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INTRODUCTION 
 

RCC is a significant global health problem, causing  

a substantial number of deaths each year [1]. RCC is  

the most prevalent among different types of kidney 

cancer and constitutes at least 90% of all cases [2]. 

Kidney renal clear cell carcinoma (KIRC), the most 

prevalent type of RCC, accounts for approximately 80% 

of all RCC cases [3]. Unfortunately, RCC is associated 
with poor outcomes, and its incidence has been steadily 

increasing [4]. Approximately 30% of RCC patients 

eventually develop metastases [4]. KIRC is charac-

terized as a highly immuno-invasive tumor, indicating 

its ability to evade immune surveillance [5], and  

the progression of renal cancer has been associated with 

disruptions in the tumor immune microenvironment  

and tumor metabolism [6]. Numerous therapeutics such 

as surgery, targeted therapy and immunotherapy, have 

been applied for the management of KIRC patients  

in the clinic, but their efficacy remains limited [7].  

This underscores the persistent challenge in effectively 

treating KIRC and reveals the need to recover new 

therapeutic targets. 

 
PCD is a common modality of cell death in 

multicellular organisms that is genetically controlled 
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ABSTRACT 
 

Programmed cell death (PCD), a common modality of cell death, affects tumor development and acts as a 
target for tumor therapeutics. Many modalities of PCD regulate genesis, progression and metastasis of cancers, 
thus affecting the patients’ prognosis, but the comprehensive molecular mechanisms of PCD in tumors are 
lacking, especially in renal cancer. Here, seventeen PRPCDGs were identified from 1257 genes associated with 
thirteen PCD modalities, which were highly differentially expressed and significantly affected patients’ 
prognosis. Then, LASSO regression analysis of these PRPCDGs screened the 9-gene PRPCDGs risk signature in 
TCGA-KIRC database. The PRPCDGs risk signature was closely associated with the patients’ prognosis and 
presented stable prediction efficacy for 5- and 7-year overall survival (OS) in three different cohorts of renal 
cancer. Immune cell infiltration, immune checkpoint expression and pathway enrichment (including GO, KEGG 
pathway, tumor-associated pathways and metabolism-associated pathways) were significantly different in the 
high- or low-PRPCDGs-risk group. Finally, we illustrated that TRIB3 might be a protumor factor responsible for 
the elevated proliferation and invasion capacities of renal cell carcinoma (RCC) cells. In summary, the PRPCDGs 
risk signature was developed and showed stable prediction efficacy for the prognosis of patients and that (such 
as TRIB3) could be a potential target for RCC management. 
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and accompanied by physiological dysfunction [8]. 

PCD affects various physiological and pathological 

processes in organisms [9]. Apoptosis, one of the earliest 

discovered PCD modalities, is regulated by a series  

of intracellular and extracellular signaling networks  

[9]. Both aberrant or absent apoptotic signaling and 

excessive expression of apoptosis inhibitors can lead  

to the survival of tumor cells [10]. In addition, DNA 

damage is a common trigger of apoptosis. Severe DNA 

damage and defective repair mechanisms can activate 

the apoptotic signaling pathway and mediate apoptosis 

[11]. Autophagy is another common form of PCD and is 

responsible for removing damaged or excess cellular 

components and maintaining intracellular environmental 

homeostasis, which plays a significant role in tumor 

development [12]. Autophagy was reported to be a 

survival pathway and quality-control mechanism to 

suppress tumor progression during early tumorigenesis, 

while when tumors progress to the advanced stage, 

autophagy promotes the survival, growth and metastasis 

of established tumors [13]. As the investigation of PCD 

deepens, various PCD modalities (such as pyroptosis, 

ferroptosis, necroptosis, cuproptosis, etc.,) are being 

discovered and studied. These different types of PCD 

have distinct characteristics and regulatory mechanisms 

and play vital roles in tumor development [14–17]. 

Thus, exploration of the potential functions, biological 

mechanisms and clinical relevance of various types of 

PCD in KIRC is needed to provide a reference for  

the subsequent targeted therapies. 

 
In this study, 1257 protein coding genes associated  

with thirteen PCD modalities (apoptosis, autophagy, 

pyroptosis, ferroptosis, necroptosis, alkaliptosis, oxcip-

tosis, parthanatos, anoikis, cuproptosis, entotic cell 

death, netotic cell death, and lysosome-dependent cell 

death) were obtained from previous studies [18] and 

GSEA database. Seventeen genes that were highly 

differentially expressed and significantly affected 

patients’ prognosis were screened as prognosis-related 

PCD genes (PRPCDGs). Subsequently, the 9-gene 

PRPCDGs risk signature, namely ATP6V0A4, 

ATP6V1C2, DCN, MT1G, MYH14, NTRK2, PROM2, 

TRIB3 and UCHL1, was identified by LASSO re-

gression analysis on the basis of PRPCDGs’ expression 

in The Cancer Genome Atlas Kidney Renal Clear Cell 

Carcinoma (TCGA-KIRC). Patients’ prognosis, 

immune checkpoint expression, immune cell infiltra-

tion, Gene Ontology (GO) and pathway enrichment 

analyses (including KEGG pathway, tumor-associated 

pathway and metabolism-associated pathway) in the 

high-PRPCDGs-risk group significantly differed from 

those in the low-PRPCDGs-risk group. Analyses of 

univariate and multivariate Cox (uni- and multi-Cox) 

regression were then adopted and the PRPCDGs risk 

signature was identified as the independent risk factor. 

The PRPCDGs risk signature was then mirrored in two 

cohorts, the Cancer Genome Atlas Kidney Renal 

Papillary Cell Carcinoma (TCGA-KIRP) and the E-

MTAB-1980, indicating that the signature has high 

efficacy in the prognostic prediction of RCC. In 

addition, in both the KIRC and KIRP cohorts, patients 

with progressive disease (PD) accumulated higher 

PRPCDGs risk scores and the nomogram model 

constructed by the PRPCDGs risk signature and several 

clinical parameters possessed a stable prediction efficacy 

for 5-/7-year OS. All data revealed that PRPCDGs risk 

signature was capable of predicting the prognosis and 

immunotherapy response of the patients. Finally, to 

further confirm the impact of PCD in RCC, we 

comprehensively explored the effect of TRIB3 (a hub 

gene in PRPCDGs) on renal tumors. TRIB3 was highly 

expressed in A498 cells and had a negative correlation 

with patients’ prognosis. Knockdown of TRIB3 

decreased the proliferation potential, invasion capacity 

and colony formation ability of A498 cells. Meanwhile, 

the downregulation of TRIB3 promoted the apoptosis and 

autophagy process and decreased the expression levels 

of proteins related to DNA damage repair. In summary, 

our study uncovered the effect of PRPCDGs on KIRC 

and developed a feasible risk signature for the prediction 

of patients’ prognosis and therapeutic response that 

could be a potential target for tumor therapies. 

 

RESULTS 
 

Identification of PRPCDGs 

 

The workflow of this study is shown in Figure 1.  

First, we obtained 1257 protein coding genes related  

to PCD from previous studies [18] and the GSEA 

database, including apoptosis, autophagy, pyroptosis, 

ferroptosis, necroptosis, alkaliptosis, oxciptosis, 

parthanatos, anoikis, cuproptosis, entotic cell death, 

netotic cell death, and lysosome-dependent cell  

death (shown in Supplementary Table 1). Forty- 

one differentially expressed protein-coding genes 

(DEGs) were screened to significantly distinguish 

tumor tissues from normal tissues, covering 22 

significantly upregulated genes in tumor tissues and  

19 downregulated genes (Figure 2A, 2B and Sup-

plementary Figure 1A). These genes were primarily 

enriched in the apoptosis, autophagy and lysosome 

pathways in renal tumor tissues. (Figure 2C, 2D). A 

total of 7.71% (31 in 402) of samples had somatic 

mutations in these genes (Supplementary Figure 1B). 

A change in copy number variation (CNV) was  

also observed in these genes (Supplementary Figure 

1C). The surv_cutpoint R-function was adopted to 

determine the ideal cutoff of 41 DEGs expression and 

the Kaplan-Meier survival curve was further depicted. 

The results showed that 87.8% (36 in 41) of these 
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genes had a significant correlation with the prognosis 

of KIRC patients; specifically, high expression of 11 

genes (AP1M2, ATP6V0A4, ATP6V0D2, CA9, EYA4, 

HMOX1, MAP6, MYH14, NTRK2, SFRP1 and UMOD) 

contributed to favorable prognosis of KIRC patients, 

while the high expression of the other 25 genes 

(ACKR3, ACSF2, ATP6V1B1, ATP6V1C2, BMPR1B, 

CD27, CD300A, CD3E, CD70, CDKN2A, CP, CTSW, 

DCN, LAPTM5, MMP9, MT1G, MUC1, NOL3, 

PROM2, PTGDS, RAC2, TREM2, TRIB3, TYROBP 

 

 
 

Figure 1. The workflow of the study. 
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and UCHL1) led to poor outcomes in patients (Sup-

plementary Figure 2A). Furthermore, uni-Cox regression 

analysis among these 36 genes was conducted and  

the results demonstrated that 17 DEGs had significant 

correlations with OS (P < 0.05) of KIRC patients 

(Figure 2E), including 4 protective factors (HR <1)  

and 13 risk factors (HR >1), which were termed 

PRPCDGs. Meanwhile, multi-Cox regression analysis 

(adjusted by age, grade and stage) was performed  

and the results showed that TRIB3, ATP6V1C2, 

 

 
 

Figure 2. Identification of PRPCDGs. (A) The diagram shows PCD-related DEGs (|logFC| >2.0, adjusted P-value < 0.05). (B) The heatmap 

in the presence of mRNA expression of these PCD-related DEGs in TCGA-KIRC database. (C, D) The GO and KEGG enrichment analyses of 
these PCD-related DEGs. (E) The forest plots of prognosis-related DEGs identified by the analysis of uni-Cox regression. (F) The PPI of these 
prognosis-related DEGs (named as PRPCDGs). 
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UCHL1, NTRK2 and MYH14 were the independent 

factors in KIRC (Supplementary Figure 2B). The PPI 

network of 17 PRPCDGs is presented in Figure 2F. 

 

To further verify the roles of PCDGs in KIRC patients, 

a ratio of 1:1 was adopted to divide the TCGA-KIRC 

dataset into training and testing groups. A risk model 

was established via LASSO Cox regression analysis 

based on 17 PRPCDGs’ mRNA expression in KIRC-

training dataset. Genes with high similarity but low 

weights were eliminated and 9 genes with low similarity 

were identified in this model (Figure 3A, 3B), namely 

 

 
 

Figure 3. The identification and prognostic analyses of the PRPCDGs risk signature. (A, B) LASSO regression analyses of PRPCDGs 

in TCGA-KIRC training dataset. (C) Bar plot on LASSO regression coefficients of the PRPCDGs. (D) The display of risk score, OS and OS status; 
Kaplan–Meier curves of the high- or low-PRPCDGs-risk group; prognostic performance of PRPCDGs risk signature presented in time-
dependent ROC curves; heatmap of PRPCDGs expression in these two risk groups in KIRC training dataset. (E–G) The same analyses in KIRC-
testing cohort and the external validation datasets (E-MTAB-1980 and TCGA-KIRP). 
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ATP6V0A4, ATP6V1C2, DCN, MT1G, MYH14, 

NTRK2, PROM2, TRIB3 and UCHL1. Based on the 

expression data and the coefficients of 9 genes, a 

prognostic model was constructed. The genes and their 

coefficients incorporated into this model are shown in 

Figure 3C, and the formula was as follows: PRPCDGs 

risk score = ATP6V1C2 × 0.41151193 − ATP6V0A4 × 

0.21532181 + DCN × 0.11250123 + MT1G × 

0.03749527 − MYH14 × 0.10682736 − NTRK2 × 

0.09850798 + PROM2 × 0.05556780 + TRIB3 × 

0.26818505 + UCHL1 × 0.00498139. 

 

The prognostic prediction of the PRPCDGs risk 

signature 

 

For the assessment of PRPCDGs risk signature's 

ability to predict outcomes for patients, the survival 

status, Kaplan-Meier survival curves, ROC curves as 

well as the heatmap of PRPCDGs’ expression were 

assessed. In the KIRC-training cohort (Figure 3D), the 

median value of risk scores divided all the patients into 

high- and low-PRPCDGs-risk groups and rising risk 

scores were accompanied by an increase in mortality. 

The Kaplan-Meier analysis suggested that patients 

with low-risk scores gained more favorable outcomes 

than those with high PRPCDGs risk scores. The  

ROC curves of 3- and 5-year survival in these two 

groups represented a discriminative accuracy (AUC  

in 3-year survival = 0.7175, AUC in 5-year survival  

= 0.7359). The heatmap of PRPCDGs expression data 

in different groups revealed that the expression of 

ATP6V1C2, MT1G, TRIB3, DCN, PROM2 and 

UCHL1 was positively related to the risk scores while 

the other 3 PRPCDGs presented negative correlations. 

Furthermore, the subgroups of various clinical features 

(age, sex, clinical stage and pathological grade) were 

selected and the prognosis of patients in these two 

groups was calculated in various subgroups, illustrating 

that patients from the high-PRPCDGs-risk group 

confronted more unfavorable outcomes than those in 

the other group among most subgroups (Supplementary 

Figure 3), which mirrored that the PRPCDGs risk 

signature had a robust predictive efficacy in patients’ 

prognosis. Moreover, the efficacy of this predictive 

model was further tested in KIRC-testing and E-

MTAB-1980 datasets (Figure 3E, 3F). These two 

cohorts presented similar results that the mortality was 

positively related to risk scores and patients in high-

PRPCDGs-risk group confronted more unfavorable 

outcomes than those in the other group. ROC curves 

for 3- and 5-year survival showed that the AUCs  

were 0.7175 and 0.7359 in KIRC-testing cohort 

whereas 0.7207 and 0.7401 in E-MTAB-1980 dataset, 
respectively. In comparison to the low-PRPCDGs-risk 

group, the expression of ATP6V1C2, DCN, MT1G, 

PROM2, TRIB3, and UCHL1 was higher in high-

PRPCDGs-risk group. All these findings were 

consistent with the KIRC-training dataset, suggesting 

that elevated coexpression of ATP6V1C2, DCN, 

MT1G, PROM2, TRIB3 and UCHL1 led to unfavorable 

prognosis in KIRC patients. In addition, the PRPCDGs 

risk signature was adopted in TCGA-KIRP cohort  

and showed a reliable prediction performance (Figure 

3G). 

 

Clinical relevance on the basis of PRPCDGs risk 

signature 

 

The clinical characteristics of KIRC patients  

were further analyzed based on these 9 PRPCDGs.  

In KIRC cohort, the differential expression and 

prognosis prediction performance of 9 PRPCDGs, 

and the survival difference corresponded with the 

results described previously (Figure 4A–4C). The 

correlations between risk scores and various patients’ 

clinical features were estimated (Figure 4D). The risk 

scores of KIRC patients did not differ significantly 

by age or gender, but they did have positive cor-

relations with pathological grade and clinical stage. 

In addition, higher PRPCDGs risk scores were observed 

in patients with PD in the KIRC cohort, which 

suggested that PRPCDGs risk signature was capable 

of predicting the therapy response. Moreover, patients 

with the advanced clinical stage (Stage III/IV) in 

KIRP and E-MTAB-1980 datasets showed higher  

risk scores, and patients with PD in E-MTAB- 

1980 cohort represented high risk scores. Patients in 

KIRP and E-MTAB-1980 datasets with advanced 

clinical stages (Stage III/IV) displayed higher risk 

scores, and patients with PD from E-MTAB-1980 

dataset reflected high risk scores. Uni- and multi- 

Cox regression analyses were carried out based  

on age, gender, grade, stage, and risk scores to 

further investigate independent predictive efficacy of 

PRPCDGs risk signature in KIRC cohort, revealing 

that the risk score was the independent prognostic 

factor for KIRC patients (Figure 4E). For the pre-

diction of the likelihood of 3-/5-/7-year survival,  

a nomogram model was established with analysis of 

multi-Cox regression (Figure 4F). ROC and calibration 

curve analyses assessed the model’s accuracy (Figure 

4G, 4H), and the DCA curves showed the highest 

clinical value for 5-/7-year prediction of patients’ 

prognosis in the model consisting by risk scores,  

age, grade and clinical stage (Figure 4I). A similar 

analysis for the PRPCDGs risk signature was 

conducted in E-MTAB-1980 cohort, indicating that 

the model (consisting of risk score, pathological 

grade and clinical stage) for 5-/7-year prognosis  
of patients possessed the best prediction value, 

further highlighting the ideal predictive efficacy  

of the model for patients’ prognosis (Figure 5A–5E). 
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Similarly, the model consisting by risk score  

and clinical stage showed satisfactory prediction 

value for patients’ prognosis in TCGA-KIRP cohort 

(Figure 5F–5J), which indicated that the  

PRPCDGs signature could be universal in other RCC 

tumors. 

 

 
 

Figure 4. Analysis of clinical relevance and clinical model construction based on PRPCDGs risk signature. (A) Heatmap of 

PRPCDGs’ expression in TCGA-KIRC dataset. (B, C) Kaplan–Meier survival and ROC curves based on PRPCDGs risk signature. (D) Comparison 
of the risk score in high- and low-PRPCDGs-risk groups on gender, age, stage, grade, and therapy response in KIRC cohort and two external 
validation datasets (E-MTAB-1980 and TCGA-KIRP). (E) Uni- and multi-Cox regression analyses based on OS in KIRC cohorts. (F) Nomogram 
model of the 3-/5-/7-year survival probability of patients in KIRC cohort. (G) ROC curve in the presence of model’s predictive accuracy in 
KIRC dataset. (H) The calibration curve in the presence of 3-, 5-, and 7-year OS probability of the model in KIRC dataset. (I) DCA curve in the 
presence of 3-, 5-, and 7-year OS probability according to clinical models in KIRC dataset. 
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Immune-related analyses of patients in high- and 

low-PRPCDGs-risk groups 

 

As calculated by the ESTIMATE algorithm, high-

PRPCDGs-risk group had higher stromal and immune 

scores than the other group (Figure 6A, 6B). Additionally, 

assessments of immune checkpoint expression were 

made in these groups, revealing that high-PRPCDGs-

risk group presented higher expression levels of 

CTLA4, PDCD1, TIGIT, CD27, and LAG3 while CD274 

 

 
 

Figure 5. Clinical model construction based on PRPCDGs risk signature in E-MTAB-1980 and TCGA-KIRP datasets. (A–E) Uni- 

and multi-Cox regression analyses based on the OS; a nomogram model on patients’ 3-/5-/7-year survival probability; ROC curves 
presenting model’s predictive accuracy; calibration curves and DCA curves over 3-/5-/7-year OS probability in E-MTAB-1980 dataset. (F–J) 
The same analyses in KIRP dataset. 
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was less expressed (Figure 6C), suggesting that patients 

with a different risk level tended to show contrary 

responses to immunotherapy. In addition, the infiltration 

and activity of various immune cells were assessed.  

The content of most immune cells showed a significant 

discrepancy in these two groups (Figure 6D). As shown 

in Figure 6E, 6F, aDC, DC, iDC, macrophages, CD56-

bright NK cells, B cells, T cells, Tem, Th1 cells, Th2 

cells, and Treg cells were highly activated in the high-

PRPCDGs-risk group, whereas eosinophils, neutrophils, 

and Th17 cells showed negative relations with risk 

scores in patients from TCGA-KIRC cohort. 

 

 
 

Figure 6. Immune-related analyses in high- and low-PRPCDGs-risk groups in TCGA-KIRC cohort. The stromal scores (A), immune 

scores (B), immune checkpoints’ expression (C), immune infiltration (D), immune activity scores of innate (E) and adaptive (F) immune cells 
in these two groups. 
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Potential molecular mechanisms of the PRPCDGs 

risk signature in TCGA-KIRC patients 

 

To explore the cross-talk among these 9 PRPCDGs  

in KIRC, the expression of them was analyzed by the 

Pearson correlation coefficient (Supplementary Figure 

4A). The results revealed that ATP6V0A4 positively 

correlated with ATP6V1C2, MYH14 and PROM2, and 

possessed a negative relation on TRIB3. ATP6V1C2 

positively correlated with NTRK2. UCHL1 had a 

positive correlation with DCN and PROM2. To reveal 

the potential mechanisms of PRPCDGs in KIRC, the 

activity scores on KEGG pathways, various cancer-

related hallmark pathways and GO terms (molecular 

functions, biological processes and cell components) 

and the PCCs of 9 PRPCDGs were computed. The 

correlations between 9 PRPCDGs and activity scores  

of cancer-related hallmark pathways are presented in 

Figure 7A, indicating that different genes responded to 

different pathways. The correlations with GO terms and 

 

 
 

Figure 7. Mechanisms of PRPCDGs risk signature in KIRC. (A) Heatmap of correlations between PRPCDGs risk signature expression 

and their activity scores of cancer-associated hallmark pathways. (B) Network diagram of the correlations between PRPCDGs’ expression 
and its highly correlated KEGG pathways. (C) Heatmap of activities of 7 metabolic pathways in high- or low-PRPCDGs-risk group from TCGA-
KIRC database. (D) Heatmap of correlations between the PRPCDGs risk signature and 7 metabolic pathways in two different risk groups 
from KIRC database. 
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KEGG pathways are depicted (Figure 7B and 

Supplementary Figure 4B–4D, detailed in Supplementary 

Tables 2–5). The results showed that DCN, NTRK2, 

TRIB3, ATP6V1C2, ATP6V0A4 and PROM2 had  

a strong correlation with multiple KEGG pathways,  

and DCN, UCHL1 and TRIB3 were highly correlated 

with various GO terms. Interestingly, the expression of  

DCN performed a strong correlation not with various 

KEGG pathways but with different GO terms, which 

meant that DCN possibly played a vital role in  

KIRC development. Moreover, in the high-PRPCDGs-

risk group, metabolism-related pathways were highly 

enriched and the pathways of energy, nucleotide, lipid 

and carbohydrate had significantly higher activated 

levels (Figure 7C, 7D). 

 

The protumor role of TRIB3 on the development of 

renal cancer 

 

To validate the vital role of PRPCDGs in KIRC, eight 

indicators (DEGs, OS, uni-Cox, multi-Cox, Lasso-

genes, Coexpression, Pathway and PPI) were chosen to 

construct the landscape map of these 17 PRPCDGs, and 

the scores of these genes were calculated (Figure 8). 

According to the landscape map, we found that the 

TRIB3 got the highest score. Therefore, the vital role  

of TRIB3 in KIRC was further investigated in our 

study. TRIB3 (Tribbles Pseudokinase 3) is a protein-

coding gene in humans. The finding that TRIB3 is 

highly expressed in RCC has been confirmed in several 

studies, and the elevated TRIB3 expression in RCC 

patients is correlated with clinicopathologic features 

(e.g., tumor grade and stage) of the tumor and prognosis 

[19]. 

 

Here, we found that tumor tissues had a significantly 

higher TRIB3 expression level than normal tissues 

(Figure 9A). To validate the differential expression of 

TRIB3, we used HK-2 (an immortalized proximal 

tubule epithelial cell line from a normal adult human 

kidney) and A498 (a cell line with epithelial morpho-

logy that was isolated from a kidney cancer patient) 

cells for exploration. Similarly, elevated expression  

of TRIB3 was observed in A498 cell line as compared 

to the expression in HK-2 cell line (Figure 9B).  

Si-NC- or si-TRIB3-transfected A498 cells were 

selected to further explore the role of TRIB3 on  

KIRC. The knockdown of TRIB3 in A498 cells was 

verified by western blot (Figure 9C). Subsequently,  

we comprehensively explored the influence of TRIB3 

on tumor growth and development by conducting cell 

viability assays, assessment of cell proliferation and 

migration capacity and colony formation experiments. 
Compared with the si-NC group, A498 cells with  

lower TRIB3 expression exhibited much poorer cell 

viability at different time points (24 h, 48 h and 72 h 

post transfection) (Figure 9D), and the proliferation  

ability, colony formation potential and migration 

capacity were weakened in the si-TRIB3 group (Figure 

9E–9I), which was consistent with the finding that 

TRIB3 positively affects cell proliferation and invasion 

in RCC cells, implying that TRIB3 is a tumor-

promoting factor in KIRC. To our knowledge, TRIB3 is 

a key gene in both apoptosis and cellular autophagy 

processes (Supplementary Table 1). The apoptosis rate 

of A498 cells was increased from ~6.26% to ~20.15% 

after transfected with siRNA against TRIB3 (Figure 

10A) and bcl-2 expression in A498 cells was down-

regulated with the knockdown of TRIB3 (Figure 10C), 

which meant that TRIB3 inhibited the apoptosis process 

in KIRC. Meanwhile, the elevated autophagic level was 

characterized by an increased number of red puncta and 

a decreased number of green puncta in A498 mCherry-

GFP-LC3 cells (Figure 10B) and the ratio of LC3II/I 

was increased in the si-TRIB3 group (Figure 10C). 

Furthermore, TRIB3 is highly positively correlated with 

DNA repair (Figure 7A) and severe DNA damage can 

initiate the apoptotic pathway and ultimately induce cell 

death. Therefore, the expression of DNA repair-related 

proteins (γ-H2AX, ATM, BRCA2 and PARP-1) was 

further examined, showing that defective expression of 

TRIB3 downregulated the expression levels of these 

proteins (Figure 10C). 

 

DISCUSSION 
 

RCC, particularly KIRC, is the most prevalent type  

of kidney cancer, causing significant global health 

concerns and mortality. RCC exhibits poor outcomes 

and an increasing incidence, with approximately 30%  

of patients developing metastases and the disruptions  

in metabolism and the immune microenvironment  

play crucial roles in renal cancer progression. Current 

treatment approaches such as targeted therapy and 

immunotherapy have limited efficacy, highlighting the 

need for new therapeutic targets to effectively manage 

KIRC. 

 

PCD affects various physiological and pathological 

processes and its dysfunction plays crucial roles  

in various cancers [20]. Although apoptosis has been 

recognized as a key biological process for tumor 

suppression and several drugs targeting apoptosis have 

gained some clinical and research momentum, other 

modes of PCD are as important as apoptosis for  

the study of potential targets for tumor therapy 

because of its distinct molecular mechanisms in tumor 

progression [21]. For example, autophagy, which is 

responsible for removing damaged or excess cellular 

components and maintaining intracellular environment 

homeostasis, is regarded as a double-edged sword in 

various cancers with both promoting and inhibiting 
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roles in tumors [22]. Similar to autophagy, inflammatory 

PCD modalities such as necroptosis and pyroptosis have 

a complicated relationship with cancers, causing both 

tumor progression and suppression [14, 15]. Ferroptosis, 

a novel mode of PCD, is involved in a variety of 

pathological conditions and cancer therapies and is able 

to kill tumor cells directly, exerting a potential anti-

tumor effect [16]. Numerous studies have recovered that 

higher expression of cuproptosis-associated genes has  

a positive correlation with poor prognosis in various 

cancers, but comprehensive mechanistic investigations 

and multi-omics level analysis are needed to verify  

this possible relationship [17]. Additionally, with the 

increasing study of PCD, different types of PCD such  

as parthanatos [23], entotic cell death [24], netotic  

cell death [25], lysosome-dependent cell death [26], 

alkaliptosis [27], oxciptosis [28], anoikis [29], etc., have 

been discovered and investigated, playing vital roles in 

tumor development with their distinct characteristics 

and regulatory mechanisms. Thus, PCD is a vital process 

in tumorigenesis and progression and provides more 

potential targets for tumor therapy. 

 

 
 

Figure 8. The landscape map of the PRPCDGs risk signature judged by eight indicators, including DEGs, OS, uni-Cox, multi-
Cox, Lasso-genes, Coexpression, Pathway and PPI. 
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In this study, 1257 genes associated with thirteen  

PCD modalities (apoptosis, autophagy, pyroptosis, 

ferroptosis, necroptosis, cuproptosis, parthanatos, entotic 

cell death, netotic cell death, lysosome-dependent cell 

death, alkaliptosis, oxciptosis and anoikis) were obtained 

from previous studies [18] and GSEA database. Forty-

one DEGs were selected and primarily enriched  

in apoptosis, autophagy and lysosome signaling path-

ways. Subsequently, 17 PRPCDGs that significantly 

affected patients’ prognosis were screened. Later,  

 

 
 

Figure 9. The role of TRIB3 in tumor development in renal cancer. (A) TRIB3 expression in TCGA-KIRC database. (B) TRIB3 

expression in HK2 and A498 cells. (C) The efficacy of TRIB3 knockdown in A498 cells. (D) Cell viability of si-NC- or si-TRIB3-transfected A498 
cells. (E) Proliferation ability of si-NC- or si-TRIB3-transfected A498 cells tested by EdU staining (scale bar = 200 μm), and the quantified data 
are shown in (F). (G, H) Invasion capacity of si-NC- or si-TRIB3-transfected A498 cells tested by Transwell assay (scale bar = 200 μm) and the 
quantified data. (I) Cloning assay of A498 cells with si-NC or si-TRIB3 transfection. 
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the PRPCDGs risk signature, consisting of 

ATP6V0A4, ATP6V1C2, DCN, MT1G, MYH14, 

NTRK2, PROM2, TRIB3 and UCHL1, was identified 

by the LASSO regression analysis according to 

PRPCDGs’ expression in TCGA-KIRC dataset. From 

the Pearson correlation coefficient, ATP6V0A4 

positively correlated with ATP6V1C2, MYH14 and 

PROM2, and possessed a negative relation on TRIB3. 

ATP6V1C2 positively correlated with NTRK2. 

UCHL1 had a positive correlation with DCN and 

PROM2. What’s more, mRNA expression of MYH14, 

ATP6V0A4 and NTRK2 negatively affected the risk 

scores while the other 6 PRPCDGs showed positive 

correlations with the scores. Patients with the lower 

PRPCDGs risk scores in TCGA-KIRC cohort or in the 

majority of its clinical feature-based subgroups (age, 

sex, clinical stage and pathological grade) showed 

more favorable outcomes than those with higher scores. 

The robust predictive efficacy of this predictive model 

was also applicable in the E-MTAB-1980 and KIRP 

datasets. These findings implied that PRPCDGs risk 

signature possessed a robust predictive efficacy in 

patients’ prognosis. Moreover, the PRPCDGs risk 

signature was also illustrated as an independent 

prognostic factor via analyses of uni- and multi-Cox 

regression and a nomogram model constructed by 

multi-Cox regression analysis showed ideal predictive 

efficacy for the 5-/7-year prognosis of patients. For 

immunotherapy response, the PD patients presented 

higher risk scores than CR patients in KIRC and KIRP 

cohorts, and patients who displayed high PRPCDGs 

risk scores showed increased stromal and immune 

scores in tumors. The assessment of immune check-

point expression revealed that the high-PRPCDGs-risk 

group presented higher expression levels of CTLA4, 

PDCD1, TIGIT, CD27, and LAG3 while CD274  

was less expressed. A previous study illustrated  

that CTLA4 blocked with ipilimumab (a blocking 

antibody of CTLA4) induces cancer regression in 

some metastatic RCC patients [30]. PDCD1 and CD274 

differentially modulate the prognosis in lung adeno-

carcinoma or squamous cell carcinoma [31], and 

rational combinations of first series (CTLA-4, PD-1 

and PD-L1) and second series (TIGIT, TIM-3 and 

LAG-3) of inhibitory receptors might be an optimal 

immunotherapy approach because of the coexpression 

or/and compensatory mechanisms in various cancers 

[32]. Therefore, exploring the specific functions  

and mechanisms of PRPCDGs in KIRC could provide 

a reference for targeted therapies. In addition, the 

infiltration and activity of various immune cells were 

assessed. Treg cells, B cells and macrophages were 

 

 
 

Figure 10. The role of TRIB3 in tumor development in renal cancer. (A, B) Apoptosis and autophagy level of A498 cells with si-NC or si-

TRIB3 transfection. (C) Protein expression of γ-H2AX, ATM, BRCA2, PARP-1, Bcl-2 and LC3I/II in A498 cells with si-NC or si-TRIB3 transfection. 
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highly activated in KIRC. Treg cells affect the tumor 

immune microenvironment by modulating various 

immune cells such as macrophages, dendritic cells, T 

cells, NK cells and B cells [33]. High infiltration of 

Treg cells in RCC tumors is related to unfavorable 

clinical outcomes [34]. The depletion of B cells thera-

peutically enhanced the responses of antitumor immunity 

in certain tumors by reducing the IL-10 secretion of  

B cells [35]. IL-10 has the ability to induce M2 

polarization of tumor-associated macrophages, thus 

promoting tumor growth in RCC [36]. The activity of 

Th2 cells is higher in the high-PRPCDGs-risk group. 

Polarization to Th2 phenotype of CD4+ T cells was 

evident in breast cancer patients in advanced stages and 

associated with the immunotherapy, prognosis and 

metastasis in luminal breast cancer [37]. Moreover, the 

energy, nucleotide, lipid and carbohydrate metabolisms 

were significantly activated in high-PRPCDGs-risk 

group. Metabolic reprogramming has gained much 

attention in the last decade [38]. Elevated exogenous 

lipid uptake or endogenous synthesis is vital for the 

survival and proliferation of neoplastic cells. Disturbance 

in lipid metabolism is a prominent change in RCC and 

is likely responsible for RCC aggressiveness [39]. 

Energy metabolism (glycolysis pathway) was reported 

to be a potential mechanism of RCC progression in 

bioinformatics analysis [40], and growing evidence 

supports that targeted nucleotide metabolism can 

increase anti-tumor immune response through activation 

of the host immune system [41]. These results suggested 

that PCD could affect patient prognosis via immunity 

and metabolism modulation, which also implied that 

investigations on PCD’s effects on tumor immune 

microenvironment and metabolism may provide further 

insights into specific mechanisms of tumor progression 

and potential molecular biology references for targeted 

tumor therapies. 

 
Furthermore, to further validate the role of PCD in 

RCC, a landscape map covering eight indicators (DEGs, 

OS, uni-Cox, multi-Cox, Lasso-genes, Coexpression, 

Pathway and PPI) of 17 PRPCDGs was constructed. 

Among these, TRIB3 received the highest score and 

was selected as the hub gene. TRIB3 is a protein-coding 

gene in humans. Several studies have observed that 

TRIB3 is highly expressed in RCC, and the elevated 

TRIB3 expression in RCC patients was correlated with 

clinicopathologic features of the tumor and prognosis 

[19]. What’s more, TRIB3 could activate the MAPK 

pathway, leading to an enhancement of cell survival, 

proliferation and invasion of RCC cells [19]. In our 

study, TRIB3 was mainly enriched in the cancer- 

related hallmarks of myc targets V2, mTOR1 signaling, 

glycolysis, hypoxia, DNA repair and unfolded protein 

response. TRIB3 was significantly upregulated in tumor 

tissues in TCGA-KIRC database and its expression in 

A498 cells was dramatically elevated compared with 

that in HK2 cells. The knockdown of TRIB3 decreased 

the proliferation potential, invasion capacity and colony 

formation ability of A498 cells and enhanced the 

apoptosis and autophagy process of A498 cells, which 

indicated that TRIB3 acted as a pro-tumor factor in 

RCC. Additionally, TRIB3 knockdown led to a lower 

expression of DNA repair-related proteins, including γ-

H2AX, PARP-1, BRCA2 and ATM. TRIB3 has been 

shown to respond to DNA repair and interact with a 

variety of DNA repair genes, including BRCA1 and 

ATM to regulate genome integrity [42]. These proteins 

are responsible for various DNA damage repair 

pathways and synergistically maintain genome stability 

and cell survival. γ-H2AX (the phosphorylated form of 

H2AX) responds by recruiting DNA damage response 

proteins to damaged chromatin, and the loss of γ-H2AX 

leads to DNA double-strand-break repair defects and 

genome instability [43]. ATM (ataxia telangiectasia-

mutated) is mainly involved in the DNA double- 

strand break repair process [44]. In addition to double-

strand break repair, BRCA2 (breast cancer 2) is also 

closely related to homologous recombination repair 

[45], while PARP-1 (poly (ADP-ribose) polymerase 1) 

plays important regulatory roles in single-strand  

break repair and basic cleavage repair [45]. The 

inhibition of ATM (inhibited by KU-60019) induced a 

strong suppressive effect on cell proliferation, migration 

and ROS-dependent apoptosis in RCC cells [46],  

and the deactivated BRCA2 could induce apoptosis 

through TNFα signaling pathway in multiple breast-  

and leukemic cell lines [47]. The knockdown of PARP-

1 dramatically boosted TRA-8-induced apoptosis in 

pancreatic cancer cells in vitro [48]. These results sug-

gested that knockdown of TRIB3 enhanced apoptosis  

in RCC possibly through the inhibition of the DNA 

damage repair process. 

 

Together, our study indicated that PCD might affect  

the prognosis of RCC patients. More investigations on 

PRPCDGs (such as TRIB3) could get further insights 

into mechanisms of tumor progression and provide 

potential targets for RCC treatment. 

 

METHODS 
 

Data acquisition 

 

PCD-related genes were obtained from high-quality 

articles [18]. The gene information is summarized in 

Supplementary Table 1. The profiles of mRNA expres-

sion and clinical data of KIRC and KIRP were acquired 

from the TCGA (https://xena.ucsc.edu/). E-MTAB-1980, 

an external RCC data containing clinical data and nor-

malized mRNA expression, was obtained from the Array 

Express database (https://www.ebi.ac.uk/arrayexpress). 

https://xena.ucsc.edu/
https://www.ebi.ac.uk/arrayexpress
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The mRNA expression of KIRC and KIRP was 

normalized and transformed into the form of Log2 

(TPM+1). The E-MTAB-1980 was applied for further 

external analyses. 

 

Differential expression and enrichment analyses 

 

The limma R package was obtained for screening out the 

differentially expression genes (DEGs). The Benjamini 

Hochberg method was utilized for the adjustment of  

P-value. |log2(Fold change)| >2 and adjusted P-value < 

0.05 were set as the filtering threshold of DEGs. The 

clusterprofiler R-package was applied for functional  

and mechanism enrichment analyses of the DEGs based 

on the Gene Ontology (GO) and Kyoto Encyclopedia of 

Genes and Genomes (KEGG). GO includes cell compo-

nents (CC), biological processes (BP), and molecular 

functions (MF). 

 

Uni-Cox regression and survival analyses 

 

Based on the survival R package, uni-Cox regression 

analysis was performed by matching the DEGs’ mRNA 

expression data with their corresponding clinical data 

and the efficacy of prediction was evaluated by hazard 

regression model to determine the PCD genes that 

significantly affected patient prognosis, also named  

as PRPCDGs. Using surv_cutpoint R-function from 

survminer R-package, optimal cut-off value was finally 

determined to separate single gene expression data, and 

the Kaplan-Meier survival curves were then depicted 

for the presentation of the difference in survival rate. 

The significance was determined via log-rank tests. 

 

Construction of the PRPCDGs risk signature 

 

Utilizing the createDataPartiton R-function, we separated 

the TCGA-KIRC dataset into training and testing cohorts 

at a ratio of 1:1. To construct the prognosis-related risk 

signature, the LASSO-penalized Cox (LASSO Cox) 

regression analysis was then conducted based on the 

glmnet R-package and 10-fold cross-validation in 

KIRC-training dataset. A 9-gene signature was finally 

determined. Gene expression and coefficients derived 

from LASSO Cox regression were used for the esta-

blishment of the formula for risk score computation. 

 

PRPCDGs risk score = ATP6V1C2 × 0.41151193 − 

ATP6V0A4 × 0.21532181 + DCN × 0.11250123 + 

MT1G × 0.03749527 − MYH14 × 0.10682736 − 

NTRK2 × 0.09850798 + PROM2 × 0.05556780 + 

TRIB3 × 0.26818505 + UCHL1 × 0.00498139. 

 
Receiver operating characteristic (ROC) curve analysis 

was then utilized based on the survivalROC R-package 

to estimate the risk signature’s predictive accuracy on 

patients’ prognosis. The median value of risk  

scores departed the KIRC-training dataset into high- 

and low-PRPCDGs-risk groups. Kaplan-Meier survival 

curve was depicted for the determination of survival 

rate difference between these two risk groups. The  

same analyses were performed in KIRC-testing dataset 

and two external cohorts (KIRP and E-MTAB-1980 

datasets) for further validation. 

 

Construction of nomogram 

 

To make the risk score further adjusted by clinical 

variables covering age, gender, stage, and grade,  

the variables with statistical significance derived  

from uni-Cox regression analysis were utilized for  

the conduct of multi-Cox regression analysis to screen 

out individual risk variables. We further carry out a 

stepwise regression method to determine variables.  

Not until the Akaike information criterion reached  

the minimum did the analysis stop and the variables 

were determined. Then a nomogram was constructed 

utilizing rms R-package to assess the 3-/5-/7- year  

OS probability. Time-dependent ROC and calibration 

plots estimated the prediction accuracy and clinical 

benefits of the nomogram were determined by the 

decision curve analysis (DCA). 

 

Coexpression, gene set enrichment and gene set 

variation analysis 

 

The Pearson correlation coefficient (PCC) among 9 

genes was calculated by the rcorr R-function based on 

Hmisc R-package. The gene sets of hallmark-related 

cancer pathways, GO (including molecular functions, 

cell components, biological process), and KEGG path-

ways were obtained from molecular signatures database 

(MSigDB) (https://www.gsea-msigdb.org/gsea/msigdb/ 

index.jsp). Then mRNA expression data and the gene 

sets were utilized for calculation of activity scores 

among various terms based on the Gene Set Variation 

Analysis (GSVA) R package. Then, we computed the 

PCC between PCPGs’ expression and activity score  

of every term. We think that |PCC| >0.3 and P-value  

< 0.05 represent the existing correlation between the 

two groups of data. 

 

Immune infiltration analysis and metabolic 

reprogramming 

 

Twenty-four gene sets on immune cells were obtained 

from the previous literature [49] and the activity scores 

were calculated by the method of single-sample gene 

set enrichment (ssGSEA) from GSVA R-package. 
GSVA is an unsupervised and non-parametric method 

for estimating gene set enrichment variation through 

the expression dataset of the samples [50]. We utilized 

https://www.gsea-msigdb.org/gsea/msigdb/%20index.jsp
https://www.gsea-msigdb.org/gsea/msigdb/%20index.jsp
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the estimate R-package to assess the immune and 

stromal scores. Cell Type Identification by Estimating 

Relative Subsets of RNA Transcripts (CIBERSORT) 

was then adopted for assessment of immune infiltration 

among 22 types of immune cells. Metabolic signatures 

were also obtained from the previous research and the 

same ssGSEA analysis was conducted. 

 

Cell culture 

 

HK-2 and A498 cells were cultured in Dulbecco's 

Modified Eagle Medium (DMEM) (Gibco, USA) sup-

plemented with 10% fetal bovine serum (Gibco, USA) 

and 1% penicillin/streptomycin liquid (Solarbio, China). 

 

Knockdown of TRIB3 

 

SiRNA specific to TRIB3 (si-TRIB3) and siRNA  

for negative control (si-NC) were purchased from 

GenePharma (China). When the confluence reached 

~30%, with the application of Lipofectamine™ 3000 kit 

(Invitrogen, USA), A498 cells were transfected with  

si-TRIB3 or si-NC. The medium was changed 24 h  

after transfection. The sequences of si-TRIB3 were as 

follows: TRIB3: 5′-GGAAGAAGCGGUUGGAGUUTT 

-3′ (sense), 5′-AACUCCAACCGCUUCUUCCTT-3′ 

(antisense). 

 

Cell viability assessment 

 

After the transfection of si-TRIB3 and si-NC, the Cell 

Count Kit-8 assay was conducted at 24, 48 and 72 h to 

assess the cell viability of A498 cells. The O.D. values 

were normalized to the si-NC group. 

 

Proliferation, cloning and invasion assays 

 

After the transfection of si-TRIB3 and si-NC, A498 

cells were plated into the confocal dishes, 6-cm cell 

culture dishes and chambers of cell culture inserts. 

Click-iT EdU cell proliferation assay (Thermo Fisher 

Scientific, USA) was used for cell proliferation test  

and a laser confocal microscope was used for the 

observation of cells. For the clone and invasion assay, 

cells were stained with crystal violet ammonium oxalate 

solution (Solarbio, China). The culture dishes were 

imaged and the chambers were observed via microscopy. 

 

Apoptosis assay 

 

After the transfection of si-TRIB3 and si-NC, A498 

cells were harvested with 0.25% trypsin digestion 

solutions (without phenol red) (Solarbio, China) and 
were then stained with an Annexin V-FITC Apoptosis 

Detection Kit (Solarbio, China). The fluorescent signal 

of cells was collected by a flow cytometer. 

Autophagy detection 

 
The effect of TRIB3 on autophagic flux was detected  

in A498 mCherry-GFP-LC3 cells. Briefly, after the 

transfection of si-TRIB3 and si-NC, A498 mCherry-

GFP-LC3 cells were plated into the confocal dishes for 

24 h. Then the cells were fixed by 4% paraformal-

dehyde (PFA) and incubated with DAPI (Solarbio, 

China). Finally, the tandem fluorescent LC3 puncta 

was captured with a laser confocal microscope. 

 
Western blot 

 
After the harvest of total proteins in A498 cells, equal 

amounts of proteins (30 μg) were used for SDS-PAGE 

electrophoresis. Then, the proteins were transferred 

onto a PVDF membrane where they were totally 

blocked with a blocking buffer. After the incubation 

with primary antibodies (anti-GAPDH, anti-TRIB3, 

anti-γ-H2AX, anti-ATM, anti-BRCA2, anti-PARP-1, 

anti-Bcl-2 and anti-LC3I/II) (Proteintech, China) at 

4°C overnight, the membranes were incubated with the 

secondary antibodies at room temperature for 2 h, Bio-

Rad ChemiDoc XRS chemiluminescence system (Bio-

Rad Inc., USA) was utilized to detect the western blots. 

 
Statistical analysis 

 
The unpaired t-test was utilized to determine the mean 

value differences between two groups of data. Relations 

between various variables and patients’ prognosis were 

assessed via the analyses of uni- and multi-Cox re-

gression and correlation coefficients between the two 

groups were computed with the application of Pearson 

method. P-value < 0.05 was considered significant in  

all analyses. *P-value < 0.05, **P-value < 0.01, ***P-

value < 0.001, ****P-value < 0.0001. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. (A) Distribution of tumor and normal groups calculated by t-SNE analysis in TCGA-KIRC database. Tumor 

mutation burden (TMB) (B) and copy number variations (CNVs) (C) analyses of these PCD-related DEGs in KIRC database. 
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Supplementary Figure 2. (A) Kaplan-Meier survival curves of these prognosis-related DEGs based on their expression in TCGA-KIRC 
database. (B) Forest plots of TRIB3, ATP6V1C2, UCHL1, NTRK2 and MYH14 depicted by multi-Cox regression analysis (adjusted by age, grade 
and stage). 
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Supplementary Figure 3. Validation of PRPCDGs risk signature’s prognostic predictive performance on clinicopathologic 
features (age, gender, stage and grade) with Kaplan-Meier analysis in TCGA-KIRC cohort. 
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Supplementary Figure 4. (A) Correlation diagrams of the correlations among the 9-gene PRPCDGs risk signature expression in TCGA-KIRC 
database (positive correlations in orange dots, negative correlations in green and the size of the dots shows the significance level). (B–D) 
Network diagrams of the correlations between PRPCDGs’ expression and its highly correlated GO terms. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1–5. 

 

Supplementary Table 1. The list of genes related to PCD. 

 
Supplementary Table 2. The correlations between 9 PRPCDGs and KEGG pathways (PCC >0.35|PCC < −0.3, 
adj.P-value < 0.05) 

 
Supplementary Table 3. The correlations between 9 PRPCDGs and MF terms (PCC >0.45|PCC < −0.4, adj.P-value 
< 0.05). 

 
Supplementary Table 4. The correlations between 9 PRPCDGs and CC terms (PCC >0.4|PCC < −0.3, adj.P-value 
< 0.05). 

 
Supplementary Table 5. The correlations between 9 PRPCDGs and BP terms (PCC >0.6|PCC < −0.4, adj.P-value 
< 0.05). 

 

 


