berthold 

Technologies, Oak Ridge, TN, USA). Luminescence 

was recorded as relative light units per second. An assay 
blank containing lucigenin but no homogenate was 

subtracted from the reading before data transformation. 

Measurement of each sample was repeated five times, 
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and the average value was used for transformation of 

the data. 

 
Quantitative real-time polymerase chain reaction 

 

RNAiso Plus was used to isolate and extract total 

mRNA from the mice brain samples or BV-2 cells of 

four experimental groups (n = 4 each) according to the 

manufacturer’s instruction. Reverse transcription of the 

mRNA (500 ng) was performed using a PrimeScript™ 

RT reagent kit with a gDNA Eraser. To quantify gene 

expression levels of NLRP3, ASC and caspase-1, 2 μL 

cDNA was amplified via real-time quantitative reverse 

transcription polymerase chain reaction (qRT-PCR) 

using the following primers: NLRP3 (forward, 5′-TGT 

CAG GAT CTC GCA TTG GT-3′; reverse, 5′-ATT 

GCT TCG TAG ATA GAG GTG TGT-3′); caspase-1 

(forward, 5′-GTC TCA TGG TAT CCA GGA GGG-3′; 

reverse, 5′-TCA CCT TGG GCT TGT CTT TC-3′); 

ACS (forward, 5′-CCT GAG TAC AGC AGA GGT 

GGA-3′; reverse, 5′-CAC ACA AGG TAA CAA AGC 

AGT AGA-3′); and β-actin (forward, 5′-CCA TCT 

ACG AGG GCT ATG CT-3′; reverse, 5′-CTT TGA 

TGT CAC GCA CGA TT-3′) as an endogenous control. 

qRT-PCR was done using SYBR® Premix Ex Taq™ II 

in a real time thermocycler (iQ5, Bio-Rad, Hercules, 

CA, USA). All the amplifications were conducted in 

triplicate for each sample. Amplification was performed 

under the following conditions: 95°C for 30 seconds, 40 

cycles at 95°C for 5 seconds, and 60°C for 40 seconds. 

The relative mRNA levels were analyzed using the 

2−ΔΔCt method as detailed by the manufacturer 

(Technical Bulletin 2; Applied Biosystems, Waltham, 

MA, USA). 

 
Western blotting 

 

Briefly, after homogenization of the mouse brain  

tissue and BV-2 cells in ice-cold extraction reagent, 

centrifugation of the extract was performed at 4°C  

at 10,000 rpm for 10 minutes, and the supernatant of 

four experimental groups was collected (n = 4 each). 

Bicinchoninic acid protein assay was used to measure 

protein concentration. Equivalent amounts of protein 

(13 μg) for each sample were denatured by boiling at 

95°C for 5 minutes, and separated using 12–15%  

SDS-polyacrylamide gels electrophoresis. Following 

electrophoresis, proteins were transferred to nitro-

cellulose membranes, which were blocked in 5% nonfat 

dry milk at room temperature for 30 minutes and 

incubated with primary antibodies against NLRP3, 

caspase-1, ACS, and GAPDH (all dilution ratios: 

1:5000) at 4°C overnight. Thereafter, the membranes 

were washed with tris-buffered saline containing 0.1% 

Tween 20, and incubated with corresponding secondary 

antibodies (1:5000) at room temperature for 2 hours. 

Blots were visualized using an enhanced ECL detection 

kit, and quantified using ImageJ software (National 

Institutes of Health, Rockville, MD, USA). 

 
Enzyme-linked immunosorbent assay 

 
To measure IL-1β and IL-18 levels in APP/PS1  

mouse brains, the cortical and hippocampal tissues  

of mice were homogenized in cold homogenization 

buffer containing a protease inhibitor cocktail. After 

centrifugation at 12,000 rpm for 15 minutes at 4°C,  

the supernatant of four experimental groups was 

collected (n = 4 each). Additionally, after treatment, the 

BV-2 cell culture media of four experimental groups 

were collected (n = 4 each) and centrifuged at 8,000 

rpm for 15 minutes at 4°C. The concentration of mouse 

IL-1β and IL-18 was detected using an ELISA kit 

according to the manufacturer’s protocols. Absorbance 

was measured at a wavelength of 450 nm using  

a microplate absorbance reader (Thermo Scientific 

Multiskan MK3, Shanghai, China). 

 
Statistical analyses 

 
Statistical analyses were done using GraphPad Prism 

8.0.1 (GraphPad Software, Inc., San Diego, CA, USA). 

All data are expressed as mean ± standard deviation or 

median and range. Normally distributed data were 

evaluated by one-way analysis of variance (ANOVA) 

using a Student–Newman–Keul’s post-hoc test. Non-

normally distributed data were analyzed using Kruskal–

Wallis test. A p-value < 0.05 was set as statistically 

significant. 

 
Data availability 

 

The datasets generated during and/or analyzed during 

the current study are available from the corresponding 

author on reasonable request. 
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