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INTRODUCTION 
 

Diabetic nephropathy (DN) is a prevalent complication  

of diabetes that leads to structural alterations in the 

glomeruli, including mesangial hyperplasia, hypertrophy, 

and nodular sclerosis. According to estimates, DN affects 

30 to 40% of diabetic patients [1]. The literature 

establishes the significance of DN as a leading cause of 

end-stage renal disease [2, 3]. Renal intrinsic cells 

undergo regulated cell death (RCD) upon chronic 

exposure to high glucose levels, thereby instigating an 

auto-amplifying cycle of inflammation that exacerbates 

the progression of DN [4]. RCD is a gene-driven process 

that eliminates unwanted, redundant, and cancerous cells, 

and encompasses several distinct patterns, including 

autophagy, pyroptosis, necroptosis, apoptosis, and 

ferroptosis [5]. Endoplasmic reticulum stress, oxidative 

damage, and glycosylation end-product damage are 

underlying mechanisms of RCD abnormalities in DN, 

affecting different cells, including renal tubular epithelial 

cells and podocytes [6]. 

 

Apoptosis in renal intrinsic cells has been identified as a 

fundamental mechanism underlying DN in previous 

research [7]. Animal and cell experiments suggest that 

high glucose conditions significantly increase apoptosis in 

renal tubular epithelial cells, which are intrinsic renal 

cells. This effect may be linked to the oxidative stress 

induced by hyperglycemia in renal tubular cells [8], as 

reactive oxygen species are known to promote cell 

apoptosis. Autophagy has also emerged as a key research 

area in DN, with impaired autophagy detected in early 

diabetic models, especially in the renal cortical tubule 

fraction [9]. Such impairment may contribute to 

mitochondrial damage, which is associated with renal 

fibrosis and sclerosis [10]. Another mode of regulated 
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ABSTRACT 
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cell RNA sequencing were obtained from public databases and analyzed using gene set variation analysis (GSVA) 
with gene sets related to RCD, including autophagy, necroptosis, pyroptosis, apoptosis, and ferroptosis. RCD-
related gene biomarkers were identified using weighted gene correlation network analysis (WGCNA). The results 
were verified through experiments with an independent cohort and in vitro experiments. The GSVA revealed 
higher necroptosis scores in diabetic nephropathy. Three necroptosis-related biomarkers, EGF, PAG1, and ZFP36, 
were identified and showed strong diagnostic ability for diabetic kidney disease. In vitro experiments showed high 
levels of necroptotic markers in HK-2 cells treated with high glucose. Bioinformatics and experimental validation 
have thus identified EGF and PAG1 as necroptosis-related biomarkers for diabetic nephropathy. 
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death, cell pyroptosis, has been linked to DN through 

Gasdermin D-mediated renal tubular epithelial cell 

pyroptosis activated by the TLR4/NF-κB signaling 

pathway [11]. Ferroptosis, characterized by intracellular 

iron overload, has been associated with DN through 

increased ACSL4 expression in DN mouse tissues and in 
vitro studies confirming that ferroptosis inducers can lead 

to cell death in kidney tubules. Furthermore, iron and 

ACSL4 increase the sensitivity of cells to ferroptosis [12]. 

Hence, investigating the mechanisms underlying RCD is 

diagnostically and therapeutically important for DN. 

 

Necroptosis is a form of regulated cell death mediated by 

receptor-interacting protein kinase 1 (RIPK1), RIPK3, 

and mixed lineage kinase domain-like pseudokinase 

(MLKL). It is morphologically characterized by plasma 

membrane rupture and release of intracellular contents, 

distinguishing it from apoptosis [13]. The necroptotic 

pathway is activated when caspase-8 activity is inhibited, 

preventing apoptosis. This results in the formation of the 

necrosome complex containing RIPK1, RIPK3, and 

MLKL. RIPK3 phosphorylates MLKL, causing its 

oligomerization and translocation to the plasma 

membrane. This disrupts membrane integrity and leads to 

necroptotic cell death [14]. Several initiating stimuli can 

trigger necroptosis, including tumor necrosis factor α 

(TNFα), Fas ligand, Toll-like receptor activation, and 

interferons. These lead to assembly of the necrosome via 

RIPK1 and RIPK3. Executioner MLKL then induces 

lytic cell death [15]. 

 

Necroptosis has been implicated as a key mechanism of 

cellular demise in several diseases, including ischemic 

injury, neurodegeneration, and viral infection. Emerging 

evidence suggests it may also play a role in the 

pathogenesis of diabetes and its complications. Clinical 

trials have reported elevated RIPK1/RIPK3/MLKL 

expression in DN renal tissue [16], while experimental 

studies have shown high expression of RIPK1/RIPK3 in 

DN rat’s models and glomerular endothelial cells 

stimulated by high glucose. Adiponectin has been found 

to inhibit necroptosis mediated by RIPK1/RIPK3 and 

reduce the inflammatory response and renal damage 

induced by DN [17]. Hyperglycaemia induces metabolic 

stress and inflammation, activating necroptotic signaling 

in renal cells like podocytes, tubular epithelial cells and 

endothelial cells [18]. Animal models have shown 

heightened renal expression of key necroptotic mediators 

RIPK1, RIPK3 and MLKL in diabetic mice compared to 

controls. Morphological signs of necroptosis are also 

observed [19]. Hyperglycaemia causes mitochondrial 

dysfunction and oxidative stress in renal cells. This 

results in depletion of ATP and inhibition of apoptosis, 

shunting cells towards necroptosis. Excess glucose  

also upregulates expression of cyclophilin D, which 

sensitizes the mitochondrial permeability transition pore 

(mPTP) to open. This leads to loss of mitochondrial 

membrane potential, ROS production and eventual 

necroptotic cell death [20]. 

 

Previous research on DN has been limited by low-

throughput experimental validation, resulting in a lack 

of studies that investigate the role of RCD mechanisms 

in DN using high-throughput technologies. Single-cell 

sequencing technology provides an opportunity for 

high-throughput sequencing of the transcriptome at the 

individual cell level, allowing for the identification of 

intercellular heterogeneity and the genetic expression 

status of a single cell [21]. However, the renal tissue 

contains various intrinsic and interstitial cells, and 

traditional RNA sequencing methods only explore the 

average level of variation in cells. Therefore, the use of 

scRNA technology can reveal the cellular profile of the 

kidney and improve our understanding of the physio-

logical and pathological changes in DN. 
 

The aim of this study was to identify biomarkers related to 

necroptosis in DN using a combination of bioinformatics 

methodology and RNA sequencing techniques. To 

achieve this, we utilized bulk RNA-seq and scRNA-seq 

data to examine the transcriptomic profiles of cells from 

renal tissues affected by DN. By comparing the 

expression profiles of these cells to those of healthy 

controls, we were able to identify genes and pathways 

associated with necroptosis in DN. To further validate our 

findings, we conducted in vitro experiments to investigate 

the effects of specific genes on cell death and other 

cellular processes. Overall, our approach allowed us to 

gain a better understanding of the molecular mechanisms 

underlying necroptosis in DN and provided insights into 

potential therapeutic targets for this disease. 

 

RESULTS 
 

scRNA-seq data analysis 

 

The Seurat package was utilized for integration and 

quality control processes, which identified a total of 

23,980 cells. Subsequently, the UMAP algorithm 

revealed twenty-seven distinct clusters, as depicted in 

Figure 1A. The top 20 most highly variable markers 

were visualized in Figure 1B. Using gene markers 

identified from literature relating to kidneys 

(Supplementary Table 1), we identified 13 cell types 

from all clusters, as shown in Figure 1C. We then 

identified 698 down-regulated DEGs and 511 up-

regulated DEGs (Supplementary Table 2). 

 

Functional enrichment of DEGs in scRNA-seq data 

 

The results of the GO analysis indicated that the 

majority of up-regulated DEGs were enriched in the 
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plasma membrane, playing a role in cell adhesion  

and extracellular matrix organization (Figure 1D and 

Table 1). In contrast, the down-regulated DEGs were 

mostly associated with urogenital system and kidney 

development in the apical regions of cells, as 

determined by GO enrichment analysis (Figure 1E and 

Table 1). Additionally, KEGG enrichment analysis 

revealed that the up-regulated genes were primarily 

enriched in pathways related to cell adhesion (Figure 

1D and Table 1), while the down-regulated genes were 

mainly associated with the AGE-RAGE pathway and 

mineral absorption (Figure 1E and Table 1). 

 

Identification of five different patterns of RCD gene 

markers and the assessment of RCD enrichment 

 

We compiled a list of gene biomarkers associated with 

five different patterns of regulated cell death by 

utilizing the GO, KEGG, and FerrDb v2 databases, as 

presented in Table 2. Next, we utilized these RCD-

related gene signatures to conduct gene set variation 

analysis on RNA-seq datasets, including single-cell and 

bulk data. In the bulk dataset, higher GSVA scores for 

necroptosis and apoptosis were observed in DN 

samples, while the score for ferroptosis was relatively 

low (Figure 2A). Interestingly, the scRNA-seq dataset 

also demonstrated higher necroptosis scores in DN 

samples. Moreover, we identified a higher pyroptosis 

score in DN samples based on the scRNA-seq data 

(Figure 2B). 

 

Identification of necroptosis-related gene modules 

 

We employed the WGCNA algorithm on the bulk 

RNA-seq dataset to investigate the gene modules 

associated with necroptosis. As a result, we identified 

 

 
 

Figure 1. Cell type and the identification of differentially expression genes (DEGs) in the scRNA-seq dataset. (A) The 

distribution of 27 cell clusters (0-26) in the GSE131882 dataset as determined by the UMAP algorithm. (B) Violin plot showing the 
expression levels of highly variable gene markers in different cell clusters. (C) Thirteen cell types were identified in the GSE131882 
scRNA-seq data. (D) Circle plot of the top 5 GO and KEGG enrichments in the up-regulated DEGs. (E) Circle plot of the top 5 GO and 
KEGG enrichments in the down-regulated DEGs. Abbreviations: LOH, loop of Henle cell; CD-ICA, collecting duct type A intercalated cell; 
CT, connecting tubule cell; PEC, parietal epithelial cell; CD-ICB, collecting duct type B intercalated cell; PST, proximal straight tubule cell; 
DCT, distal convoluted tubule cell; PODO, podocyte cell; ENDO, endothelium cell; PCT, proximal convoluted tubule cell; FIB, f ibroblast 
cell; MES, mesangial cell; LEUK, leukocyte cell; KEGG, the Kyoto Encyclopaedia of Genes and Genomes; GO, gene ontology; UMAP: 
uniform manifold approximation and projection. 
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Table 1. Top5 GO and top5 KEGG enrichment in differentially expressed genes of sing-cell RNA seq dataset. 

ID Classification Classification adj. p-value Count Regulation 

GO:0007155 GO-BP cell adhesion 4.25E-10 48 Up 

GO:0030198 GO-BP extracellular matrix organization 1.17E-09 29 Up 

GO:0045926 GO-BP negative regulation of growth 3.44E-06 8 Up 

GO:0035556 GO-BP intracellular signal transduction 3.71E-06 36 Up 

GO:0001666 GO-BP response to hypoxia 7.29E-06 21 Up 

GO:0005886 GO-CC plasma membrane 3.27E-20 251 Up 

GO:0005887 GO-CC integral component of plasma membrane 3.33E-12 104 Up 

GO:0005578 GO-CC proteinaceous extracellular matrix 1.75E-10 35 Up 

GO:0070062 GO-CC extracellular exosome 1.28E-07 152 Up 

GO:0005615 GO-CC extracellular space 9.13E-07 84 Up 

GO:0044325 GO-MF ion channel binding 6.86E-05 15 Up 

GO:0005201 GO-MF extracellular matrix structural constituent 1.58E-04 11 Up 

GO:0050839 GO-MF cell adhesion molecule binding 4.14E-04 10 Up 

GO:0031994 GO-MF insulin-like growth factor I binding 7.09E-04 5 Up 

GO:0008083 GO-MF growth factor activity 0.006930406 14 Up 

hsa04510 KEGG Focal adhesion 0.001431117 21 Up 

hsa04514 KEGG Cell adhesion molecules (CAMs) 0.002452309 16 Up 

hsa04020 KEGG Calcium signaling pathway 0.004017716 18 Up 

hsa04151 KEGG PI3K-Akt signaling pathway 0.005444036 28 Up 

hsa04350 KEGG TGF-beta signaling pathway 0.005445321 11 Up 

GO:0001655 GO-BP urogenital system development 3.47E-11 30 Down 

GO:0001822 GO-BP kidney development 3.51E-11 28 Down 

GO:0045926 GO-BP negative regulation of growth 4.78E-11 26 Down 

GO:0072001 GO-BP renal system development 6.82E-11 28 Down 

GO:0003018 GO-BP vascular process in circulatory system 2.63E-10 25 Down 

GO:0045177 GO-CC apical part of cell 6.69E-10 32 Down 

GO:0062023 GO-CC collagen-containing extracellular matrix 1.14E-09 32 Down 

GO:0016324 GO-CC apical plasma membrane 4.03E-09 28 Down 

GO:0045178 GO-CC basal part of cell 5.94E-08 22 Down 

GO:0005604 GO-CC basement membrane 1.29E-07 13 Down 

GO:0046873 GO-MF metal ion transmembrane transporter activity 1.41E-13 39 Down 

GO:0015291 GO-MF 
secondary active transmembrane transporter 

activity 
1.46E-07 21 Down 

GO:0015293 GO-MF symporter activity 1.74E-07 16 Down 

GO:0005216 GO-MF ion channel activity 2.03E-07 29 Down 

GO:0005261 GO-MF cation channel activity 2.04E-07 25 Down 

hsa04978 KEGG Mineral absorption 2.76E-06 13 Down 

hsa04020 KEGG Calcium signaling pathway 6.64E-04 21 Down 

hsa04933 KEGG 
AGE-RAGE signaling pathway in diabetic 

complications 
4.20E-02 10 Down 

hsa04360 KEGG Axon guidance 1.51E-02 13 Down 

hsa04614 KEGG Renin-angiotensin system 1.66E-02 4 Down 

 

three significant gene modules, indicated as the yellow, 
blue, and cyan modules in Figure 2C. By combining 

these modules, we identified 5090 genes that are 

associated with necroptosis (Supplementary Table 3). 

Identification of necroptosis-related biomarkers 

 

We aimed to identify necroptosis-related gene markers 

in our study. Firstly, we generated Venn diagrams for 
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Table 2. A collection of biomarkers for five different types of regulated cell death (RCD). 

Types of RCD Sources Gene markers 

Autophagy KEGG_REGULATION_OF_

AUTOPHAGY v7.5.1 

ATG12 ATG3 ATG4A ATG4B ATG4C ATG4D ATG5 ATG7 BECN1 BECN2 

GABARAP GABARAPL1 GABARAPL2 IFNA1 IFNA10 IFNA13 IFNA14 

IFNA16 IFNA17 IFNA2 IFNA21 IFNA4 IFNA5 IFNA6 IFNA7 IFNA8 IFNG INS 

PIK3C3 PIK3R4 PRKAA1 PRKAA2 ULK1 ULK2 ULK3 

Necroptosis GOBP_NECROPTOTIC_SIG

NALING_PATHWAY.v7.5.1 

RIPK1 RIPK3 MLKL ZBP1 CASP8 TNF CYLD ITPK1 IPMK MAP3K7 CASP6 

TRPM7 FADD PELI1 PGLYRP1 SPATA2 SIRT3 HMGB1 TP53 TNFRSF1A 

Pyroptosis GOBP_PYROPTOSIS.v7.5.1 AIM2 APIP CASP1 CASP4 CASP6 CASP8 DHX9 ELANE GSDMA GSDMB 

GSDMC GSDMD GSDME GZMA GZMB NAIP NLRC4 NLRP1 NLRP6 NLRP9 

TREM2 ZBP1 

Apoptosis KEGG_APOPTOSIS v7.5.1 AIFM1 AKT1 AKT2 AKT3 APAF1 ATM BAD BAX BCL2 BCL2L1 BID BIRC2 

BIRC3 CAPN1 CAPN2 CASP10 CASP3 CASP6 CASP7 CASP8 CASP9 CFLAR 

CHP1 CHP2 CHUK CSF2RB CYCS DFFA DFFB ENDOD1 ENDOG EXOG 

FADD FAS FASLG IKBKB IKBKG IL1A IL1B IL1R1 IL1RAP IL3 IL3RA 

IRAK1 IRAK2 IRAK3 IRAK4 MAP3K14 MYD88 NFKB1 NFKBIA NGF 

NTRK1 PIK3CA PIK3CB PIK3CD PIK3CG PIK3R1 PIK3R2 PIK3R3 PIK3R5 

PPP3CA PPP3CB PPP3CC PPP3R1 PPP3R2 PRKACA PRKACB PRKACG 

PRKAR1A PRKAR1B PRKAR2A PRKAR2B PRKX RELA RIPK1 TNF 

TNFRSF10A TNFRSF10B TNFRSF10C TNFRSF10D TNFRSF1A TNFSF10 

TP53 TRADD TRAF2 XIAP 

Ferroptosis FerrDb V2 DECR1 ZEB1 PIR SIRT6 CD82 TF ADAM23 AGPS GPX4 SNCA HRAS 

ALOX12 MDM2 KLHDC3 EGFR NDRG1 CREB1 ACSL1 ABCC5 BRDT 

PEDS1 CHP1 BRD3 NEDD4 EZH2 HDDC3 MTF1 YY1AP1 MTCH1 RRM2 

BEX1 AKT1S1 AMN CIRBP DDR2 PGD HCAR1 HSPB1 GDF15 FADS1 MICU1 

KDM5A MGST1 NCOA3 CCDC6 CTSB ZFP36 NEDD4L PARK7 PTGS2 

ALOXE3 EMC2 MAPK1 BRD7 ATF2 MAPK8 MYCN EGLN2 OSBPL9 LAMP2 

LCE2C ABCC1 IFNA21 ACSL4 SOX2 SLC39A7 LYRM1 CGAS AGPAT3 

PARP14 PARP11 FURIN SMAD7 PARP6 NOX4 ACO1 TYRO3 DUOX1 PARP1 

PML MLLT1 ACADSB CDCA3 CYGB GLRX5 CISD1 KIF20A TTPA TMSB4X 

ANO6 PRKCA IFNA8 NFE2L2 MT1G CHMP6 TOR2A GCH1 VCP SIAH2 

PTPN6 INTS2 CDKN1A PEBP1 HMGB1 PHKG2 SLC40A1 PRDX1 AEBP2 

IREB2 FTL TRIM26 ATM PARP2 ALOX15B AIFM2 CYB5R1 NR5A2 FAR1 

HELLS ALOX12B SIRT3 TLR4 NOX1 MMD LCN2 CDKN2A JUN AR SESN2 

ATP5MC3 ARF6 PLIN2 MIOX FXN CREB3 USP11 POR SREBF2 PDK4 

HMOX1 IFNA7 METTL14 GSTM1 TSC1 GPAT4 SOCS1 FBXW7 TP53 OTUB1 

RPL8 IL1B PEX12 PARP9 PANX1 SQSTM1 ATF3 DPP4 MUC1 IDH2 SLC1A5 

MPC1 ETV4 GRIA3 ARNTL KDM3B CHAC1 TMBIM4 SUV39H1 CDH1 

FNDC5 PARP10 DLD P4HB PDSS2 IFNA10 CP NCOA4 TP63 LONP1 FTMT 

PAQR3 YTHDC2 FH G6PD BCAT2 IFNA14 CISD3 SAT1 RBMS1 MEF2C MYB 

RPTOR CHMP5 CS PRKAA1 FADS2 AHCY RNF113A SMPD1 SCD STAT3 

DNAJB6 KEAP1 PEX2 NQO1 IFNG PANX2 ACVR1B WWTR1 SLC38A1 

PARP3 FABP4 SLC25A28 NF2 MIB1 MDM4 GOT1 PARP16 POM121L12 

PLA2G6 ATG7 SLC7A11 PARP8 BRPF1 CYBB SRC NFS1 AKR1C1 CARS1 

BRD2 ELAVL1 IDH1 IFNA6 CLTRN SREBF1 SLC16A1 PRDX6 KDM5C 

IFNA2 KRAS STING1 TFRC ATF4 SLC11A2 RARRES2 MAPK3 LIG3 SMG9 

TRIB2 VDAC2 CD44 ECH1 ABHD12 BRD4 KLF2 ISCU CA9 CBS PARP4 

KDM6B GSK3B TNFAIP3 GCLC KDM4A NR4A1 NOX3 TAZ GSTZ1 TRIM46 

CDC25A ALOX15 NUPR1 FZD7 TGFBR1 DCAF7 IFNA5 PIEZO1 IL6 IFNA16 

PRKAA2 TIMM9 CDO1 PIK3CA PEX3 IFNA13 CAV1 HIF1A IFNA4 SRSF9 

CAMKK2 AKR1C3 ELOVL5 ACSL3 CPEB1 ACSF2 FTH1 USP35 TGFB1 

PARP15 TFAM PARP12 NOX5 MTDH GALNT14 RB1 TFAP2A STK11 SIRT1 

PTEN PTPN18 PROM2 ALOX5 GJA1 COPZ1 DUOX2 CYP4F8 AKR1C2 NRAS 

MTOR ATG5 CISD2 PEX6 CREB5 TMSB4Y PPARA IFNA17 LIFR HSPA5 

MLST8 HSF1 BAP1 PEX10 IFNA1 QSOX1 LPCAT3 BECN1 DHODH PHF21A 

 

the scRNA-seq DEGs, the DEGs obtained from the bulk 

data (Supplementary Table 4), and the necroptosis-

related gene modules (Figure 2D). By overlapping these 

gene lists, we identified three necroptosis-related gene 

markers: EGF, PAG1, and ZFP36. Next, we assessed 

the correlation between the expression levels of these 

biomarkers and necroptosis scores using Pearson’s 

correlation test. We found that EGF was negatively 

correlated with the necroptosis score (Figure 2E), 

whereas PAG1 was positively associated with the 



www.aging-us.com 13181 AGING 

necroptosis score (Figure 2F). However, no statistically 

significant association was found between the 

expression levels of ZFP36 and the necroptosis score 

(Figure 2G). 

 

Biomarker expression profiles 

 

In the scRNA-seq dataset, EGF was mainly expressed  

at higher levels in distal convoluted tubule (DCT) cells 

of healthy subjects (Figure 3A, 3B). PAG1 was 

predominantly expressed in parietal epithelial cells 

(PEC) of patients with DN (Figure 3C, 3D). The 

expression levels of ZFP36 were significantly higher in 

cells of the proximal straight tubule (PST), fibroblasts 

(FIB), loop of Henle (LOH), and leukocytes (LEUK) of 

healthy subjects (Figure 3E, 3F). 

Moreover, based on the analysis of the bulk RNA-seq 

datasets, EGF and ZFP36 were expressed at significantly 

higher levels in the control group (p-value<0.001), 

whereas PAG1 was expressed at higher levels in  

subjects with DN (p-value<0.001) (Figure 4A). The 

ROC analysis results revealed that EGF, PAG1, and 

ZFP36 had high accuracy in discriminating between 

normal patients and those with DN, with AUC values of 

0.877, 0.920, and 0.974, respectively (Figure 4B). 

 

Validation in the external independent cohort 

 

In the external test cohort (GSE142025), we observed 

that EGF and ZFP36 were significantly overexpressed 

in normal subjects (p-value<0.001), while PAG1 was 

expressed at high levels in DN patients (p-value<0.01) 

 

 
 

Figure 2. The identification of necroptosis-related biomarkers. (A) GSVA score of five different types of programmed cell death (PCD) 
in the bulk RNA-seq data (GSE96804). (B) GSVA score of five different types of programmed cell death based on the scRNA-seq data 
(GSE131882). (C) Heatmap showing the correlation between PCD traits and gene modules. (D) Venn diagram demonstrating the necroptosis-
related biomarkers by intersecting necroptotic gene modules arising from WGCNA analysis, DEGs in the bulk RNA-seq data and DEGs in the 
scRNA-seq data. Scatter plots showing Pearson’s correlation analysis between necroptotic GSVA scores and EGF (E), PAG1 (F) and ZFP36 (G) 
respectively. (**P<0.01; ***P<0.001). Abbreviations: DN: diabetic nephropathy; GSVA: gene set variation analysis; WGCNA: weighted gene 
correlation network analysis; DEGs: differentially expression genes. 
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with expression levels similar to those in the training 

cohort (Figure 4C). ROC analysis demonstrated that 

EGF and ZFP36 had strong discriminatory abilities for 

distinguishing between normal controls and DN patients 

(AUC = 0.865 for EGF; AUC = 0.977 for ZFP36), 

while PAG1 had a moderate discriminatory ability 

(AUC = 0.787) (Figure 4D). 

 

Clinical features associations with the necroptosis-

related gene markers 

 

In this study, we investigated the potential of EGF, 

ZFP36, and PAG1 as biomarkers for chronic kidney 

disease (CKD). We found that EGF and ZFP36 were 

positively correlated with the estimated rate of 

glomerular filtration (P=2.3e-06 and R=0.83 for EGF; 

P=0.0082 and R=0.55 for ZFP36) (Figure 5A, 5G), 

indicating their potential to estimate the extent and 

progression of functional renal loss. However, PAG1 

expression levels had no significant relationship with 

the glomerular filtration rate (P=1.8e-06 and R=-0.57 

for PAG1) (Figure 5D). 

 

Proteinuria, a known indicator of CKD, was negatively 

correlated with all three biomarkers (R=-0.56 for EGF; 

R=-0.8 for PAG1; R=-0.96 for ZFP36, all p-value <0.05) 

 

 
 

Figure 3. Expression profiles of necroptosis-related biomarkers in the scRNA-seq data. A dimension reduction plot (A) and boxplot 

(B) showing the profiles of EGF expression in different cell types. The expression levels of PAG1 in scRNA-seq data as shown as a dimension 
reduction plot (C) and boxplot (D). ZFP36 expression profile in different types of cells in the GSE131882 as shown in a dimension reduction 
plot (E) and boxplot (F). (Wilcoxon’s test; *p<0.05; **p<0.01; ***p<0.001). Abbreviations: LOH, loop of Henle cell; CD-ICA, collecting duct type 
A intercalated cell; CT, connecting tubule cell; PEC, parietal epithelial cell; CD-ICB, collecting duct type B intercalated cell; PST, proximal 
straight tubule cell; DCT, distal convoluted tubule cell; PODO, podocyte cell; ENDO, endothelium cell; PCT, proximal convoluted tubule cell; 
FIB, fibroblast cell; MES, mesangial cell; LEUK, leukocyte cell; DN: diabetic nephropathy; UMAP: uniform manifold approximation and 
projection. 
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(Figure 5B, 5E, 5H). Furthermore, we found that the 

expression levels of EGF and ZFP36 were negatively 

correlated with serum creatinine levels in DN patients 

(P=0.0051 and R=-0.65 for EGF; P=0.0013 and R=-

0.66 for ZFP36) (Figure 5C, 5I), whereas the levels of 

blood creatinine showed an opposite trend with regards 

to the expression of PAG1 in patients with DN (P=5.6e-

06 and R=0.54 for PAG1) (Figure 5F). 

 

Activation of necroptosis in HK-2 cells with high-

glucose treatment 

 

The necroptotic activation of HK-2 cells under high-

glucose conditions was evaluated by western blotting 

and RT-qPCR analysis of RIP1, RIP3, and MLKL 

expression at the protein and mRNA levels. Our 

findings indicated that high glucose exposure led to a 

significant upregulation of RIP1, RIP3, and MLKL at 

both the protein (Figure 6A, 6B) and mRNA (Figure 

6C) levels. 

 

Expression of necroptosis-related biomarkers in 

HG-stimulated HK-2 cells 

 

To evaluate the expression of EGF, ZFP36, and PAG1, 

we employed western blotting and RT-qPCR methods 

(Figure 6D–6F). We found that the expression levels of 

EGF were significantly lower in the HG group at both 

the mRNA and protein level when compared to the 

normal glucose treatment. Conversely, the expression 

levels of PAG1 were significantly higher in the HG 

group than in the NG group. However, there was no 

statistically significant difference in the expression 

levels of ZFP26 between the NG and HG groups. 

 

 
 

Figure 4. Expression profile of necroptosis-related gene markers in the bulk RNA-seq data (GSE96804) and validation in the 
test cohort (GSE142025). (A) Violin plot showing the expression levels of genes related to necroptosis in the bulk RNA-seq data.  

(B) Receiver operating characteristic curves of EGF, PAG1 and ZFP36 in the bulk RNA-seq data. (C) The expression levels of necroptosis-
related biomarkers as validated by the external independent dataset and shown as a violin plot. (D) The performance of EGF, PAG1 and 
ZFP36 in the external independent dataset as determined by receiver operating characteristic curves. (**p<0.01; ***p<0.001, compared DN 
and control group). 
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DISCUSSION 
 

In this study, we first investigated the scRNA-seq dataset 

using bioinformatics methods and identified twenty-

seven clusters and thirteen cell types, highlighting the 

diversity and heterogeneity of cells in kidney tissue. We 

identified 1209 DEGs in the scRNA-seq data, which 

were mostly upregulated in DN patients and enriched in 

cell adhesion and organization of the extracellular matrix. 

Previous studies have demonstrated that the kidney 

tissues of DN patients are affected by various stimuli, 

including high glucose, which leads to increased cell 

adhesion and infiltration, ultimately resulting in the 

extensive accumulation of monocytes and macrophages 

in the kidney tissue and exacerbating endothelial cell 

damage [22, 23]. 

 

To evaluate the enrichment of regulated cell death 

(RCD) in RNA-seq datasets at both single-cell and bulk 

levels, we collected RCD-related gene sets for gene set 

 

 
 

Figure 5. Pearson correlation analysis of necroptosis-related biomarkers and clinical features. The scatter plots revealed a 
positive correlation between the expression level of the EGF gene (A) in DN patients and the glomerular filtration rate (GFR), while 
exhibiting a negative correlation with proteinuria (B) and serum creatinine (C). Additionally, the expression level of PAG1 was negatively 
correlated with GFR (D) and proteinuria (E), but positively correlated with serum creatinine (F). ZFP36, on the other hand, exhibited a 
positive correlation with GFR (G) but a negative correlation with proteinuria (H) and serum creatinine (I) levels. 
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variation analysis. Our findings revealed that t DN 

samples had a higher enrichment score for necroptosis in 

both the single-cell and bulk RNA-seq datasets. While 

previous studies have shown that different RCD patterns 

can be observed in diabetic kidney disease, they have not 

identified which pattern plays the most critical role in the 

disease [4, 24]. In our study, we found that necroptosis 

had a higher enrichment score than other RCD patterns, 

including autophagy, pyroptosis, apoptosis, and 

ferroptosis. Our results suggest that necroptosis may 

play a primary role in the progression of diabetic 

nephropathy (DN). Necroptosis is a distinct RCD pattern 

that is not dependent on the caspase pathway and is 

distinguishable from apoptosis and necrosis. Necroptotic 

cells display swollen morphology, cytoplasmic contents 

spill out, mitochondria dysfunction, and cell 

disintegration [25]. Studies have shown that RIP1 and 

RIP3 are critical for necroptotic signaling [26]. Recent  

in vivo and in vitro studies have indicated that 

necroptosis contributes to podocyte injury induced by 

high glucose levels, as well as high expression levels of 

RIP1, RIP3, and MLKL in podocytes, and necroptosis-

related morphological features in DN groups were also 

described [27]. Moreover, kidney biopsies from DN 

patients and animal models have revealed that 

monocytes and macrophages are activated and recruited 

to the injury area to defend against and clear damaged 

cells, causing damage to the cells in the kidney tubular. 

M1 macrophages secrete a large number of inflam-

matory cytokines, which exacerbates the extent of 

necroptosis in kidney cells [28]. 

Therefore, we focused on the role of necroptosis in 

diabetic nephropathy (DN) and identified EGF, PAG1, 

and ZFP36 as potential biomarkers associated with 

necroptosis using the WGCNA algorithm. EGF is 

mainly generated from the loop of Henle and the renal 

distal convoluted tubule, and a previous study suggested 

that EGF may protect against HG-induced podocyte 

injury by regulating autophagy, promoting cell 

proliferation, and inhibiting apoptosis [29]. Tenascin-C 

exerts a direct stimulatory effect on the epidermal 

growth factor (EGF) receptor signaling pathway within 

muscle stem cells. This observation implies that 

necroptosis serves as a catalyst for the proliferation of 

muscle stem cells by activating EGF signaling, thereby 

facilitating muscle tissue regeneration [30]. Furthermore, 

it is noteworthy that within the white matter of the 

central nervous system, an excessive activation of ErbB 

receptors, which mediate the EGF signaling pathway, 

can precipitate deleterious outcomes [31]. Another 

significant insight pertains to the regulatory role of 

ZFP36 in the orchestration of the death complex known 

as the Ripoptosome. ZFP36’s action leads to the 

induction of RIP1-dependent necroptosis, underscoring 

its pivotal role in facilitating RIP1-dependent cell death 

under conditions marked by a depletion of inhibitor of 

apoptosis proteins (IAPs) [32]. Moreover, it is pertinent 

to mention that tumor necrosis factor alpha (TNFα) 

plays a promoting role in necroptosis. The expression of 

TNFα is augmented by mitogen-activated protein 

kinase-activated protein kinase 2, while ZFP36 serves as 

an inhibitor of this process [33]. 

 

 
 

Figure 6. Activation of necroptotic and necroptosis-related biomarkers in HK-2 cells stimulated by high glucose. (A) Western 

blot assays were used to detect the expression levels of necroptotic proteins in HK-2 cells under different treatments. (B) Bar charts show the 
grey values obtained from the western blots shown in (A). (C) Reverse transcription quantitative PCR analysis was used to quantify the 
expression levels of necroptotic gene markers in HK-2 cells treated with NG, NG+M and HG, respectively. The protein and mRNA expression 
levels of EGF, PAG1 and ZFP36 were detected by western blot analysis (D, E) and reverse transcription quantitative PCR (F) in HK-cells when 
treated with NG, NG+M and HG. (#P < 0.05, ##P < 0.01, compared with NG group). Abbreviations: NG: normal glucose; NG+M: NG + 
Hyperosmotic medium; HG: high glucose; DN: diabetic nephropathy. 
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This study observed a downregulation of EGF in the 

context of diabetic nephropathy (DN), which is 

consistent with prior research indicating a reduction in 

urinary EGF levels associated with a decline in 

glomerular filtration rate (GFR) among DN patients [34, 

35]. Intriguingly, our investigation revealed a negative 

correlation between EGF expression levels and both 

proteinuria and serum creatinine levels. Nonetheless, 

additional research is warranted to thoroughly elucidate 

this relationship. Although there is limited existing 

literature connecting PAG1 to kidney disease, our 

findings demonstrated an upregulation of PAG1 in DN, 

aligning with its recognized pro-inflammatory role in 

conditions such as asthma [36] and nasopharyngeal 

carcinoma [37]. Nevertheless, certain contradictions in 

clinical correlations warrant further exploration. In the 

case of ZFP36, although its role in ferroptosis 

regulation in liver fibrosis is well-documented [38], its 

association with diabetic kidney disease remains poorly 

understood and requires further investigation. Our study 

notably identified the predominant expression of these 

biomarkers within renal tubular cells, specifically in the 

convoluted tubule and proximal straight tubule. 

 

Furthermore, our in vitro experiments using the HK-2 

cell line validated the expression patterns of the 

necroptotic biomarkers, such as RIP1, RIP3, and 

MLKL, under high glucose conditions. We also found 

that EGF and PAG1 expression levels were consistent 

with the results obtained in silico, suggesting their 

potential as therapeutic targets for DN. However, we 

did not find any significant changes in the expression 

levels of ZFP36 under different treatments, which needs 

further investigation. 

 

However, there are still some limitations in this study. 

First, only three biomarkers were characterized, 

providing an incomplete representation of necroptotic 

signaling. Analysis of broader pathways is needed. 

Second, lack of validation in human DN samples limits 

clinical applicability. Animal models do not fully 

recapitulate human disease. Third, potential con-

founders like medications, comorbidities were not 

addressed. Larger, longitudinal clinical studies are 

required. Overall, our study provides important insights 

into the pathogenesis of DN and highlights potential 

biomarkers for diagnosis and treatment. 

 

CONCLUSIONS 
 

In summary, our comprehensive investigation, which 

involved an integration of both single-cell and bulk 

RNA-seq analyses, in conjunction with experimental 

validation, has uncovered the critical role played by 

necroptosis in the progression of diabetic nephropathy 

(DN). Specifically, our results have highlighted the 

involvement of two essential biomarkers, EGF and 

PAG1, in the necroptotic pathway in DN. These 

findings represent an important step towards elucidating 

the underlying molecular mechanisms that drive the 

pathogenesis of DN, and offer valuable insights into the 

identification of potential therapeutic targets for this 

debilitating disease. 

 

MATERIALS AND METHODS 
 

Data collection and processing 

 

To identify relevant datasets for our study, we used the 

keywords “Homo sapiens,” “diabetic kidney disease,” 

and “diabetic nephropathy” to search the Gene 

Expression Omnibus (GEO) database. We then carefully 

selected only those datasets that exclusively included 

patients with nephropathy caused by type 2 diabetes. 

Ultimately, we identified three datasets that met our 

criteria. The first was a single-cell RNA sequencing 

dataset (GSE131882), which included kidney tissue 

samples from three patients with DN and three healthy 

controls [39]. The second was a bulk RNA-seq dataset 

(GSE96804) that contained kidney tissue samples 

obtained from 40 patients with DN and 21 healthy 

controls [40]. Finally, we used the GSE142025 dataset 

as an external validation cohort, which consisted of 28 

samples from patients with DN and 9 samples from 

healthy controls [41]. In Supplementary Table 5, we 

provide detailed clinical profiles of all the patients 

included in the three datasets. 

 

In this study, we employed the Seurat package to 

analyze the single-cell sequencing data, as per the 

established guidelines [42]. We applied the following 

quality control standards to ensure the reliability of our 

analysis: (1) exclusion of cells with a gene count of less 

than 200 or more than 7500, (2) removal of cells with 

more than 25% of mitochondrial genes, and (3) 

elimination of double cells. The integrated samples were 

subjected to the Harmony algorithm and principal 

component analysis for linear downscaling and cell 

clustering. To visualize the data, we applied the non-

linear downscaling method, “uniform manifold 

approximation and projection” (UMAP) algorithm. The 

function “FindAllMarkers” was utilized to identify 

specific genes in each cluster. Further, cell-specific 

markers mentioned in previous literature were used to 

annotate the clusters. 

 

To analyze the bulk-RNA seq data, we first aligned the 

reads to the hg38 reference genome, and then 

transformed the raw read counts data to transcripts per 

million (TPM) for further analysis. Differential gene 

expression analysis was performed using the “limma” 

package [43]. We considered genes with a |log2-fold 
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change (FC)| ≥ 1 and Benjamini and Hochberg adjusted 

p-value < 0.05 as differentially expressed genes 

(DEGs). These DEGs were subsequently used for 

downstream analyses. 

 

DEGs in scRNA-Seq and functional enrichment 

 

In accordance with the cluster annotation results, we 

used the ‘FindMarkers’ function to investigate the 

DEGs between DN and control individuals in various 

clusters. Genes with a p-value < 0.05 were identified as 

DEGs. Afterward, we employed the online enrichment 

analysis tool DAVID (http://david.ncifcrf.gov) and 

Gene Ontology (GO) and Kyoto Encyclopedia of Genes 

and Genomes (KEGG) databases to identify the 

biological functions and pathways of the DEGs [44]. 

We regarded the enrichment terms with a Benjamini 

and Hochberg adjusted p-value of less than 0.05 as 

statistically significant. 

 

Identification of regulated cell death biomarkers and 

gene set variation analysis (GSVA) 

 

To investigate the mechanisms underlying regulated  

cell death (RCD) in diabetic nephropathy (DN) samples, 

we searched the KEGG, GO and FerrDb v2 databases  

to identify RCD markers of five types, including 

autophagy, necroptosis, pyroptosis, apoptosis and 

ferroptosis [45]. To assess the enrichment of these RCD 

gene sets in the RNA sequencing datasets, we used  

gene set variation analysis (GSVA) to generate GSVA 

scores for each gene set, which evaluate the change  

in activity of the associated gene set [46]. We then 

created RCD gene sets from the collected RCD-related 

key genes and used them to assess the enrichment of 

various types of RCD. After calculating the GSVA 

scores of different RCD patterns, we selected RCD 

patterns with statistical differences (p-value<0.05) in 

RNA-seq data (both single-cell and bulk) for further 

investigation. 

 

Identification of key RCD-related gene modules 

 

We employed the weighted gene co-expression network 

analysis (WGCNA) algorithm, a data reduction and 

unsupervised classification method, to build a gene co-

expression network and confirm co-expressed genes and 

modules associated with RCD traits [47]. Gene modules 

were identified using hierarchical clustering trees, and 

topological overlap matrix-based hierarchical clustering 

was used to detect them. Pearson correlation 

coefficients were calculated to determine the correlation 

of each module with RCD features, and modules 
significantly associated with RCD traits (p-value<0.05) 

were identified. The genes within these modules were 

then exported for further analysis. 

Identification of key RCD-related biomarkers 

 

In order to identify RCD-related biomarkers in DN 

samples, we first intersected the DEGs identified in 

both the single-cell and bulk RNA-seq data with the 

gene modules acquired by WGCNA. Subsequently, we 

investigated the expression profiles of these biomarkers 

in different types of renal cells using the single-cell 

sequencing dataset. Additionally, we also investigated the 

expression profiles of these candidate gene markers in bulk 

RNA-seq data. To assess the diagnostic ability of these 

gene markers, we employed the “ROCR” package to 

generate receiver operating characteristic (ROC) curves. 

 

Validation in the external test cohort 

 

To further evaluate the robustness of the biomarkers 

obtained from the training cohort, we assessed their 

expression levels in different groups and generated 

receiver operating characteristic (ROC) curves based on 

an independent external dataset (GSE142025). 

 

Association between gene markers and clinical 

features 

 

The Nephroseq database (http://www.nephroseq.org)  

is a valuable resource for investigating the association 

between key genes and important clinical renal 

parameters such as serum levels of creatine (SCr), 

glomerular filtration rate (GFR), and proteinuria (PRO) 

in DN patients. Therefore, we utilized the Nephroseq 

database to assess the correlation between key genes and 

these clinical parameters. Pearson correlation analysis 

was performed to investigate the relationship between 

key genes and GFR, SCr, and PRO in DN patients. 

 

Cell culture and treatment 

 

HK-2 cells were obtained from the National Collection of 

Authenticated Cell Cultures and cultured in DMEM 

(HyClone; Cytiva, USA) supplemented with 10% FBS 

(HyClone; Cytiva, USA) at 37° C and 5% CO2. When 

cells reached 70%-80% confluency, the medium was 

replaced with serum-free culture medium and incubated 

for 24h. The cells were then divided into three groups: 

high glucose (HG, 30 mmol/L glucose), normal glucose 

(NG, 5.5 mmol/L glucose), and normal glucose with 

hyperosmotic medium (NG+M, 5.5 mmol/L glucose + 

24.5 mmol/L mannitol). These groups were cultured for 

48h, and the proteins were extracted for subsequent 

experiments. The cell assays were performed in triplicate. 

 

Western blot analysis 

 

Protein was extracted from HK-2 cells using RIPA 

lysate (cat. no. P0013 Beyotime, China), and the protein 

http://david.ncifcrf.gov/
http://www.nephroseq.org/
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concentration was quantified using the BCA kit (cat. no. 

P0010; Beyotime, China). A total of 50μg of protein was 

mixed with loading buffer in a 1:5 ratio, denatured at 

100° C for 10 min, and then separated by SDS-PAGE 

and transferred onto a PVDF membrane (Bio-Rad 

Laboratories, Inc., USA) at 90V for 2h. The membranes 

were blocked using 5% skimmed milk powder for 2h at 

37° C and then incubated overnight at 4° C with various 

primary antibodies, including anti-MLKL (cat. no. 

ab184718, Abcam, USA), anti-RIP3 (cat. no. ab209384, 

Abcam, USA), anti-RIP1 (cat. no. ab202985, Abcam, 

USA), anti-EGF (cat. no. ab218831, Abcam, USA), anti-

ZFP36 (cat. no. orb39206, Biorbyt, UK), anti-PAG1 (cat. 

no. orb67086, Biorbyt, UK), and anti-beta actin (cat. no. 

ab115777, Abcam, USA), all diluted by 1:1000. The 

membranes were washed three times with TBST for 10 

min each and then incubated with HRP-labelled 

secondary antibodies (cat.no. ab97051, Abcam, USA) 

diluted by 1:1000 for 1h. Finally, the ECL method was 

used for visualization, and the optical density of the 

bands was quantified using ImageJ (version 1.8). The 

experiments were performed in triplicate. 

 

Reverse transcription quantitative PCR (RT-qPCR) 

analysis 

 

Lastly, we evaluated the mRNA expression levels of 

RIP1, RIP3, MLKL, EGF and ZFP36 in HK-2 cells 

using specific primers (see Supplementary Table 6). 

Total RNA was extracted from HK-2 cells using TRIzol 

reagent (Invitrogen, USA), and cDNA was synthesized 

using PrimeScript RT Master Mix (Takara, Japan). 

Real-time PCR was performed using SYBR Premix Ex 

Taq II (Takara, Japan) under the following conditions: 

(1) initial denaturation at 95° C for 30 s; (2) annealing 

at 95° C for 55 s and 60° C for 40 s, for 40 cycles; and 

(3) melting at 95° C for 15 s, 60° C for 60 s, and 95° C 

for 15 s. The endogenous control was β-actin, and data 

were analyzed using the 2-∆∆Cq method. 

 

Statistical analysis 

 

In this study, all statistical analyses were performed 

using R software (version 4.2). For microarray data, we 

applied a screening threshold of |log2-fold change (FC)| 

≥ 1 and a Benjamini and Hochberg adjusted p-value < 

0.05. For single cell data, we considered a p-value < 0.05 

and an absolute value of log2FC greater than 0.25 as 

screening conditions. The GSVA scores were compared 

between DN and control groups for each RCD gene set 

using appropriate statistical tests like Wilcoxon rank 

sum test. Only those RCD types showing significantly 

different GSVA scores between groups (p<0.05) were 
considered enriched and taken for further analysis. In 

WGCNA, only gene modules showing significant 

correlation with regulated cell death (p<0.05) were 

considered associated with the phenotype. To compare 

the expression of hub biomarkers between diabetic 

nephropathy and control groups, we used the Wilcoxon 

test. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Tables 

 

 

 

Please browse Full Text version to see the data of Supplementary Tables 2–4. 

 

 

Supplementary Table 1. Identification of cell types in scRNA-Seq data via highly variable 
markers. 

Cell type Cluster Markers 

Collecting duct Type A intercalated (CD-ICA) cell 1 SLC26A7, CLNK, ADGRF5 

Collecting duct Type B intercalated (CD-ICB) cell 18 SLC26A4, SLC4A9, CELF2 

Connecting tubule (CT) cell 5,6,10,12,25 SLC8A1, SNTG1, LSAMP 

Distal convoluted tubule (DCT) cell 0,8 SLC12A3, TRPM6, CNNM2 

Endothelium (ENDO) cell 13,20 LDB2, EMCN, MEIS2 

Fibroblasts (FIB) cell 23 C7, NEGR1, TSHZ2, SVEP1 

Leukocyte (LEUK) cell 19 ARHGAP15, PTPRC, PRKCB 

Loop of Henle (LOH) cell 3,4,17,21,26 SLC12A1, PLCB1, RP1 

Mesangial (MES) cell 22 CACNA1C, EBF1, NTRK3 

Proximal convoluted tubule (PCT) cell 2,7,9,15 SORCS1, SLC5A12, UGT2B7 

Parietal epithelial (PEC) cell 14 ALDH1A2, CFH, KCNT2 

Podocyte (PODO) cell  16 PTPRQ, PTPRO, PLA2R1 

Proximal straight tubule (PST) cell 11,24 ITGB8, VCAM1 

 

Supplementary Table 2. Differentially expressed genes in scRNA-seq data (log2|fold change|>0.25 and p-
value<0.05). 

 

Supplementary Table 3. Necroptosis related gene modules obtained from weighted gene co-expression 
network analysis (bule, lightyellow and lightcyan modules). 

 

Supplementary Table 4. Differentially expressed genes in bulk RNA-seq dataset (log2|fold change|>1 and an 
adjusted p-value<0.05). 

 

Supplementary Table 5. Available clinical characteristics of DN patients and the healthy control in this study. 

 GSE96804 GSE142025 GSE131882 

Baseline  

characteristics 

Control 

(n=20) 

DN  

(n=41) 

Control 

(n=9) 

DN  

(n=28) 

Baseline  

characteristics 

Control  

(n=3) 

DN  

(n=3) 

Male/female (% male) 14/6(70) 29/12(70.7) 7/2 (77.7) 18/10 (64.2) Male sex, n 2 2 

Age (year) 43.2±6.52 46.9±7.70 60.89±2.85 53.18 ±2.47 Age in years, mean (range) 59 (54–62) 61(52–74) 

Body mass index (kg/m2) 21.6±2.52 24.8±1.82 23.38±1.39 25.57 ± 0.70 Glomerulosclerosis none mild 

Glycated hemoglobin A1c (%) 5.21±0.58 6.78±1.82 5.68±0.29 8.455 ± 0.66 BMI in kg/m2, mean (range) 27 (26–29) 35 (22–43) 

Systolic blood pressure (mm/Hg) 123.2±18.2 134.2±15.8 128.0±1.80 141.6 ±4.38 
Terminal serum creatinine, 

mean, mg/dL 
0.89 1.3 

Diastolic blood pressure (mm/Hg) 75.3±10.2 84.8±8.2 75.67±2.26 84.41 ± 2.49 Proteinuria NA + 

Total urinary protein (g/24hr) − 2.53±1.20 0.09±0.01 6.11 ± 0.97 Hemoglobin A1c, mean, % 5.2 8.5 

eGFR (ml/min) 100.23±10.5 63.16±22.12 117.7 ±8.62 63.79 ± 5.76 eGFR, mean mL/minute >60 >60 
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Supplementary Table 6. Gene primer sequences. 

Gene Forward primer (5'-3') Reverse primer (5'-3') bp 

EGF TGTCCACGCAATGTGTCTGAA CATTATCGGGTGAGGAACAACC 133 

PAG1 TTCCTGTGCTCTAGTTGTGACA CACGTTCATCAGGTTCTCATGG 75 

ZFP36 GACTGAGCTATGTCGGACCTT GAGTTCCGTCTTGTATTTGGGG 124 

RIP1 TTACATGGAAAAGGCGTGATACA AGGTCTGCGATCTTAATGTGGA 86 

RIP3 CATAGGAAGTGGGGCTACGAT AATTCGTTATCCAGACTTGCCAT 95 

MLKL AGGAGGCTAATGGGGAGATAGA TGGCTTGCTGTTAGAAACCTG 70 

ACTB CATGTACGTTGCTATCCAGGC CTCCTTAATGTCACGCACGAT 188 

 


