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INTRODUCTION 
 

Diffuse large B-cell lymphoma (DLBCL), which is the 

most common subtype of non-Hodgkin’s lymphoma,  

is a highly heterogeneous disease with diverse clinical  

and molecular features. Based on the cell of origin 
(COO) of lymphoma cells, DLBCL can be classified 

into germinal center B-cell (GCB) and activated B-cell 

(ABC) subgroups [1]. ABC DLBCL patients generally 

have worse prognosis. It is worth noting that DLBCL 

patients with similar clinicopathological characteristics 

have different prognoses [2]. The standard first-line 

therapy for DLBCL is rituximab plus cyclophosphamide, 

doxorubicin, vincristine, and prednisone (R-CHOP). 

Although R-CHOP can achieve long-term remissions  

in most DLBCL patients, 30–40% of them experience 

relapse with poor prognoses [3]. Various strategies have 

been explored to improve the efficacy of the standard 
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ABSTRACT 
 

Diffuse large B cell lymphoma (DLBCL) is a highly heterogeneous disease with diverse clinical and molecular 
features. Telomere maintenance is widely present in tumors, but there is a lack of relevant reports on the role 
of telomere-related genes (TRGs) in DLBCL. In this study, we used consensus clustering based on TRGs 
expression to identify two molecular clusters with distinct prognoses and immune cell infiltration. We 
developed a TRGs scoring model using univariate Cox regression and LASSO regression in the GSE10846 training 
cohort. DLBCL patients in the high-risk group had a worse prognosis than those in the low-risk group, as 
revealed by Kaplan-Meier curves. The scoring model was validated in the GSE10846 testing cohort and 
GSE87371 cohort, respectively. The high-risk group was characterized by elevated infiltration of activated DCs, 
CD56 dim natural killer cells, myeloid-derived suppressor cells, monocytes, and plasmacytoid DCs, along with 
reduced infiltration of activated CD4 T cells, Type 2 T helper cells, γδ T cells, NK cells, and neutrophils. 
Overexpression of immune checkpoints, such as PDCD1, CD274, and LAG3, was observed in the high-risk group. 
Furthermore, high-risk DLBCL patients exhibited increased sensitivity to bortezomib, rapamycin, AZD6244, and 
BMS.536924, while low-risk DLBCL patients showed sensitivity to cisplatin and ABT.263. Using RT-qPCR, we 
found that three protective model genes, namely TCEAL7, EPHA4, and ELOVL4, were down-regulated in DLBCL 
tissues compared with control tissues. In conclusion, our novel TRGs-based model has great predictive value for 
the prognosis of DLBCL patients and provides a promising direction for treatment optimization. 
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regimen, including dose intensification, novel 

therapeutic agents, and next-generation anti-CD20 

antibodies [4–6]. However, these approaches have not 

yielded significant clinical benefits [7]. Therefore, early 

prognosis evaluation and optimization of therapeutic 

options are crucial for improving the survival outcomes 

of DLBCL patients. The international prognostic index 

(IPI) is currently a widely used clinical tool for pre-

dicting the prognosis of DLBCL patients [8]. However, 

it has a weakness in effectively identifying prognosis  

of DLBCL patients with very poor survival. As the  

IPI score only provides prognostic information based on 

clinical variables, a gene expression-based signature 

may be a valuable supplement for further assessing the 

prognosis of DLBCL. 

 

In the process of genome replication in most organisms, 

the main mechanism of telomere length maintenance  

is the completion of DNA telomere repeats by telome- 

rase [9]. Telomerase is a ribonucleoprotein complex 

composed of ribonucleic acid (RNA) and protein. Its 

core dimer consists of telomerase reverse transcriptase 

(TERT) and telomerase RNA component (TERC), 

which is used as a template for RNA-dependent DNA 

synthesis [10]. Telomere maintenance is widely present 

in tumors and plays an important role in extending 

telomere length, among which telomerase activity and 

alternative length of telomeres (ALT) pathway are the 

main pathways for telomere maintenance. Among these 

two pathways, telomerase activation is more common 

and has been reported in almost all types of tumors [11, 

12]. In lymphoma, Lima et al. reported that Hodgkin 

lymphoma (HL) cells are most likely to have telomerase 

activation pathways that extend telomeres, followed by 

the ALT pathway [13]. But there are no relevant reports 

in DLBCL. There are five main treatment methods for 

telomerase inhibition currently, including anti-hTR of 

oligonucleotides, nucleoside analogue, human telomerase 

(hTERT) small molecule inhibitor, immunotherapy for 

hTERT and G4 stable ligand. GRN163L (Imetelstat), 

one of anti-hTR of oligonucleotides, has been proven to 

have clinical efficacy in treating myelofibrosis and low-

risk myelodysplastic syndromes [14]. Because telomeres 

have length abnormalities in most tumor types including 

lymphoma, and telomerase inhibition is currently a clear 

treatment method. Therefore, telomere-related genes 

(TRGs) should also have potential functions, prognostic 

judgments, therapeutic targets, and other values in 

DLBCL. 

 

In this study, we comprehensively analyze the prognostic 

values of TRGs. Our analysis identified two distinct 

molecular subgroups based on expression patterns of 
TRGs. Notably, we developed and validated the first risk 

model based on TRGs in DLBCL, which demonstrated 

excellent predictive ability for the prognosis of DLBCL 

patients. By RT-qPCR, we further validated expression 

of candidate genes of the TRGs model, and found  

three of them, TCEAL7, EPHA4 and ELOVL4, were 

significantly lower in the DLBCL lymph node tissues 

and cell lines compared with normal lymph node 

tissues. Furthermore, we investigated the relationship 

between the immune infiltration, immune checkpoints 

and TRGs risk score, and further predicted several 

chemotherapy drugs that may be effective in high or 

low-risk DLBCL patients. 

 

METHODS 
 

Data acquisition 

 

In this study, we obtained the mRNA expression profile 

and corresponding clinical information from the Gene 

Expression Omnibus (GEO) database. To minimize 

survival bias, we selected samples with a survival time 

greater than 0 and complete survival status information. 

Using this criterion, we extracted 414 samples from  

the GSE10846 dataset and 221 samples from the 

GSE87371 dataset. Additionally, we randomly divided 

the 414 samples in the GSE10846 dataset into a training 

cohort and a testing cohort at a 7:3 ratio. We used the 

testing cohort in the GSE10846 dataset as an internal 

validation cohort, and the GSE87371 dataset as an 

external validation cohort to verify the predictive ability 

of the TRG risk model. The TRGs were obtained from 

Telnet (http://www.cancertelsys.org/telnet/) [15], which 

maintains a list of genes that have been reported to be 

involved in telomere maintenance. 

 

Construction and validation of a TRGs scoring 

model 

 

In this study, we utilized univariate Cox  

regression analysis via the R package “survival” to 

identify prognostic TRGs in the GSE10846 dataset. 

DLBCL patients were divided into 2 clusters based  

on different expression patterns of TRGs via the 

“ConsensusClusterPlus” R package. Thirty differentially 

expressed prognostic TRGs were found between 

clusters 1 and 2, and we then used the least absolute 

shrinkage and selection operator (LASSO) regression  

in the training cohort to develop a prognostic risk 

scoring model based on 7 TRGs. The risk scores  

were calculated using a formula, risk score = Σ(Expi  

× Coefi). We calculated risk scores in all DLBCL 

patients. Based on the median risk score, we divided  

the training cohort into low-risk and high-risk groups. 

We performed principal component analysis (PCA) 

using the “stats” package in R to explore the internal 

relationship between the two groups. We used Kaplan-

Meier (K-M) curves to analyze overall survival (OS). 

To evaluate the accuracy and reliability of the risk 

http://www.cancertelsys.org/telnet/
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scoring signature, time-dependent receiver operating 

characteristic (ROC) curve analysis was generated using 

the “TimeROC” package in R. 

 

Sample information and DLBCL cell lines 

 

The collection of tissue samples for this study was 

approved by the Human Ethics Committee of the Second 

Hospital of Dalian Medical University, and all patients 

provided informed consent. We obtained nine lymph 

node samples from different patients at the Second 

Affiliated Hospital of Dalian Medical University, 

including two DLBCL-invaded lymph nodes from 

DLBCL patients and seven normal lymph nodes from 

abandoned tissues after surgery. Additionally, DLBCL 

cell lines HBL-1 and OCI-LY10 were acquired from 

Professor Li Li at the Second Affiliated Hospital of 

Dalian Medical University. HBL-1 cells were cultured in 

RPMI-1640 medium supplemented with 10% fetal 

bovine serum and 1% penicillin-streptomycin solution at 

37°C with 5% CO2. OCI-LY10 cells were cultured in 

IMDM medium supplemented with 20% fetal bovine 

serum and 1% penicillin-streptomycin solution in a 37°C 

incubator with 5% CO2. 

 

Quantitative real-time PCR (RT-qPCR) 

 

Total RNA was extracted from DLBCL cell lines  

or lymph node samples using Trizol reagent. Reverse 

transcription was performed using the PrimeScriptTMRT 

reagent Kit with gDNA Eraser (Takara, Japan) and RT-

qPCR was performed using TB Green Premix Ex Taq™ 

II (Takara), according to the respective manufacturer’s 

instructions. The expression levels of target genes were 

normalized against the ACTB expression level and 

presented as 2−ΔCt. The primer sequences for RT-PCR 

were designed using Primer Premier 5 software and 

verified on BLAST websites. The primer sequences are 

provided in Supplementary Table 1. 

 

Clinical correlations and independent prognosis 

value of the TRGs score 

 

The TRG scores in different clinical and pathological 

feature groups were performed via Wilcoxon signed-

rank test and Chi-square test in the GSE10846 training 

dataset. Univariate and multivariate Cox regression  

via R package “survival” was used to evaluate the 

independent prognostic value of the risk score and other 

clinicopathological features. 

 

Nomogram construction 

 
SPSS Statistics 17.0 was applied for the evaluation of 

collinearity and the correlation analysis of variables. 

Variables with strong correlations (r > |0.7|) were 

excluded from the subsequent analysis [16, 17]. The 

package “rms” of R language was applied to generate  

a nomogram. Area under the curve (AUC) of ROC 

curves was calculated using the package “survivalROC” 

of R language. Then, difference analysis between the 

AUCs of the nomogram and IPI score was conducted 

using Delong test via MedCalc software 20.027 for  

the evaluation of the nomogram’s prognostic ability  

and reliability [18]. In addition, decision curve analysis 

(DCA) was conducted, and the nomogram’s clinical 

utility was evaluated according to net benefits under the 

condition of different risk thresholds. 

 
Immune analyses 

 
The single-sample Gene Set Enrichment Analysis 

(ssGSEA) was used to assess the enrichment of 28 

immune cells and 38 immune checkpoints in the 

DLBCL samples, no matter between the two clusters 

based on differential expression patterns of TRGs, or 

between the high- and low-risk groups in the GSE10846 

training cohort. 

 
Prediction of chemosensitivity 

 
We predicted the IC50 of chemotherapeutic sensitivity 

for the high-risk group and low-risk group via the R 

package “pRRophetic”. 

 
Data availability statement 

 
The datasets generated and/or analyzed during the 

current study are available in the GEO dataset 

(https://www.ncbi.nlm.nih.gov/geo/). 

 
RESULTS 

 
Molecular clustering based on the TRGs in DLBCL 

 
Initially, we retrieved 2086 TRGs from TelNet.  

Using univariate Cox proportional hazards regression 

analysis, we identified 816 prognostic TRGs that were 

significantly associated with the OS of DLBCL in  

the GSE10846 dataset (Supplementary Table 2, p < 

0.05). Based on the expression patterns of these 816 

prognostic TRGs, we performed consensus clustering  

to classify 414 DLBCL patients in the GSE10846 

dataset into different molecular subgroups. Consensus 

clustering was most suitable when k = 2, as we 

increased the number of clusters (k) from 2 to 5 

(Figure 1A, 1B and Supplementary Figure 1). 

Subsequently, we obtained two distinct clusters, with 
181 patients in cluster 1 and 233 patients in cluster  

2. K-M curves revealed that DLBCL patients in cluster 

1 had significantly worse OS compared to those in 

https://www.ncbi.nlm.nih.gov/geo/
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cluster 2 (Figure 1C, p < 0.001). A heatmap illustrated 

65 differentially expressed genes (DEGs) in 2086 

TRGs between clusters 1 and 2 (Figure 1D). 

 

Moreover, we investigated the differences in  

immune cell infiltration between these two subgroups. 

As depicted in Supplementary Figure 2A, activated B 

cells, activated CD8 T cells, activated dendritic cells 

(DCs), CD56 dim natural killer (NK) cells, myeloid-

derived suppressor cells (MDSCs), and plasmacytoid 

DCs in cluster 1 exhibited higher infiltration levels than 

those in cluster 2. Conversely, activated CD4 T cells, 

gamma delta T cells, macrophages, mast cells, NK cells, 

neutrophils, regulatory T cells, type 17 T helper cells,  

 

 
 

Figure 1. Molecular clustering based on the TRGs in DLBCL. (A) The consensus matrix by cluster analysis based on TRGs. Two 

clusters (k = 2) would be best. (B) Consensus clustering CDF with k value 2 in GSE10846 dataset. (C) Kaplan-Meier curves of OS in two 
clusters. (D) Heatmap of 65 differentially expressed genes in TRGs between clusters 1 and 2. 
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type 2 T helper cells, central memory CD4 T cells, 

central memory CD8 T cells, and effector memory 

CD8 T cells in cluster 1 displayed lower infiltration 

levels than those in cluster 2. Additionally, we explored 

38 immune checkpoint molecules between these two 

clusters and observed that several crucial immune 

checkpoint molecules, such as CD274 and PDCD1, 

were over-expressed in cluster 1 (Supplementary Figure 

2B). 

 

Construction of a prognosis-associated scoring 

model composed of 7 TRGs 

 

Given the prognostic value of TRG expression patterns 

in DLBCL, we developed a TRG-based scoring model 

using differentially expressed TRGs between two 

distinct clusters. We randomly divided 414 DLBCL 

patients from GSE10846 into a training cohort (n = 

292) and a testing cohort (n = 122) in a 7:3 ratio.  

The above 65 differentially expressed TRGs between 

clusters 1 and 2 were used to perform univariable Cox 

regression analysis and identify 30 TRGs associated 

with OS in the GSE10846 training cohort (p < 0.05). 

To avoid overfitting, we conducted LASSO regression 

analysis on the 30 TRGs and selected seven genes  

for the scoring model based on the optimal value of  

λ (Figure 2A, 2B). Among these genes, TUBB4A, 

PPARG, and ELOVL3 were identified as risk genes 

with HR > 1, while TCEAL7, EPHA4, ELOVL4, and 

ARL14 were identified as protective genes with HR < 1 

(Table 1). The risk scores were calculated using the 

formula: risk score = (0.1873 × Exp TUBB4A) + 

(−0.1179 × Exp TCEAL7) + (0.2908 × Exp PPARG) + 

(−0.1075 × Exp EPHA4) + (−0.1001 × Exp ELOVL4) 

+ (0.1023 × Exp ELOVL3) + (−0.0735 × Exp ARL14). 

Using the median risk score, we categorized DLBCL 

patients in the GSE10846 training cohort into high- and 

low-risk groups. The scatter plot revealed a worse 

survival outcome in the high-risk group compared  

to the low-risk group (Figure 2C). PCA showed a 

significant distribution of DLBCL patients in the high-

risk and low-risk groups between two trends (Figure 2D). 

Furthermore, K-M curves demonstrated that DLBCL 

patients in the high-risk group had significantly worse 

OS, as illustrated in Figure 2E. We then evaluated  

the TRGs scoring model’s predictive efficiency using 

time-dependent ROC analysis, and the AUC reached 

0.688 at 1-year, 0.720 at 3-year, and 0.718 at 5-year 

(Figure 2F). 

 

Validation of the TRGs-based scoring model 

 

To evaluate the prediction performance and robustness 
of the risk model, we used the GSE10846 testing cohort 

as an internal validation cohort and the GSE87371 

dataset as an external validation cohort. Using the same 

formula, we divided the patients into low- and high- 

risk groups based on their median risk scores in these 

validation cohorts. The scatter plots further revealed 

that patients in the high-risk group had a higher 

possibility of early death than patients in the low-score 

group in the GSE10846 testing cohort and GSE87371 

cohort, respectively (Figure 3A, 3B). PCA showed that 

DLBCL patients in high- and low-risk groups were 

well-separated in validation cohorts (Figure 3C, 3D).  

K-M curves revealed that DLBCL patients in the low-

risk group had a better prognosis than those in the high-

risk group, respectively (Figure 3E, 3F). The AUC at 1-, 

3-, and 5-year in the GSE10846 testing cohort were 

0.655, 0.639, and 0.638 respectively (Figure 3G). In the 

GSE87371 cohort, the AUC reached 0.628 at 1-year, 

0.655 at 3-year, and 0.714 at 5-year (Figure 3H). Overall, 

our prognostic TRGs-based scoring model demonstrated 

effective predictive efficiency in the prognosis of 

DLBCL patients. 

 

Expression evaluation of candidate TRGs in the 

model 

 

To validate the expression of 7 candidate model  

genes in DLBCL patients, we collected samples from 

two DLBCL cell lines (HBL-1 and OCI-LY10), two 

DLBCL-invaded lymph nodes, and seven normal lymph 

nodes. RT-qPCR analysis revealed that the expression 

levels of several protective genes, TCEAL7, EPHA4, 

and ELOVL4, were significantly lower in the DLBCL 

group than in the control group (Figure 4A–4J). There 

was no statistically significant difference in the expres-

sion of the other four candidate genes between the 

DLBCL and control groups based on the current sample 

sizes (Supplementary Figure 3). 

 

Clinical correlations and independent prognosis 

value of TRGs risk model 

 

To evaluate the clinical significance of the TRGs risk 

score, we compared the risk scores between different 

subgroups based on clinical features in the GSE10846 

training cohort. As shown in Figure 5A–5C, the risk 

scores were significantly higher in DLBCL patients 

with ECOG ≥ 2, stage 3–4, or ABC subtype. 

 

To explore whether TRG risk score could be an 

independent prognostic factor, we first used univariate 

Cox regression analysis to evaluate it and other clinical 

characteristics (age, gender and stage) in these cohorts. 

Age, stage and TRGs risk score were related to the OS 

of DLBCL patients in the GSE10846 training cohort (all 

p-values < 0.001, Figure 5D). In the GSE10846 testing 
cohort, age and TRGs risk score were highly associated 

with the prognosis of DLBCL patients (all p-values  

< 0.05, Supplementary Figure 4A). In the GSE87371 
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cohort, age, stage and TRGs risk score had  

close relationships with OS (all p-values < 0.001, 

Supplementary Figure 4B). Furthermore, we conducted 

multivariate Cox regression analysis to adjust for 

confounding factors. TRG risk score was found to  

be an independent predictor of OS in all of the 3  

cohorts (Figure 5E and Supplementary Figure 5A, 5B; 

GSE10846 training cohort: HR = 2.060, p < 0.001; 

GSE10846 testing cohort: HR = 1.740, p = 0.036; 

GSE87371 cohort: HR = 4.359, p = 0.014). 

 

 
 

Figure 2. Construction of the TRGs-based scoring model. (A) LASSO coefficient profiles of TRGs in GSE10846 training cohort. 

(B) Selection of the optimal parameter (λ) in the LASSO model. (C) Survival status of DLBCL patients in GSE10846 training cohort. (D) PCA 
analysis of the DLBCL patients based on the TRGs score in GSE10846 training cohort. (E) Kaplan-Meier curves of OS based on TRGs score in 
GSE10846 training cohort. (F) Time-dependent ROC analysis of the TRGs score in GSE10846 training cohort. 
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Table 1. LASSO coefficient, p-values and hazard ratios of the seven TRGs. 

Genes Coef HR HR.95L HR.95H P-value 

TUBB4A 0.187368 1.206071 1.029736 1.412602 0.020162 

TCEAL7 −0.11791 0.888775 0.791086 0.998527 0.04717 

PPARG 0.290805 1.337503 1.179622 1.516516 5.69E-06 

EPHA4 −0.10755 0.898033 0.781636 1.031763 0.128894 

ELOVL4 −0.1001 0.904749 0.806728 1.01468 0.087103 

ELOVL3 0.10239 1.107815 0.970687 1.264315 0.128841 

ARL14 −0.07354 0.929102 0.843152 1.023814 0.137605 

 

 

 
 

Figure 3. Validation of the TRGs-based scoring model. (A, B) The survival statuses of DLBCL patients in (A) GSE10846 testing cohort 

and (B) GSE87371 cohort. (C, D) The PCA of DLBCL patients in (C) GSE10846 testing cohort and (D) GSE87371 cohort. (E, F) Kaplan-Meier 
curves of OS based on TRGs score in (E) GSE10846 testing cohort and (F) GSE87371 cohort. (G, H) Time-dependent ROC analyses of the ARG 
score in (G) GSE10846 testing cohort and (H) GSE87371 cohort. 
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Nomogram construction 

 

Nomograms are useful tools for predicting patient 

prognosis and can assist with clinical decision-making. 

After the evaluation of collinearity and the correlation 

analysis of variables (Supplementary Tables 3 and 4), 

we constructed a prognostic nomogram based on the 

TRGs risk score and clinical features, including age, 

 

 
 

Figure 4. Expression evaluation of candidate TRGs in the model. (A–G) The expression level of 7 TRGs in two DLBCL cell lines (HBL-1 

and OCI-LY10), two DLBCL-invaded lymph node samples (DLBCL 1 and DLBCL 2) and seven normal lymph node samples (control 1–7), 
respectively. (H, I) The expression of (H) TCEAL7, (I) EPHA4, and (J) ELOVL4 in DLBCL group and control group. 
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ECOG, LDH level, number of extranodal sites and IPI 

score (Figure 6A). The nomogram showed excellent 

consistency between predicted and observed OS at  

1-year, 3-year, and 5-year, as demonstrated by the 

favorable match of the calibration curves (Figure  

6B). We further compared the ROC curves of the 

nomogram with the IPI score and found that the AUC 

of the nomogram was higher than that of the IPI  

score at 2- and 5-year survival outcome (2-year 0.815 

vs. 0.758 and 5-year 0.846 vs. 0.777, Figure 6C, 6D). 

Subsequently, difference analysis (Table 2) presented 

statistical differences between the AUCs of nomogram 

and IPI score at 2- and 5-year survival. Meanwhile, 

DCA curves were made for the comparations of 

predicted net benefit between the nomogram and IPI 

score, and the findings reflected the certain feasibility 

of this constructed for making valuable prognostic 

judgments and therapeutic guidance. As shown in 

Figure 6E, 6F, when the risk threshold of patients was 

approximately 15–55% at 2-year survival or 20–65% 

at 5-year survival predicted by the nomogram, the 

nomogram application for therapeutic guidance would 

provide more benefit than either treating all patients  

or employing no treatment. Additionally, DCA curves 

showed that the nomogram presented superior benefits 

compared with IPI score in the condition of 15–35% 

threshold probability at 2-year survival or 20–45% 

threshold probability at 5-year survival. These results 

demonstrate that the nomogram has better ability to 

forecast the OS of DLBCL than the IPI score. 

 

Correlation between risk score and immune 

microenvironment 

 

The tumor immune microenvironment plays a crucial 

role in the therapeutic response and prognosis of tumors. 

Therefore, we analyzed the immune infiltration of high- 

and low-risk groups in the GSE10846 training cohort. 

The ssGSEA revealed higher levels of infiltrating 

activated DCs, CD56 dim NK cells, MDSC, mono-

cytes, and plasmacytoid DCs in the high-risk group. 

Additionally, lower levels of infiltrating activated CD4 

T cells, Type 2 T helper cells, γδ T cells, NK cells, and 

neutrophils were observed in the high-risk group 

(Figure 7A). Furthermore, expression differences in 

most of the immune checkpoints were found between 

 

 
 

Figure 5. Clinical correlations and independent prognosis value of TRGs risk model. (A–C) TRGs risk scores in different DLBCL 

subgroups of (A) EOCG, (B) stage and (C) subtype. (D) Univariate Cox regression analysis of TRGs score and clinical features in GSE10846 
training cohort. (E) Multivariate Cox regression analysis of TRGs score and clinical features in GSE10846 training cohort. 
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Table 2. Difference analysis of AUCs between the nomogram and IPI. 

 2-year survival 5-year survival 

Difference between AUCs 0.057 0.0691 

z statistic 2.211 2.444 

p-value 0.0270 0.0145 

 
the high-risk and low-risk groups. Higher expression 

levels of PDCD1, CD274, LAG3, FGL1, LGALS9, 

PVR, TNFRSF18, TNFSF18, YTHDF1, IL12A, and 

TNFSF9 were observed in the high-risk compared to 

the low-risk group. Conversely, expression of B2M, 

CD40LG, CD86, ICOS, IL23A, JAK1, JAK2, LDHA, 

PTPRC, SIGLEC15, and TNFRSF9 were down-

regulated in the high-risk group (Figure 7B). 

The risk signature predicted the sensitivity of novel 

chemotherapy 

 

We estimated the IC50 values of different drugs in  

the GSE10846 dataset to explore whether the TRG 

score presented a potential association with drug 

sensitivity. Compared to the low-risk group, the high-

risk group exhibited increased sensitivity to bortezomib,

 

 
 

Figure 6. A nomogram based on the TRGs risk score, IPI score and clinical features. (A) A nomogram for the prediction of DLBCL 
patients’ 2- and 5-year survival probability according to the TRGs score, IPI score and clinical factors. (B) Nomogram-predicted percentages 
and the observed probabilities of 2- and 5-year survival. (C, D) Time-dependent ROC analysis of the nomogram and IPI score at 2- (C) and 
5-year (D) survival. (E, F) DCA of the constructed nomogram compared with different indicators at 2- (E) and 5-year (F) survival. 
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rapamycin, AZD6244 (MEK1/2 inhibitor), and 

BMS.536924 (IGF-1R inhibitor) (Figure 8A). DLBCL 

patients in the low-risk group showed sensitivity to 

cisplatin (a drug used in several DLBCL second-line 

chemotherapy regimens) and ABT.263 (Bcl-2 inhibitor, 

Figure 8B). 

DISCUSSION 
 

Chemotherapy and immunotherapy have played 

principal roles in the treatment of DLBCL patients,  

but the overall survival rate of DLBCL remains dis-

appointing due to phenotypic heterogeneity and high 

 

 
 

Figure 7. Correlation analysis of TRGs risk score with immune landscape. (A) The proportion of 28 immune cells between low-risk 

and high-risk groups (*p < 0.05; **p < 0.01; and ***p < 0.001). (B) The distribution of 38 immune checkpoints between the high-risk and low-
risk groups (*p < 0.05; **p < 0.01; and ***p < 0.001). 
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relapse rate. Dividing patients into high-risk or low- 

risk groups to evaluate prognosis and drug reaction can 

help doctors increase accuracy and personalize clinical 

treatment. Telomere maintenance is widely present  

in tumors and plays an important role in extending 

telomere length, which can lead to immortalization and 

uncontrolled proliferation [19]. However, the relation-

ship between TRGs and prognosis of DLBCL is rarely 

reported. Furthermore, there has been no report about 

TRG-based scoring model in DLBCL available. 

 

To the best of our knowledge, our study is the  

first to investigate the correlation between TRGs and 

the prognosis of DLBCL. Using consensus clustering, 

we identified two subtypes with significant differences  

in prognosis. Compared to cluster 2, the prognosis of 

DLBCL patients in cluster 1 was poor. Because expres-

sion patterns of TRGs can effectively distinguish the 

prognosis of DLBCL patients, we further construct a 

prognostic TRGs scoring model. Among the candidate 

model genes, TUBB4A, PPARG and ELOVL3 served as 

risk genes with HR > 1, and TCEAL7, EPHA4, ELOVL4 

and ARL14 were protective genes with HR < 1. 

Previous studies have expounded the specific roles of 

the candidate TRGs in different tumors. As one hot spot 

of the current research, PPARG encodes PPARγ, one of 

representative nuclear receptors. PPARγ is related to the 

pathology of many diseases, including obesity, diabetes, 

atherosclerosis and cancer, and notably, the effects  

of PPARγ in the tumor occurrence and development  

are not unifying [20]. PPARγ functions as a tumor-

suppressive factor via PPARγ/RXRα signaling pathway 

in several tumor types [21]. Contrarily, it has been 

reported that the activation of PPARγ/RXRα induces 

the microenvironmental reprogramming in the bladder 

cancer, which is beneficial to the tumorigenesis [22].  

In addition to those solid tumors, the function of 

PPARG has been also studied in lymphoma. As one of 

oxidative stress genes, PPARG increases the generation 

of reactive oxygen species appears to increase the risk 

for non-Hodgkin lymphoma, particularly DLBCL [23]. 

Elevated expression of PPARγ increases expression  

of fatty acids to inhibit NK cell response and cell 

metabolism in invasive B-cell lymphoma, which leads 

to the functional adaptation of NK cells to fatty acid 

rich lymphoma [24]. EPHA4 belongs to the largest 

 

 
 

Figure 8. IC50 of six drugs between low-risk and high-risk groups. (A) The high-risk group exhibited more sensitivity to the four 

drugs compared to the low-risk group. (B) The high-risk group exhibited less sensitivity to the two drugs compared to the low-risk group. 
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RTK-Eph family. Some studies have shown that  

RTKs play an important role in Epstein-Barr virus 

(EBV)-related tumor formation, because deceased 

expression of EPHA4 is associated with EBV infection. 

EBV is an important pathogenic factor for lymphoma 

and is closely related to the pathogenesis of some 

DLBCL [25]. Virus-related lymphoid malignancies 

activate telomerase early via the exogenous regulator 

of hTERT [26]. These findings seem to indicate  

that reduced expression of EPHA4 may cause 

lymphoma through EBV infection. Corresponding to 

the above findings, overexpression of EPHA4 preven-

ted proliferation of lymphoblastoid cell lines [27]. 

According to the scoring TRGs model we constructed, 

EPHA4 was identified as a protective gene and its low-

expression was related to poor survival in DLBCL. In 

the combination of low EPHA4 expression confirmed 

via RT-qPCR, the tumor-preventing role and prognostic 

value of EPHA4 in DLBCL become more convincing. 

Besides, EPHA4 may be applied in the molecular 

diagnosis of Sézary syndrome-related cutaneous T- 

cell lymphomas, and the membrane-bound EPHA4 

receptor can serve as a target for targeted therapeutic 

interventions [28]. Among other five TRGs, TUBB4A 

serves as a tumor-promoting factor in several tumor 

types including melanoma and prostate cancer, and 

ELOVL3 is considered as a risk gene in hepatocellular 

carcinoma [22, 29, 30]. However, there has been no 

relevant report in lymphomas. Moreover, TCEAL7  

is a competitive inhibitor of c-Myc, and c-Myc plays 

an important role in telomere maintenance mechanisms 

as a hTERT transcriptional activator [31, 32]. Studies 

show that TCEAL7 is down-regulated in many tumors, 

and is considered as a putative tumor suppressor  

gene. Consistent with the conclusions made by others, 

TUBB4A and ELOVL3 presented as risk genes,  

while down-regulation of TCEAL7 was confirmed  

in DLBCL and correlated with poor prognosis in our 

study. As for ELOVL4, the effects in tumors remain 

controversial. It has been reported that ELOVL4 

serves as a tumor suppressor via the NOTCH-RIPK4-

IRF6-ELOVL4 axis in squamous cell carcinoma, and 

its overexpression is related to the good prognosis  

for neuroblastoma patients [33, 34]. On the contrary, 

ELOVL4 is identified as a risk gene in gastric cancer 

[35]. Moreover, ARL14 has only been reported in  

non small-cell lung cancer (NSCLC), and increased 

expression of ARL14 was significantly correlated with 

poor survival [36]. However, ARL14 was considered 

as a protective gene in our study, differing from the 

function observed in NSCLC. We considered that the 

difference may be related to the variations of tumor 

tissue origins and tumor microenvironment (TME). 
Therefore, more experimental evidence is still needed 

to identify the respective functions of these TRGs in 

DLBCL. 

TRG risk model was not only validated in the training 

dataset, but also in the external validation set. The AUC 

values of the ROC curves in our training dataset for  

1-, 3-, and 5-year OS were 0.688, 0.720, and 0.718,  

1-, 3-, and 5-year OS were 0.655, 0.639 and 0.638  

in internal validation set, and 1-, 3-, and 5-year OS  

were 0.628, 0.655 and 0.714 in external validation set, 

respectively. These results indicate that TRG risk model 

is a stable and reliable model for evaluating the 

prognosis of DLBCL. A nomogram that integrates TRG 

risk score, IPI score and other clinical features such  

as age, ECOG status, extranodal sites, and LDH level 

further provides the possibility of individualized utility 

in predicting patient prognosis. 

 

In our study, high level of MDSC and low levels of 

CD4 T cells, NK cells and γδ T cells were found in the 

TME of high-risk patients. The abundance of NK cells 

predicted better outcomes in DLBCL patients, which 

may be attributed to the fact that high NK cell count 

enhances the efficacy of R-CHOP [37]. Studies have 

shown that MDSCs suppress the immune response to 

promote the occurrence and development of tumors in 

tumor microenvironment [38]. For example, a reduction 

in the number of MDSCs in patients with metastatic 

breast cancer treated with the drug cabozantinib was 

related to improved progression-free survival [39]. 

Recent evidence also has indicated that the presence of 

activated CD4 T cells in tumor tissue is associated with 

a better prognosis [40]. Besides, γδ T cells showed 

synergistic anti-tumor effects with activated αβ T cells 

and NK cells which improved patient outcomes [41, 42]. 

 

Tumor immune escape is considered as one of vital 

mechanisms in tumor occurrence and progression, and 

one of its main factors is the regulation of immune 

checkpoint expression [43]. The therapy targeting 

immune checkpoints has been a hot direction in the 

current clinical research and is viewed as one of 

effective antitumor therapies. In our study, several 

important immune checkpoints were found over-

expressed in the high-risk group, such as PDCD1  

and CD274. CD274, also known as programmed cell 

death ligand 1 (PD-L1), is a ligand for the inhibitory 

receptor PDCD1/PD-1, which regulates the activation 

threshold of T cells and limit T cell effector responses. 

The interaction between PD-L1 and PDCD1/PD-1 is a 

way to reduce anti-tumor immunity and evade immune 

system damage, thereby promoting tumor survival. 

Blocking the PD-1/PD-L1 pathway can normalize  

anti-tumor responses, but PD-1 inhibitors are not 

recommended to treat unselected DLBCL patients,  

due to low expression of PD-1/PD-L1 in DLBCL.  
Our results revealed that the high-risk group had 

significantly higher expression levels of CD274 and 

PDCD1, which contributed to identifying DLBCL 
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patients who are susceptible to PD-1 inhibitors  

[44–46]. Our study also showed that expression of 

JAK1 and JAK2 in high-risk group was lower than 

that in the low-risk group. The downstream target 

protein STAT of the JAK family is an important 

cytokine activated transcription unit in the immune 

response. The sustained activation of STAT3 and 

STAT5 can increase tumor cell proliferation and 

disease progression, it would be therapeutic targets for 

enhancing anti-tumor immunity [47, 48]. Activated 

STAT3 can drive the dissemination of DLBCL [49]. 

Related drugs, such as Cerdulatinib, is a novel dual 

SYK/JAK kinase inhibitor and has broad anti-tumor 

activity in DLBCL [50]. Therefore, treatment of the 

JAK pathway may have better efficacy in the low- 

risk groups. 

 
In addition, due to the relationship between high-risk 

score and poor prognosis, the correlation between 

chemotherapy resistance and risk score was further 

studied. We found that the IC50 of bortezomib, 

rapamycin, AZD6244 and BMS-536924 in the high-

risk group were lower than those in the low-risk group, 

suggesting that the high-risk group was more sensitive 

to these drugs. Bortezomib is a proteasome inhibitor 

that acts on the NF-ĸB signaling pathway, which is 

increased in non-GCB DLBCL. Combining bortezomib 

with R-CHOP in the treatment of recurrent non-GCB 

DLBCL is better than that of GCB DLBCL, and can 

improve the prognosis of non-GCB DLBCL [51]. 

Rapamycin is an mTOR inhibitor that can enhance  

the cytotoxicity induced by rituximab. Combined use 

of rapamycin may improve the efficacy of DLBCL 

patients [52]. AZD6244, a MEK inhibitor, has been 

shown to downregulate ERK substrate related to 

DLBCL cells and induce cell apoptosis [53]. BMS-

536924 is a dual IGF1R/IR kinase inhibitor that has 

been experimentally proven to inhibit acute myeloid 

leukemia (AML) proliferation and serve as a potential 

therapeutic target for AML [54]. In the low-risk group, 

the IC50 of ABT-263 and cisplatin were lower than 

that of the high-risk group, indicating that they  

were sensitive to it. ABT-263 is one of the inhibitors 

of the Bcl-2 family. Experiments have shown that 

ABT-263 combined with a variety of chemotherapy 

drugs can inhibit and delay the growth of hematologic 

malignancies [55]. Cisplatin is a commonly used 

chemotherapy drug in hematological tumors. For 

patients with refractory relapse-resistant DLBCL who 

can tolerate high-dose chemotherapy, platinum-based 

regimen is the most commonly used, such as DHAP 

(dexamethasone, cisplatin and cytarabine) [56]. 

 
In our study, this scoring model was validated in both of 

the training dataset and the external validation set. When 

the nucleotide sequences of tumor samples from biopsies 

are confirmed and analyzed via Next Generation 

Sequencing of the same platform, the score can be 

calculated. Combining the above results of predicted 

chemotherapeutic sensitivity based on the scoring model, 

a new therapeutic strategy for DLBCL patients with 

different risk was formed, that is applying bortezomib, 

rapamycin, AZD6244 and BMS-536924 in the high-risk 

group, and cisplatin-containing regimens in the second-

line treatment of relapse-refractory DLBCL patients in 

the low-risk group. Additionally, our study considered 

this scoring model as an indicator integrated in the 

constructed nomogram, and the subsequent DCA curves 

showed the positive net benefits of the constructed 

nomogram in guiding clinical decisions. 

 

Nevertheless, there exist some limitations. Our study 

applied training dataset GSE10846 and validation 

dataset GSE87371 for the construction and verification 

of the scoring model. Although the detection platform  

is the same across both two datasets, the laboratories 

involved and their respective countries differ from each 

other. Therefore, differences in experimental operations 

(conducted by different individual experimenters), hand-

ling and exposure time of tumor samples prior to RNA 

extraction and inconsistent reagents occurs, causing 

discrepancies in our analysis. 

 

Based on the above findings, we developed a TRGs-

based scoring model for DLBCL, which represents a 

novel approach in this field. Our model has the potential 

to accurately predict the prognosis of DLBCL patients 

and facilitate the development of personalized treatment 

strategies. 

 

Abbreviations 
 

DLBCL: diffuse large B cell lymphoma; TRGs: 

telomere-related genes; K-M: Kaplan-Meier; COO: cell 

of origin; GCB: germinal center B-cell; ABC: activated 

B-cell; R-CHOP: rituximab plus cyclophosphamide, 

doxorubicin, vincristine, and prednisone; IPI: 

international prognostic index; RNA: ribonucleic  

acid; TERT: telomerase reverse transcriptase; TERC: 

telomerase RNA component; ALT: alternative length 

of telomeres; HL: hodgkin lymphoma; hTERT: human 

telomerase; TRGs: telomere-related genes; GEO:  

Gene Expression Omnibus; LASSO: least absolute 

shrinkage and selection operator; OS: overall survival; 

ROC: receiver operating characteristic; RT-qPCR: 

quantitative real-time PCR; ssGSEA: single-sample 

Gene Set Enrichment Analysis; DCs: dendritic cells; 

NK: natural killer; MDSCs: myeloid-derived suppressor 

cells; AUC: area under the curve; EBV: Epstein-Barr 

virus; NSCLC: non small-cell lung cancer; TME: 

tumor microenvironment; PD-L1: programmed cell 

death ligand 1; AML: acute myeloid leukemia. 



www.aging-us.com 12941 AGING 

AUTHOR CONTRIBUTIONS 
 
Zhijia Zhao, Xiaochen Shen and Bo Tang performed the 

data analysis and interpreted the data. Jinhua Wang and 

Xiaochen Shen contributed to the experiments of this 

study. Siqi Zhao and Yuqin Tian prepared the draft. Siqi 

Zhao and Zhijia Zhao performed the visualization. Bo 

Tang and Xiaobo Wang revised the draft. Bo Tang  

and Xiaobo Wang designed the research and supervised  

all the work. All authors read and approved the final 

manuscript. 

 

CONFLICTS OF INTEREST 
 
The authors declare that the research was conducted in 

the absence of any commercial or financial relationships 

that could be construed as a potential conflict of interest. 

 

ETHICAL STATEMENT AND CONSENT 
 
The study was approved by the Ethics Committee  

of the Second Affiliated Hospital of Dalian Medical 

University. Informed consent was obtained from all 

subjects involved in the study. 

 

FUNDING 
 
The study was supported by the National Natural 

Science Foundation of China (81800203), Doctoral 

Startup Scientific Research Foundation of Liaoning 

Province (20180540088) and 1+X Program for Clinical 

Competency Enhancement-Improvement of MDT 

Project, the Second Affiliated Hospital of Dalian 

Medical University (2022MDTZY02). 

 
REFERENCES 

 
1. Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, 

Rosenwald A, Boldrick JC, Sabet H, Tran T, Yu X, 
Powell JI, Yang L, Marti GE, et al. Distinct types of 
diffuse large B-cell lymphoma identified by gene 
expression profiling. Nature. 2000; 403:503–11. 
https://doi.org/10.1038/35000501 
PMID:10676951 

2. Ennishi D, Hsi ED, Steidl C, Scott DW. Toward a New 
Molecular Taxonomy of Diffuse Large B-cell 
Lymphoma. Cancer Discov. 2020; 10:1267–81. 
https://doi.org/10.1158/2159-8290.CD-20-0174 
PMID:32616477 

3. Patriarca A, Gaidano G. Investigational drugs for the 
treatment of diffuse large B-cell lymphoma. Expert 
Opin Investig Drugs. 2021; 30:25–38. 
https://doi.org/10.1080/13543784.2021.1855140 
PMID:33295827 

 4. Miyawaki K, Kato K, Sugio T, Sasaki K, Miyoshi H, 
Semba Y, Kikushige Y, Mori Y, Kunisaki Y, Iwasaki H, 
Miyamoto T, Kuo FC, Aster JC, et al. A germinal 
center-associated microenvironmental signature 
reflects malignant phenotype and outcome of DLBCL. 
Blood Adv. 2022; 6:2388–402. 
https://doi.org/10.1182/bloodadvances.2021004618 
PMID:34638128 

 5. Ilić I, Mitrović Z, Aurer I, Bašić-Kinda S, Radman I, 
Ajduković R, Labar B, Dotlić S, Nola M. Lack of 
prognostic significance of the germinal-center 
phenotype in diffuse large B-cell lymphoma patients 
treated with CHOP-like chemotherapy with and 
without rituximab. Int J Hematol. 2009; 90:74–80. 
https://doi.org/10.1007/s12185-009-0353-y 
PMID:19495929 

 6. Nyman H, Adde M, Karjalainen-Lindsberg ML, 
Taskinen M, Berglund M, Amini RM, Blomqvist C, 
Enblad G, Leppä S. Prognostic impact of 
immunohistochemically defined germinal center 
phenotype in diffuse large B-cell lymphoma patients 
treated with immunochemotherapy. Blood. 2007; 
109:4930–5. 
https://doi.org/10.1182/blood-2006-09-047068 
PMID:17299093 

 7. He MY, Kridel R. Treatment resistance in diffuse large 
B-cell lymphoma. Leukemia. 2021; 35:2151–65. 
https://doi.org/10.1038/s41375-021-01285-3 
PMID:34017074 

 8. International Non-Hodgkin's Lymphoma Prognostic 
Factors Project. A predictive model for aggressive 
non-Hodgkin's lymphoma. N Engl J Med. 1993; 
329:987–94. 
https://doi.org/10.1056/NEJM199309303291402 
PMID:8141877 

 9. Blackburn EH, Greider CW, Szostak JW. Telomeres 
and telomerase: the path from maize, Tetrahymena 
and yeast to human cancer and aging. Nat Med. 
2006; 12:1133–8. 
https://doi.org/10.1038/nm1006-1133 
PMID:17024208 

10. Ghanim GE, Fountain AJ, van Roon AM, Rangan R, Das 
R, Collins K, Nguyen THD. Structure of human 
telomerase holoenzyme with bound telomeric DNA. 
Nature. 2021; 593:449–53. 
https://doi.org/10.1038/s41586-021-03415-4 
PMID:33883742 

11. M'kacher R, Cuceu C, Al Jawhari M, Morat L, Frenzel 
M, Shim G, Lenain A, Hempel WM, Junker S, Girinsky 
T, Colicchio B, Dieterlen A, Heidingsfelder L, et al. The 
Transition between Telomerase and ALT Mechanisms 
in Hodgkin Lymphoma and Its Predictive Value in 
Clinical Outcomes. Cancers (Basel). 2018; 10:169. 

https://doi.org/10.1038/35000501
https://pubmed.ncbi.nlm.nih.gov/10676951
https://doi.org/10.1158/2159-8290.CD-20-0174
https://pubmed.ncbi.nlm.nih.gov/32616477
https://doi.org/10.1080/13543784.2021.1855140
https://pubmed.ncbi.nlm.nih.gov/33295827
https://doi.org/10.1182/bloodadvances.2021004618
https://pubmed.ncbi.nlm.nih.gov/34638128
https://doi.org/10.1007/s12185-009-0353-y
https://pubmed.ncbi.nlm.nih.gov/19495929
https://doi.org/10.1182/blood-2006-09-047068
https://pubmed.ncbi.nlm.nih.gov/17299093
https://doi.org/10.1038/s41375-021-01285-3
https://pubmed.ncbi.nlm.nih.gov/34017074
https://doi.org/10.1056/NEJM199309303291402
https://pubmed.ncbi.nlm.nih.gov/8141877
https://doi.org/10.1038/nm1006-1133
https://pubmed.ncbi.nlm.nih.gov/17024208
https://doi.org/10.1038/s41586-021-03415-4
https://pubmed.ncbi.nlm.nih.gov/33883742


www.aging-us.com 12942 AGING 

https://doi.org/10.3390/cancers10060169 
PMID:29848986 

12. Shay JW, Wright WE. Telomeres and telomerase: 
three decades of progress. Nat Rev Genet. 2019; 
20:299–309. 
https://doi.org/10.1038/s41576-019-0099-1 
PMID:30760854 

13. Lima MF, Freitas MO, Hamedani MK, Rangel-Pozzo A, 
Zhu XD, Mai S. Consecutive Inhibition of Telomerase 
and Alternative Lengthening Pathway Promotes 
Hodgkin's Lymphoma Cell Death. Biomedicines. 2022; 
10:2299. 
https://doi.org/10.3390/biomedicines10092299 
PMID:36140400 

14. Gao J, Pickett HA. Targeting telomeres: advances in 
telomere maintenance mechanism-specific cancer 
therapies. Nat Rev Cancer. 2022; 22:515–32. 
https://doi.org/10.1038/s41568-022-00490-1 
PMID:35790854 

15. Braun DM, Chung I, Kepper N, Deeg KI, Rippe K. 
TelNet - a database for human and yeast genes 
involved in telomere maintenance. BMC Genet. 2018; 
19:32. 
https://doi.org/10.1186/s12863-018-0617-8 
PMID:29776332 

16. Miyagishima S, Mani H, Sato Y, Inoue T, Asaka T, 
Kozuka N. Developmental changes in straight gait in 
childhood. PLoS One. 2023; 18:e0281037. 
https://doi.org/10.1371/journal.pone.0281037 
PMID:36758023 

17. Li C, Zhao Q, Zhao Z, Liu Q, Ma W. The association 
between tropical cyclones and dengue fever in the 
Pearl River Delta, China during 2013-2018: A time-
stratified case-crossover study. PLoS Negl Trop Dis. 
2021; 15:e0009776. 
https://doi.org/10.1371/journal.pntd.0009776 
PMID:34499666 

18. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing 
the areas under two or more correlated receiver 
operating characteristic curves: a nonparametric 
approach. Biometrics. 1988; 44:837–45. 
PMID:3203132 

19. Davison GM. Telomeres and telomerase in leukaemia 
and lymphoma. Transfus Apher Sci. 2007; 37:43–7. 
https://doi.org/10.1016/j.transci.2007.04.006 
PMID:17766184 

20. Bandera Merchan B, Tinahones FJ, Macías-González 
M. Commonalities in the Association between PPARG 
and Vitamin D Related with Obesity and 
Carcinogenesis. PPAR Res. 2016; 2016:2308249. 
https://doi.org/10.1155/2016/2308249 
PMID:27579030 

21. Hernandez-Quiles M, Broekema MF, Kalkhoven E. 
PPARgamma in Metabolism, Immunity, and Cancer: 
Unified and Diverse Mechanisms of Action. Front 
Endocrinol (Lausanne). 2021; 12:624112. 
https://doi.org/10.3389/fendo.2021.624112 
PMID:33716977 

22. Korpal M, Puyang X, Jeremy Wu Z, Seiler R, Furman C, 
Oo HZ, Seiler M, Irwin S, Subramanian V, Julie Joshi J, 
Wang CK, Rimkunas V, Tortora D, et al. Evasion of 
immunosurveillance by genomic alterations of 
PPARγ/RXRα in bladder cancer. Nat Commun. 2017; 
8:103. 
https://doi.org/10.1038/s41467-017-00147-w 
PMID:28740126 

23. Wang SS, Davis S, Cerhan JR, Hartge P, Severson RK, 
Cozen W, Lan Q, Welch R, Chanock SJ, Rothman N. 
Polymorphisms in oxidative stress genes and risk for 
non-Hodgkin lymphoma. Carcinogenesis. 2006; 
27:1828–34. 
https://doi.org/10.1093/carcin/bgl013 
PMID:16543247 

24. Kobayashi T, Lam PY, Jiang H, Bednarska K, Gloury R, 
Murigneux V, Tay J, Jacquelot N, Li R, Tuong ZK, 
Leggatt GR, Gandhi MK, Hill MM, et al. Increased lipid 
metabolism impairs NK cell function and mediates 
adaptation to the lymphoma environment. Blood. 
2020; 136:3004–17. 
https://doi.org/10.1182/blood.2020005602 
PMID:32818230 

25. Chabay P. Advances in the Pathogenesis of EBV-
Associated Diffuse Large B Cell Lymphoma. Cancers 
(Basel). 2021; 13:2717. 
https://doi.org/10.3390/cancers13112717 
PMID:34072731 

26. Dolcetti R, De Rossi A. Telomere/telomerase interplay 
in virus-driven and virus-independent 
lymphomagenesis: pathogenic and clinical 
implications. Med Res Rev. 2012; 32:233–53. 
https://doi.org/10.1002/med.20211 
PMID:20549676 

27. Huang YC, Lin SJ, Lin KM, Chou YC, Lin CW, Yu SC, Chen 
CL, Shen TL, Chen CK, Lu J, Chen MR, Tsai CH. 
Regulation of EBV LMP1-triggered EphA4 
downregulation in EBV-associated B lymphoma and its 
impact on patients' survival. Blood. 2016; 128:1578–89. 
https://doi.org/10.1182/blood-2016-02-702530 
PMID:27338098 

28. van Doorn R, Dijkman R, Vermeer MH, Out-Luiting JJ, 
van der Raaij-Helmer EM, Willemze R, Tensen CP. 
Aberrant expression of the tyrosine kinase receptor 
EphA4 and the transcription factor twist in Sézary 
syndrome identified by gene expression analysis. 
Cancer Res. 2004; 64:5578–86. 

https://doi.org/10.3390/cancers10060169
https://pubmed.ncbi.nlm.nih.gov/29848986
https://doi.org/10.1038/s41576-019-0099-1
https://pubmed.ncbi.nlm.nih.gov/30760854
https://doi.org/10.3390/biomedicines10092299
https://pubmed.ncbi.nlm.nih.gov/36140400
https://doi.org/10.1038/s41568-022-00490-1
https://pubmed.ncbi.nlm.nih.gov/35790854
https://doi.org/10.1186/s12863-018-0617-8
https://pubmed.ncbi.nlm.nih.gov/29776332
https://doi.org/10.1371/journal.pone.0281037
https://pubmed.ncbi.nlm.nih.gov/36758023
https://doi.org/10.1371/journal.pntd.0009776
https://pubmed.ncbi.nlm.nih.gov/34499666
https://pubmed.ncbi.nlm.nih.gov/3203132
https://doi.org/10.1016/j.transci.2007.04.006
https://pubmed.ncbi.nlm.nih.gov/17766184
https://doi.org/10.1155/2016/2308249
https://pubmed.ncbi.nlm.nih.gov/27579030
https://doi.org/10.3389/fendo.2021.624112
https://pubmed.ncbi.nlm.nih.gov/33716977
https://doi.org/10.1038/s41467-017-00147-w
https://pubmed.ncbi.nlm.nih.gov/28740126
https://doi.org/10.1093/carcin/bgl013
https://pubmed.ncbi.nlm.nih.gov/16543247
https://doi.org/10.1182/blood.2020005602
https://pubmed.ncbi.nlm.nih.gov/32818230
https://doi.org/10.3390/cancers13112717
https://pubmed.ncbi.nlm.nih.gov/34072731
https://doi.org/10.1002/med.20211
https://pubmed.ncbi.nlm.nih.gov/20549676
https://doi.org/10.1182/blood-2016-02-702530
https://pubmed.ncbi.nlm.nih.gov/27338098


www.aging-us.com 12943 AGING 

https://doi.org/10.1158/0008-5472.CAN-04-1253 
PMID:15313894 

29. Gao S, Wang S, Zhao Z, Zhang C, Liu Z, Ye P, Xu Z, Yi B, 
Jiao K, Naik GA, Wei S, Rais-Bahrami S, Bae S, et al. 
TUBB4A interacts with MYH9 to protect the nucleus 
during cell migration and promotes prostate cancer 
via GSK3β/β-catenin signalling. Nat Commun. 2022; 
13:2792. 
https://doi.org/10.1038/s41467-022-30409-1 
PMID:35589707 

30. Yuan C, Yuan M, Chen M, Ouyang J, Tan W, Dai F, 
Yang D, Liu S, Zheng Y, Zhou C, Cheng Y. Prognostic 
Implication of a Novel Metabolism-Related Gene 
Signature in Hepatocellular Carcinoma. Front Oncol. 
2021; 11:666199. 
https://doi.org/10.3389/fonc.2021.666199 
PMID:34150630 

31. Rattan R, Narita K, Chien J, Maguire JL, Shridhar R, 
Giri S, Shridhar V. TCEAL7, a putative tumor 
suppressor gene, negatively regulates NF-kappaB 
pathway. Oncogene. 2010; 29:1362–73. 
https://doi.org/10.1038/onc.2009.431 
PMID:19966855 

32. Lafferty-Whyte K, Bilsland A, Hoare SF, Burns S, 
Zaffaroni N, Cairney CJ, Keith WN. TCEAL7 inhibition 
of c-Myc activity in alternative lengthening of 
telomeres regulates hTERT expression. Neoplasia. 
2010; 12:405–14. 
https://doi.org/10.1593/neo.10180 
PMID:20454512 

33. Yan Y, Gauthier MA, Malik A, Fotiadou I, Ostrovski M, 
Dervovic D, Ghadban L, Tsai R, Gish G, Loganathan SK, 
Schramek D. The NOTCH-RIPK4-IRF6-ELOVL4 Axis 
Suppresses Squamous Cell Carcinoma. Cancers 
(Basel). 2023; 15:737. 
https://doi.org/10.3390/cancers15030737 
PMID:36765696 

34. Rugolo F, Bazan NG, Calandria J, Jun B, Raschellà G, 
Melino G, Agostini M. The expression of ELOVL4, 
repressed by MYCN, defines neuroblastoma 
patients with good outcome. Oncogene. 2021; 
40:5741–51. 
https://doi.org/10.1038/s41388-021-01959-3 
PMID:34333551 

35. Xu W, Ding H, Zhang M, Liu L, Yin M, Weng Z, Xu C. 
The prognostic role of fatty acid metabolism-related 
genes in patients with gastric cancer. Transl Cancer 
Res. 2022; 11:3593–609. 
https://doi.org/10.21037/tcr-22-761 
PMID:36388036 

36. Zhang B, Xu A, Wu D, Xia W, Li P, Wang E, Han R, Sun 
P, Zhou S, Wang R. ARL14 as a Prognostic Biomarker 

in Non-Small Cell Lung Cancer. J Inflamm Res. 2021; 
14:6557–74. 
https://doi.org/10.2147/JIR.S340119 
PMID:34916816 

37. Yang Z, Yu W. Clinical significance of circulating 
neutrophils and lymphocyte subsets in newly 
diagnosed patients with diffuse large B-cell 
lymphoma. Clin Exp Med. 2023; 23:815–822. 
https://doi.org/10.1007/s10238-022-00867-4 
PMID:35939174 

38. Marvel D, Gabrilovich DI. Myeloid-derived suppressor 
cells in the tumor microenvironment: expect the 
unexpected. J Clin Invest. 2015; 125:3356–64. 
https://doi.org/10.1172/JCI80005 
PMID:26168215 

39. Kargl J, Busch SE, Yang GH, Kim KH, Hanke ML, Metz 
HE, Hubbard JJ, Lee SM, Madtes DK, McIntosh MW, 
Houghton AM. Neutrophils dominate the immune cell 
composition in non-small cell lung cancer. Nat 
Commun. 2017; 8:14381. 
https://doi.org/10.1038/ncomms14381 
PMID:28146145 

40. Speiser DE, Chijioke O, Schaeuble K, Münz C. CD4+ T 
cells in cancer. Nat Cancer. 2023; 4:317–29. 
https://doi.org/10.1038/s43018-023-00521-2 
PMID:36894637 

41. Silva-Santos B, Mensurado S, Coffelt SB. γδ T cells: 
pleiotropic immune effectors with therapeutic 
potential in cancer. Nat Rev Cancer. 2019; 19:392–
404. 
https://doi.org/10.1038/s41568-019-0153-5 
PMID:31209264 

42. Ma L, Feng Y, Zhou Z. A close look at current γδ T-cell 
immunotherapy. Front Immunol. 2023; 14:1140623. 
https://doi.org/10.3389/fimmu.2023.1140623 
PMID:37063836 

43. Jiang X, Wang J, Deng X, Xiong F, Ge J, Xiang B, Wu X, 
Ma J, Zhou M, Li X, Li Y, Li G, Xiong W, et al. Role of 
the tumor microenvironment in PD-L1/PD-1-
mediated tumor immune escape. Mol Cancer. 2019; 
18:10. 
https://doi.org/10.1186/s12943-018-0928-4 
PMID:30646912 

44. Gordon SR, Maute RL, Dulken BW, Hutter G, George 
BM, McCracken MN, Gupta R, Tsai JM, Sinha R, Corey 
D, Ring AM, Connolly AJ, Weissman IL. PD-1 
expression by tumour-associated macrophages 
inhibits phagocytosis and tumour immunity. Nature. 
2017; 545:495–9. 
https://doi.org/10.1038/nature22396 
PMID:28514441 

https://doi.org/10.1158/0008-5472.CAN-04-1253
https://pubmed.ncbi.nlm.nih.gov/15313894
https://doi.org/10.1038/s41467-022-30409-1
https://pubmed.ncbi.nlm.nih.gov/35589707
https://doi.org/10.3389/fonc.2021.666199
https://pubmed.ncbi.nlm.nih.gov/34150630
https://doi.org/10.1038/onc.2009.431
https://pubmed.ncbi.nlm.nih.gov/19966855
https://doi.org/10.1593/neo.10180
https://pubmed.ncbi.nlm.nih.gov/20454512
https://doi.org/10.3390/cancers15030737
https://pubmed.ncbi.nlm.nih.gov/36765696
https://doi.org/10.1038/s41388-021-01959-3
https://pubmed.ncbi.nlm.nih.gov/34333551
https://doi.org/10.21037/tcr-22-761
https://pubmed.ncbi.nlm.nih.gov/36388036
https://doi.org/10.2147/JIR.S340119
https://pubmed.ncbi.nlm.nih.gov/34916816
https://doi.org/10.1007/s10238-022-00867-4
https://pubmed.ncbi.nlm.nih.gov/35939174
https://doi.org/10.1172/JCI80005
https://pubmed.ncbi.nlm.nih.gov/26168215
https://doi.org/10.1038/ncomms14381
https://pubmed.ncbi.nlm.nih.gov/28146145
https://doi.org/10.1038/s43018-023-00521-2
https://pubmed.ncbi.nlm.nih.gov/36894637
https://doi.org/10.1038/s41568-019-0153-5
https://pubmed.ncbi.nlm.nih.gov/31209264
https://doi.org/10.3389/fimmu.2023.1140623
https://pubmed.ncbi.nlm.nih.gov/37063836
https://doi.org/10.1186/s12943-018-0928-4
https://pubmed.ncbi.nlm.nih.gov/30646912
https://doi.org/10.1038/nature22396
https://pubmed.ncbi.nlm.nih.gov/28514441


www.aging-us.com 12944 AGING 

45. Munir S, Lundsager MT, Jørgensen MA, Hansen M, 
Petersen TH, Bonefeld CM, Friese C, Met Ö, Straten 
PT, Andersen MH. Inflammation induced PD-L1-
specific T cells. Cell Stress. 2019; 3:319–27. 
https://doi.org/10.15698/cst2019.10.201 
PMID:31656949 

46. Xie W, Medeiros LJ, Li S, Yin CC, Khoury JD, Xu J. PD-
1/PD-L1 Pathway and Its Blockade in Patients with 
Classic Hodgkin Lymphoma and Non-Hodgkin Large-
Cell Lymphomas. Curr Hematol Malig Rep. 2020; 
15:372–81. 
https://doi.org/10.1007/s11899-020-00589-y 
PMID:32394185 

47. Yu H, Pardoll D, Jove R. STATs in cancer inflammation 
and immunity: a leading role for STAT3. Nat Rev 
Cancer. 2009; 9:798–809. 
https://doi.org/10.1038/nrc2734 
PMID:19851315 

48. Rani A, Murphy JJ. STAT5 in Cancer and Immunity. 
J Interferon Cytokine Res. 2016; 36:226–37. 
https://doi.org/10.1089/jir.2015.0054 
PMID:26716518 

49. Pan YR, Chen CC, Chan YT, Wang HJ, Chien FT, Chen 
YL, Liu JL, Yang MH. STAT3-coordinated migration 
facilitates the dissemination of diffuse large B-cell 
lymphomas. Nat Commun. 2018; 9:3696. 
https://doi.org/10.1038/s41467-018-06134-z 
PMID:30209389 

50. Ma J, Xing W, Coffey G, Dresser K, Lu K, Guo A, Raca G, 
Pandey A, Conley P, Yu H, Wang YL. Cerdulatinib, a 
novel dual SYK/JAK kinase inhibitor, has broad anti-
tumor activity in both ABC and GCB types of diffuse 
large B cell lymphoma. Oncotarget. 2015; 6:43881–96. 
https://doi.org/10.18632/oncotarget.6316 
PMID:26575169 

51. Ruan J, Martin P, Furman RR, Lee SM, Cheung K, Vose 
JM, Lacasce A, Morrison J, Elstrom R, Ely S, Chadburn 
A, Cesarman E, Coleman M, Leonard JP. Bortezomib 
plus CHOP-rituximab for previously untreated diffuse 
large B-cell lymphoma and mantle cell lymphoma. 
J Clin Oncol. 2011; 29:690–7. 
https://doi.org/10.1200/JCO.2010.31.1142 
PMID:21189393 

52. Wanner K, Hipp S, Oelsner M, Ringshausen I, Bogner 
C, Peschel C, Decker T. Mammalian target of 
rapamycin inhibition induces cell cycle arrest in 
diffuse large B cell lymphoma (DLBCL) cells and 
sensitises DLBCL cells to rituximab. Br J Haematol. 
2006; 134:475–84. 
https://doi.org/10.1111/j.1365-2141.2006.06210.x 
PMID:16856892 

53. Bhalla S, Evens AM, Dai B, Prachand S, Gordon LI, 
Gartenhaus RB. The novel anti-MEK small molecule 
AZD6244 induces BIM-dependent and AKT-
independent apoptosis in diffuse large B-cell 
lymphoma. Blood. 2011; 118:1052–61. 
https://doi.org/10.1182/blood-2011-03-340109 
PMID:21628402 

54. Wahner Hendrickson AE, Haluska P, Schneider PA, 
Loegering DA, Peterson KL, Attar R, Smith BD, 
Erlichman C, Gottardis M, Karp JE, Carboni JM, 
Kaufmann SH. Expression of insulin receptor isoform 
A and insulin-like growth factor-1 receptor in human 
acute myelogenous leukemia: effect of the dual-
receptor inhibitor BMS-536924 in vitro. Cancer Res. 
2009; 69:7635–43. 
https://doi.org/10.1158/0008-5472.CAN-09-0511 
PMID:19789352 

55. Ackler S, Mitten MJ, Foster K, Oleksijew A, Refici M, 
Tahir SK, Xiao Y, Tse C, Frost DJ, Fesik SW, Rosenberg 
SH, Elmore SW, Shoemaker AR. The Bcl-2 inhibitor 
ABT-263 enhances the response of multiple 
chemotherapeutic regimens in hematologic tumors in 
vivo. Cancer Chemother Pharmacol. 2010; 66:869–80. 
https://doi.org/10.1007/s00280-009-1232-1 
PMID:20099064 

56. Gisselbrecht C, Glass B, Mounier N, Singh Gill D, Linch 
DC, Trneny M, Bosly A, Ketterer N, Shpilberg O, 
Hagberg H, Ma D, Brière J, Moskowitz CH, Schmitz N. 
Salvage regimens with autologous transplantation for 
relapsed large B-cell lymphoma in the rituximab era. 
J Clin Oncol. 2010; 28:4184–90. 
https://doi.org/10.1200/JCO.2010.28.1618 
PMID:20660832 

 

 

https://doi.org/10.15698/cst2019.10.201
https://pubmed.ncbi.nlm.nih.gov/31656949
https://doi.org/10.1007/s11899-020-00589-y
https://pubmed.ncbi.nlm.nih.gov/32394185
https://doi.org/10.1038/nrc2734
https://pubmed.ncbi.nlm.nih.gov/19851315
https://doi.org/10.1089/jir.2015.0054
https://pubmed.ncbi.nlm.nih.gov/26716518
https://doi.org/10.1038/s41467-018-06134-z
https://pubmed.ncbi.nlm.nih.gov/30209389
https://doi.org/10.18632/oncotarget.6316
https://pubmed.ncbi.nlm.nih.gov/26575169
https://doi.org/10.1200/JCO.2010.31.1142
https://pubmed.ncbi.nlm.nih.gov/21189393
https://doi.org/10.1111/j.1365-2141.2006.06210.x
https://pubmed.ncbi.nlm.nih.gov/16856892
https://doi.org/10.1182/blood-2011-03-340109
https://pubmed.ncbi.nlm.nih.gov/21628402
https://doi.org/10.1158/0008-5472.CAN-09-0511
https://pubmed.ncbi.nlm.nih.gov/19789352
https://doi.org/10.1007/s00280-009-1232-1
https://pubmed.ncbi.nlm.nih.gov/20099064
https://doi.org/10.1200/JCO.2010.28.1618
https://pubmed.ncbi.nlm.nih.gov/20660832


www.aging-us.com 12945 AGING 

SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. The consensus matrix by cluster analysis based on TRGs. TRGs-based consensus clustering heatmap 

from 412 DLBCL samples of GSE10846 (k = 3−5). 
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Supplementary Figure 2. Different immune profiles between two clusters. (A, B) The differences of (A) 28 immune cells and (B) 38 

immune checkpoints between two clusters by ssGSEA (*p < 0.05; **p < 0.01; and ***p < 0.001). 
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Supplementary Figure 3. Expression evaluation of other candidate TRGs in the model. (A–D) The expression of (A) TUBB4A (B) 
PPARG, (C) ELOVL3 and (D) ARL14 in DLBCL group and control group. 

 

 
 

Supplementary Figure 4. Univariate Cox regression analysis of the TRGs score and clinical features. (A, B) Univariate Cox 

regression analysis of TRGs score and clinical features in (A) GSE10846 testing cohort and (B) GSE87371 cohort. 
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Supplementary Figure 5. Multivariate Cox regression analysis of the TRGs score and clinical features. (A, B) Multivariate Cox 

regression analysis of TRGs score and clinical features in (A) GSE10846 testing cohort and (B) GSE87371 cohort. 
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Supplementary Tables 
 

Supplementary Table 1. The primer sequences of candidate genes and one reference gene (ACTB) for RT-PCR. 

Primer Sequence 

TUBB4A Forward  5′–3′ CCGGACAACTTCGTGTTTGG 

TUBB4A Reverse 5′–3′ TCGCGGATCTTACTGATGAGC 

PPARG Forward  5′–3′ ACCAAAGTGCAATCAAAGTGGA 

PPARG Reverse 5′–3′ ATGAGGGAGTTGGAAGGCTCT 

ELOVL3 Forward  5′–3′ CTGTTCCAGCCCTATAACTTCG 

ELOVL3 Reverse 5′–3′ GAATGAGGTTGCCCAATACTCC  

TCEAL7 Forward  5′–3′ AAGGGAAGGAAGAGGTCCCAG 

TCEAL7 Reverse 5′–3′ CTCTGTGCGGGGTAGTTTCC 

EPHA4 Forward  5′–3′ TTCGCCCTATTTTCGTGTCTC 

EPHA4 Reverse 5′–3′ TGGTAGGTTCGGATTGGTGTAT 

ELOVL4 Forward  5′–3′ GAGCCGGGTAGTGTCCTAAAC 

ELOVL4 Reverse 5′–3′ CACACGCTTATCTGCGATGG 

ARL14 Forward  5′–3′ AAATCCGCAAACCAAACAAGC 

ARL14 Reverse 5′–3′ TTCCAACTCGATCATTTCCACAT 

ACTB Forward  5′–3′CCTGGCACCCAGCACAAT 

ACTB Reverse 5′–3′GCCGATCCACACGGAGTA 

 

Supplementary Table 2. Prognostic telomere-related genes. 

ZSWIM7 THRAP3 RPS7 POLM NCL JSRP1 FANCB CEP85 AHR 

ZNHIT3 THOC6 RPS6KA5 POLE3 NCDN JAZF1 FAM50A CEP164 ACY1 

ZNF703 THOC2 RPS4X POLE2 NCBP2 JAK2 FAM175A CENPO ACTR5 

ZNF414 THOC1 RPS28 POLDIP3 NCAPD3 IWS1 EZH1 CEBPA ACTR3 

ZNF281 THEMIS2 RPS17 POLD4 NBN IVD EXOSC6 CDKN2B ACTR2 

ZNF148 TFPT RPS16 POLD2 NAT16 ITGAX EXO1 CDK9 ACTN1 

ZNF140 TFEC RPS15A POLD1 NAT10 ISCA2 ETAA1 CDK19 ACLY 

ZMYM2 TERT RPS14 POC1A NASP IRS4 ESRRA CDK18 ABCF1 

ZMIZ2 TERF1 RPN1 PNPO NAGS IRAK1 ESR2 CDK16 ABCC5 

ZGPAT TENM3 RPLP2 PNKP NADK IPO13 ERMP1 CDK13 ABCC4 

ZCCHC7 TELO2 RPLP1 PNKD NACA IP6K3 ERH CDK12 ABCC12 

ZC3H18 TEAD1 RPL31 PMS1 MZF1 INO80E ERCC5 CDK10 ABCC10 

ZBTB9 TDRD7 RPL26L1 PLOD2 MYOM2 INO80C ERCC4 CDCA8 ABCC1 

ZBTB48 TCOF1 RPL19 PLK1 MYO10 INO80 ERCC3 CDC73 ABCB7 

ZBTB44 TCF7L2 RPAP3 PLCL1 MYH9 ILF3 ERCC2 CDC45 AARS2 

YY1 TCF7 RPAP1 PLCD1 MYH10 ILF2 EPS8L1 CDC37 AARS 

YWHAQ TCEAL7 RPAIN PLCB4 MYC IFRD2 EPHX2 CDC27  

YWHAG TBCA RPA3 PLCB3 MVK IDH3A EPHA4 CDC25B  

YWHAE TBC1D15 RPA2 PLCB2 MUTYH HYOU1 ENAH CDC16  

YWHAB TARDBP RNF40 PLAT MTF2 HUS1 EME1 CCT4  

YTHDF3 TALDO1 RINT1 PKMYT1 MTA1 HSPA4 EMD CCNL2  

YTHDF1 TAF2 RGS3 PKM MT1X HSP90AB1 ELOVL6 CCNL1  

YRDC TAF15 RFWD2 PKLR MSN HSP90AA1 ELOVL4 CCNE1  

YBX3 TADA1 RFPL3 PKIB MRTO4 HOXA7 ELOVL3 CCNC  

XRCC6 SYNE2 RFC4 PITRM1 MRPS11 HNRNPM ELAVL1 CCDC9  

XRCC4 SYAP1 REST PIR MRPL49 HNRNPA2B1 EIF5A2 CCDC155  

XRCC3 SUPT5H REM2 PIN1 MPZL1 HNRNPA1 EIF4H CCDC137  

XPO1 SUMO1 RELA PIM2 MMS19 HNMT EIF4A3 CBX5  

XBP1 SULT1C2 REL PIK3CG MLH1 HMGN2 EID3 CBX3  

XAGE2 SUDS3 REEP5 PIK3CD MITF HMGB1 EGR1 CASK  

WT1 STUB1 RECQL4 PIK3CB MIS18BP1 HMGA1 EFCAB7 CARM1  

WRNIP1 STRADA RECQL PIK3C2A MED13L HMBOX1 EEFSEC CAND1  

WRAP53 STOML2 RBX1 PIGK MED13 HIST1H4I EDC3 CAMK2G  
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WDR5B STIP1 RBM8A PIF1 MED12L HIST1H3G E2F4 CAMK1D  

WDR5 STAG2 RBM15B PIAS1 MECOM HIST1H3F E2F1 CAMK1  

WDR4 SSRP1 RBM14 PHYKPL MDN1 HIST1H3B DUSP10 CALML5  

VPS18 SSB RBL2 PHYHD1 MDH1 HIST1H1A DST CALD1  

VGLL4 SRRM2 RBFA PHLPP2 MDC1 HIF1A DPYSL3 CACYBP  

VDR SRP14 RBBP9 PHLPP1 MCRS1 HHAT DPY30 CABP4  

VCP SRM RBBP7 PHF1 MCM7 HELZ DOT1L C20orf27  

VAMP8 SPHK2 RB1CC1 PGS1 MCM5 HDGF DOLPP1 C1D  

VAMP4 SPA17 RAVER1 PGM2 MCM4 HDAC9 DNPH1 C19orf66  

VAMP3 SORL1 RARRES2 PGD MCM3AP HDAC4 DNMT3B BZW1  

VAMP2 SOAT1 RAD9A PFKP MCM3 HDAC3 DNMT1 BRMS1  

USP9X SNRNP70 RAD54L PEBP1 MCM2 HDAC1 DNAJC8 BRIP1  

USP33 SNRNP40 RAD51D PDS5B MBD2 HAT1 DNAJC3 BRD2  

USP21 SNF8 RAD23B PDS5A MAZ H2AFY2 DNAJC11 BRCA1  

UROS SND1 RAD21 PDK4 MAST1 GTF2A1 DNAJB11 BOD1L1  

UPF3A SMU1 RAD18 PDK3 MAPKAPK5 GSTZ1 DNA2 BMP2K  

UPF2 SMG6 RAC1 PDK1 MAPK12 GSS DMD BET1L  

UPF1 SMG5 RABIF PDGFRA MAP7 GSPT1 DIP2C BDKRB2  

UFSP2 SMC6 RABGEF1 PDAP1 MAP4K3 GRWD1 DHX9 BCL11A  

UEVLD SMC5 RAB9A PCNT MAP3K4 GRPEL1 DHX40 BAZ2A  

UBXN2B SMC3 RAB6A PCNP MAP3K2 GRHL2 DHX38 BARD1  

UBTF SMC1A RAB5C PCMT1 MAP2K7 GREM1 DHX37 ATXN2L  

UBE2R2 SMARCC2 RAB1B PCBP1 MALT1 GPS1 DHX34 ATRX  

UBE2M SMARCA2 PUS7 PAXIP1 MADD GPATCH8 DHX33 ATR  

UBE2I SLX4IP PURA PAX5 LYPLA1 GNL3L DHX16 ATP5F1  

UBE2D3 SLTM PTPN23 PASK LSM8 GNL3 DHFR ATP5B  

UBE2B SLC7A9 PTMS PARP4 LRSAM1 GMIP DEK ATP2B1  

UBE2A SLC7A8 PTMA PARP3 LRRC59 GMDS DDX50 ATP1A1  

UBA1 SLC7A5 PTGES3 PARL LRRC25 GLI2 DDX24 ATN1  

UAP1L1 SLC7A11 PSME3 PAPSS1 LRR1 GIGYF2 DDX1 ATG16L1  

UAP1 SLC3A2 PSMD13 PAICS LPIN2 GIGYF1 DDB1 ATF1  

TWF2 SLC25A6 PSMD10 PAFAH1B3 LONP1 GFPT2 DCTN2 ATAD5  

TUBE1 SLC25A5 PSMB5 PACSIN3 LIG4 GET4 DCK ATAD2  

TUBB4B SLC25A36 PSMA2 PACSIN2 LIG3 GDAP1 DBN1 ASF1A  

TUBB4A SKP1 PSKH2 PA2G4 LIG1 GBE1 DBF4B ARRDC4  

TUBB3 SIRT6 PSAT1 OSBPL9 LGMN GATA6 DAXX ARRDC3  

TUBB2B SIRT3 PRPSAP2 ORC4 LGALSL GATA5 DARS ARPC5  

TUBB SIN3B PRPS2 OR2H1 LGALS1 GATA4 CTNNA1 ARPC2  

TTI1 SIGMAR1 PRPF4B OGG1 LEMD3 GATA3 CTDP1 ARMC6  

TTBK1 SH3BP1 PRPF4 OGFR LEMD2 GAS2L1 CTBP1 ARL4A  

TSPYL5 SFR1 PRPF31 NXNL1 LDHB GANAB CTAG2 ARL14  

TSPYL4 SFPQ PRMT5 NVL LDHA GAK CSTF2 ARID4B  

TSG101 SF3B4 PRMT2 NUP98 LCP2 FZR1 CSNK2B ARID4A  

TSEN54 SETDB1 PRMT1 NUDT18 LCK FXN CSNK2A1 ARID3B  

TRPS1 SETD1B PRKD3 NUDT14 LAGE3 FUS CSNK1E ARID3A  

TRPC5 SETD1A PRKD2 NT5DC2 KMT2D FUBP1 CSE1L ARID1A  

TRIP13 SERPINH1 PRKCSH NSMCE4A KMT2C FRAT2 CRYGS ARHGDIA  

TRIP10 SEPHS2 PRKCQ NSMCE2 KMT2B FPGS CPSF6 ARHGAP42  

TRIM28 SENP3 PRKCB NSFL1C KMT2A FOXR1 CPSF4 ARHGAP27  

TRIM23 SENP2 PRKAR2A NRIP1 KLF6 FOXP1 CPNE3 ARF3  

TPRKB SENP1 PRDX3 NR2F2 KLF2 FOXO1 COCH APPL1  

TPR SEC61A2 PPP6R3 NPM1 KLF17 FOXN2 CNST APEX1  

TP73 SEC61A1 PPP2R1B NOP9 KLF12 FOXM1 CNPPD1 APEH  

TP53RK SEC24B PPP2R1A NOL12 KIF13B FOXK2 CMTR1 APAF1  

TP53BP1 SEC16A PPP2CA NOC4L KIAA1429 FOXJ3 CLPB AP2A2  

TP53 SDHA PPP1R7 NME4 KIAA0430 FOXF2 CLK3 ANXA4  
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TOP3B SCLY PPP1R1B NIPSNAP1 KHSRP FOSL1 CLIC3 ANKLE1  

TOP1 SAE1 PPP1R10 NIPBL KEAP1 FKBP8 CLIC1 ANGPT4  

TOMM34 RUVBL2 PPM1G NFX1 KDM6A FKBP3 CLASRP AMPH  

TNPO2 RUVBL1 PPM1F NFE2L3 KDM4B FHL1 CIRBP AMPD3  

TNKS2 RUNX2 POT1 NFATC2 KDM4A FES CHTF18 AMPD2  

TNIP2 RTN4 POR NFATC1 KDM1A FBXO22 CHN1 ALDH2  

TMX1 RTN3 POLR2E NFAT5 KCTD17 FBP1 CHMP2B AKT1  

TMPRSS13 RTF1 POLR1E NELFB KCNS3 FBL CHEK2 AKR7A3  

TMEM109 RTEL1 POLR1C NEK7 KAT2B FARSA CHD8 AKAP8  

TLN1 RRAS2 POLR1B NEK6 KAT2A FANCM CGGBP1 AIMP2  

TKT RRAGA POLR1A NEK4 JUND FANCG CFL1 AIFM1  

 

Supplementary Table 3. Collinearity analysis of seven variables (age, ECOG, LDH level, number of extranodal 
sites, stage, TRGs risk score and IPI score). 

 VIF 

Age 1.776 

ECOG 1.683 

Extranodal_sites 1.316 

LDH 2.357 

Stage 2.797 

RiskScore 1.121 

IPI 7.345 

 

Supplementary Table 4. Correlation analysis of seven variables (age, ECOG, LDH level, number of extranodal 
sites, stage, TRGs risk score and IPI score). 

  Age ECOG 
Extranodal 

sites 
LDH Stage RiskScore IPI 

Age 

Pearson Correlation 1 .155* −.049 .009 −.030 .164* .345** 

Sig. (2-tailed)  .026 .480 .902 .668 .019 .000 

N 206 206 206 206 206 206 206 

ECOG 

Pearson Correlation .155* 1 .184** .275** .266** .167* .561** 

Sig. (2-tailed) .026  .008 .000 .000 .017 .000 

N 206 206 206 206 206 206 206 

Extranodal sites 

Pearson Correlation −.049 .184** 1 .103 .374** −.030 .354** 

Sig. (2-tailed) .480 .008  .139 .000 .672 .000 

N 206 206 206 206 206 206 206 

LDH 

Pearson Correlation .009 .275** .103 1 .422** .156* .658** 

Sig. (2-tailed) .902 .000 .139  .000 .025 .000 

N 206 206 206 206 206 206 206 

Stage 

Pearson Correlation −.030 .266** .374** .422** 1 .206** .703** 

Sig. (2-tailed) .668 .000 .000 .000  .003 .000 

N 206 206 206 206 206 206 206 

RiskScore 

Pearson Correlation .164* .167* −.030 .156* .206** 1 .285** 

Sig. (2-tailed) .019 .017 .672 .025 .003  .000 

N 206 206 206 206 206 206 206 

IPI 

Pearson Correlation .345** .561** .354** .658** .703** .285** 1 

Sig. (2-tailed) .000 .000 .000 .000 .000 .000  

N 206 206 206 206 206 206 206 

*p < 0.05; **p < 0.01; ***p < 0.001. 


