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INTRODUCTION 
 

Gastric cancer (GC) is a malignant tumor caused  

by uncontrolled growth of epithelial cells in the  
gastric mucosa [1, 2]. According to statistics,  

there will be more than 1 million new GC cases and 

800,000 GC death cases in worldwide in 2020 alone 

[3]. It is estimated that in the next 25 years, there  

will be an additional 10 million GC cases and nearly  

6 million deaths from gastric cancer [4]. Early GC  

is usually not clinically symptomatic, which leads  
to advanced disease once diagnosed [5, 6]. Surgical 

treatment remains the most common treatment for 

advanced GC. However, due to the specificity and 
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ABSTRACT 
 

Gastric cancer (GC) is a highly heterogeneous malignancy and survival rates of advanced GC patients are 
unsatisfactory. Tertiary lymphoid structures (TLS) are recently identified as lymphoid-like structures that are 
directly related to tumor prognosis and immune response. However, the association of tertiary lymphoid 
structures-related genes (TLS-RGs) with prognosis and immune response in GC remains unclear. In our study, a 
comprehensive analysis of the role of TLS-RGs in GC was performed based on public data, and the difference 
of TLS-RGs expression, TLS-RGs mutation frequency, pathway enrichment, differentially expressed gene, 
immune landscape, immunotherapy and drug sensitivity was analyzed. We found that TLS-RGs were altered in 
GC in terms of expression and mutation. The difference of survival, immune landscape and enrichment 
pathway exists between TLS clusters. Immune checkpoint differences were also evident between gene 
clusters. The grouping by TLS score indicated that patients in the low TLS score group had a better prognosis 
and a lower degree of immune escape. For immunotherapy, the low TLS score group showed better outcomes 
than the high TLS score group. Sensitivity to chemotherapeutic agents differed between TLS score groups. In 
conclusion, we comprehensively analyzed the role of TLS-RGs in GC, constructed nomogram that can 
accurately predict the prognosis of GC patients, and the TLS score can reflect the immune landscape of 
patients, providing the possibility of personalized design of immunotherapy and targeted drug therapy for GC 
patients. 
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metastatic nature of GC, the median survival rate of 

patients with advanced GC patients is less than one 

year [7, 8]. The cure rate for metastatic GC remains 

low even with the advent of new targeted drugs and 

immunotherapy [9, 10]. Therefore, early diagnosis and 

treatment of GC is the key to saving the lives of GC 

patients. 
 

Tertiary lymphoid structures (TLS) have recently  

been identified as a class of lymphoid structures, and 

studies suggest that it forms only in a variety of chronic 

inflammatory diseases, autoimmune conditions, and 

cancers [11, 12]. Notably, the presence of TLS correlates 

with tumor prognosis and the response to immunotherapy 

[13, 14]. The prognostic value of TLS has been 

specifically studied in a variety of tumors, including 

intrahepatic cholangiocarcinoma [15], endometrial cancer 

[16], oral cavity cancer [17], lung cancer [18] and renal 

clear cell carcinoma [19], among others. These studies 

not only demonstrated the importance of TLS on  

the prognosis of tumor patients, but highlighted the 

importance of TLS affecting immune infiltration in 

improving patient survival. Immunotherapy has been 

shown to be associated with a variety of tumor treatments 

[20, 21], and TLS is involved in the formation of  

tumor immunity and largely influences the outcome of 

immunotherapy [22]. Tumor immunity is also the key  

to the treatment of GC. Therefore, focusing on the role 

of TLS in GC, especially on the alteration of tertiary 

lymphoid structures-related genes (TLS-RGs) in GC 

patients and the identification of TLS-RGs subgroups, 

may improve the poor prognostic outcome of GC 

patients. 

 

In our study, the expression and mutation of TLS-RGs 

in GC patients were analyzed. GC patients were 

divided into different TLS clusters based on TLS-RGs 

and the differences in survival time, signaling pathways, 

immune landscape and expression profiles between 

them were analyzed. Based on the co-differentially 

expressed genes among TLS clusters, GC patients were 

divided into different gene clusters and the differences 

in survival time, expression profiles, and immune 

checkpoints were analyzed. The GC patients were 

divided into high or low TLS score groups based  

on TLS scores. Nomogram with satisfactory predictive 

accuracy was constructed. We also systematically 

analyzed the effects of TLS-RGs on tumor immunity, 

immunotherapy response, drug sensitivity, and tumor 

mutation burden in GC patients by multiple algorithms. 

In conclusion, our study comprehensively described  

the prognostic and predictive value of TLS-RGs in  

GC. In particular, focusing on the role of TLS-RGs in 
regulating tumor immunity will help to fully explore 

TLS as a potential target for GC and improve the 

prognosis of GC patients. 

MATERIALS AND METHODS 
 

Download of GC dataset and acquisition of TLS-RGs 

 

The RNA expression data, clinical characteristics 

information, and somatic mutation data about GC were 

downloaded from the The Cancer Genome Atlas 

(TCGA) database (https://portal.gdc.cancer.gov/). The 

GC-related dataset GSE84437 with complete clinical 

information and sufficient number of samples was 

located and downloaded from the GEO database 

(https://www.ncbi.nlm.nih.gov/geo/). Those samples 

without complete information were excluded, and the 

gene ID-transformed datasets were batch corrected  

and merged by the “sva” package and the “Combat” 

package, and the merged datasets were used for 

subsequent analysis. 39 TLS-RGs were obtained from 

previous studies [23]. The clinical information and data 

involved in this study were obtained from public 

databases. Therefore, written informed consent from 

patients and approval from the ethics committee were 

not required for this study. 

 

Differential expression analysis and mutation analysis 
 

To identify DEGs between normal and GC samples or 

between different subgroups, differential analysis was 

performed by the “limma” package based on |foldchange| 

≥ 1 and P < 0.05. Mutation data were analyzed to obtain 

sample tumor mutational burden (TMB) scores. Copy 

number variations (CNV) frequencies of the samples 

were obtained from UCSC Xena (https://xena.ucsc.edu/) 

and the gain and loss of CNV frequencies were analyzed. 

 

Consensus clustering analysis based on correlated 

genes 
 

Consensus clustering analysis is often used to target 

subgroups of one trait, which in turn allows understanding 

the differences between different subgroups. In our study, 

we performed consensus clustering analysis on TLS-RGs 

and co-DEGs by the “ConsensusClusterPlus” package. 

Kaplan-Meier (KM) curves can describe the differences in 

survival between different subgroups and can be 

performed with the “survival” package. 

 

Enrichment analysis 

 

Kyoto Encyclopedia of Genes and Genomes (KEGG) 

enrichment analysis provides an understanding of  

the signaling pathways involved at the molecular level. 

Gene ontology (GO) enrichment analysis enables the 

qualification and description of gene and protein 
functions, including biological process (BP), cellular 

component (CC) and molecular function (MF). Gene set 

variation analysis (GSVA) enables differential analysis 

https://portal.gdc.cancer.gov/
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at the level of signaling pathways. In our study, they can 

be implemented by the “clusterProfiler” package and 

the “GSVA” package. 

 
Immune landscape assessment 

 

In order to understand the immune landscape of  

each patient, we apply multiple algorithms to assess  

the immune cell infiltration and immune score. Single-

sample Gene Set Enrichment Analysis (ssGSEA) is able 

to analyze the infiltration of 23 types of immune cells in 

each sample, which can be implemented through the 

“ssGSEA” package. The ESTIMATE package provides 

ESTIMATE scores, immune scores and tumor purity for 

each sample. 

 
Principal component analysis (PCA) 

 

PCA analysis enables the assessment of the classification 

of different subgroups, and to a certain extent can reflect 

the differences between subgroups. In addition, TLS 

scores can be obtained by PCA analysis of TLS-RGs. 

 
Construction and verification of nomograms 

 

Nomograms are widely used for prognostic prediction 

of tumors. In our study, nomograms based on clinical 

characteristics and TLS scores were constructed to 

predict 1-, 3-, and 5-OS of GC patients. Concordance 

index (C-index) and decision curves were able to assess 

the predictive accuracy of nomograms. Univariate and 

multifactorial regression analysis were used for the 

identification of prognostic marker genes. 

 
Immunotherapy response and drug sensitivity 

analysis 

 

The tumor immune dysfunction and exclusion (TIDE) 

score allows assessment of the likelihood of tumor 

immune escape based on gene expression data. We 

obtained TIDE scores for each sample through the TIDE 

database (http://tide.dfci.harvard.edu/login/). The Cancer 

Imaging Archive (TCIA) results can reflect the outcome 

of patients treated with anti-PD-1 or anti-CTAL4. 

Microsatellite instability (MSI) is considered one of the 

important indicators of tumor immune response, so we 

further analyzed the TCIA results to obtain MSI results 

for each sample. Drug sensitivity analysis is performed 

through the “pRRophetic” package, where the half 

maximal inhibitory concentration (IC50) is used as an 

indicator of drug sensitivity. 

 

Statistical analysis 

 

The data processing, analysis, and visualization 

involved in this study were performed by R software 

(version 4.1.2). Wilcoxon rank sum test and analysis  

of variance (ANOVA) were used for the analysis of 

differences between two and three groups, respectively. 

p < 0.05 was considered a statistical difference between 

the comparison groups. 

 
Data availability statement 

 

The datasets in this study were obtained from  

the TCGA database (https://portal.gdc.cancer.gov/) or 

the GEO database (https://www.ncbi.nlm.nih.gov/geo/). 

Raw data and original codes are included in the article 

or in the supplementary material and further inquiries 

can be addressed to the respective authors. 

 

RESULTS 
 

Expression and mutation analysis of TLS-RGs in 

GC 

 

According to the TCGA dataset, 39 TLS-RGs were 

obtained and the expression differences of these 39 

TLS-RGs in normal tissue and GC tumor tissue were 

analyzed (Supplementary Table 1). The results are 

shown in Figure 1A, a total of 19 TLS-RGs were 

considered to have significantly altered expression  

in GC, 14 of which were up-regulated and 5 were 

down-regulated. The PPI network results indicated  

a significant association and interplay of TLS-RGs in 

GC (Figure 1B). TLS-RGs were also mutated in GC 

(11.55%), notably, IL1R2 (3%), STAT5A (2%), and 

CD4 (2%) had the highest mutation frequency in GC 

(Figure 1C). CNV frequency results showed that there 

were significant copy number changes in TLS-RGs  

in GC and more genes lost their copy number (Figure 

1D). These results confirmed that the expression and 

mutation frequency of TLS-RGs were altered in GC 

indicating that TLS-RGs were associated with GC. 

 

Identification and immune infiltration of TLS 

subgroups in GC 

 

To clarify the role of TLS-RGs in GC, we performed 

unsupervised clustering analysis of GC patients based 

on the expression of 39 TLS-RGs. Good results were 

obtained when the number of subgroups was 3 

(Figure 2A). PCA results showed the separation of the 

three clusters from each other (Figure 2B). The KM 

curves showed that the survival curves were different 

among three clusters, with cluster C being the best and 

cluster A or cluster B being worse (Figure 2C). The 

expression heat map of TLS-RGs in three clusters is 

shown in Figure 2D, and it should be noted that the 
expression of TLS-RGs in cluster B is the most specific. 

To understand the reasons for the survival differences 

between these three clusters, differential analysis was 

http://tide.dfci.harvard.edu/login/
https://portal.gdc.cancer.gov/
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performed for two of these three clusters and  

the biological signals involved in the differentially 

expressed genes were identified by enrichment analysis 

(Figure 2D–2G). The results showed that immune-

related pathways were more enriched in cluster A  

and cluster C, and cluster C was higher than cluster A 

 

 
 

Figure 1. Analysis result of TLS-RGs in expression and mutational landscape. (A) Result of DE-TLS-RGs expression in normal 

and GC tissues. (B) PPI network analysis of TLS-RGs. (C) Somatic mutational landscape of TLS-RGs. (D) CNV frequencies of TLS-RGs in GC. 
*p < 0.05; **p < 0.01; ***p < 0.001. 
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(Figure 2D–2G). This suggests that immunity is 

involved in the regulatory of TLS-RGs in GC. 

 

To investigate the relationship between the altered 

immune environment and TLS subgroups, we applied 

multiple immune algorithms to assess the immune 

landscape of the samples. ssGSEA results showed 

significant differences in the abundance of 23 immune 

cell in the 3 clusters (Figure 3A). It is worth noting 

that the infiltration of Neutrophils and Type 17 T 

helper cells in TLS cluster A or TLS cluster C is 

different from other immune cells. And cluster C had  

a higher ESTIMATE score and higher immune score 

but lower tumor purity compared to cluster B (Figure 

3B–3E). TIDE results also pointed to a better immune 

response in cluster C (Figure 3F). In addition, we 

performed immunotherapy analysis on these 3 clusters 

and found that cluster C showed a greater response to 

 

 
 

Figure 2. Identification of TLS subgroups in GC. (A) Results of unsupervised clustering analysis. (B) PCA results of three clusters. (C) 

KM curves of three clusters. (D) Heat map of TLS-RGs expression in three clusters. (E) Enrichment analysis of differential genes between 
cluster A and cluster B. (F) Enrichment analysis of differential genes between cluster A and cluster B. (G) Enrichment analysis of differential 
genes between cluster A and cluster B. 
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anti-PD-1/anti-PD-1+ anti-CTLA4 treatment (Figure 

3G–3I). In conclusion, the better survival of cluster C  

is closely related to its own immune environment. 

 

Subgroup identification based on co-differential 

expressed genes 

 

To garner subgroups marked by more conspicuous 

distinctions in prognostic outcomes, a reiteration of 

consensus clustering analysis was executed upon  

a cohort of GC patients. This secondary consensus 

clustering analysis was undertaken with the intention  

of amplifying the repertoire of DEGs, with a specific 

focus on identifying those that bear relevance to 

prognosis. The overarching objective herein was to 

refine the construction of a more robust prognostic  

risk model. Subsequently, a compendium of common 

DEGs was discerned within the context of TLS 

clusters through the adept utilization of the “limma” 

computational package. Thereafter, a meticulous 

enrichment analysis was conducted, yielding pertinent 

insights into the functional implications of these  

genes (Supplementary Table 2). These co-DEGs were 

found to be mainly enriched in the biological functions 

of the immune process (Figure 4A, 4B), suggesting that 

TLS-RGs-mediated alterations in the immune process 

are critical for the regulation of GC. Further, the role  

of co-DEGs in GC was further discussed by dividing 

patients into different genetic subgroups based on the 

expression of co-DEGs using a consensus clustering 

approach. The results showed that the optimal grouping 

results could be obtained when the number of subgroups 

was 2. The KM curves indicated that there was a signi-

ficant difference in prognosis between the two gene 

clusters, with gene cluster B having a better prognosis 

than gene cluster A (Figure 4C), and the difference was 

greater than that of the TLS cluster (Pgene cluster = 0.006 < 

PTLS cluster = 0.018). Expression heat map of co-DEGs is 

shown in Figure 4D, and it is clear that their expression 

is altered in these two gene clusters. We also analyzed 

the expression of TLS-RGs between these two gene 

clusters and the results showed that the expression of 

 

 
 

Figure 3. Immune landscape analysis results of TLS subgroups in GC. (A) Results of 23 immune cell abundance analyses by ssGSEA. 

(B–E) ESTIMATE algorithm results. (F) TIDE score results. (G–I). Results of immunotherapy analysis. *p < 0.05; **p < 0.01; ***p < 0.001. 
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most TLS-RGs differed and that the expression of 

TLS-RGs was higher in gene cluster A than in gene 

cluster B (Figure 4E). This indicates that TLS-RGs in 

gene clusters appear significantly different. 

 

Assessment and classification of TLS scores 

 

In pursuit of enhanced precision in forecasting both  

OS and treatment responsiveness among GC patients,  

a TLS scoring framework was meticulously crafted, 

leveraging the outcomes of Principal Component 

Analysis (PCA) applied to gene clusters. This strategic 

development seeks to furnish a robust predictive tool 

capable of furnishing more refined prognostic and 

treatment response insights for the benefit of GC 

patient care. As shown in Figure 5A, 5B, TLS scores 

differed in either gene clusters or TLS clusters. Note 

that TLS scores are highest in gene cluster A and  

TLS cluster A, which indicates that TLS scores are 

associated with immune regulation. Based on the TLS 

score, the optimal threshold was selected and the 

patients were divided into a low TLS score group and  

a high TLS score group. The distribution of GC 

patients among TLS clusters, gene clusters and TLS 

score clusters is shown in Figure 5C. The scatter plot 

showed that GC patients in the low TLS score group 

had a longer survival time (Figure 5D). GC patients in 

the low TLS score group tended to have better OS 

(Figure 5E). PCA results showed that patients with 

different TLS scores were separated from each other 

(Figure 5F). 

 

Construction of nomogram based on clinical 

characteristics and TLS scores 

 

In order to accurately predict the prognosis of GC 

patients, we constructed a prognostic nomogram based 

on clinical characteristics and TLS scores (Figure 6A). 

Concordance index (C-index) results showed that the 

nomogram had good prognostic ability (Figure 6B). The 

decision curves showed that the nomogram was more 

accurate in predicting OS of GC patients than other 

clinical characteristics or TLS scores (Figure 6C). We 

further assessed the predictive independence of clinical 

characteristics and TLS scores by univariate and 

multifactorial Cox regression. The results showed that 

age (hazard ratio (HR) = 1.026, p < 0.001), T (HR = 

1.255, p = 0.001), N (HR = 1.549, p < 0.001) and TLS 

 

 
 

Figure 4. Results of subgroup identification based on co-differentially expressed genes. (A) KEGG results of co-DEGs. (B) GO 

results of co-DEGs. (C) KM curves of gene clusters. (D) Expression heat map in gene clusters of co-DEGs. (E) Expression differences of TLS-
RGs in gene clusters. *p < 0.05; **p < 0.01; ***p < 0.001. 
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score (HR = 1.180, p < 0.001) were associated with OS 

in GC patients, whereas age (HR = 1.031, p < 0.001), N 

(HR = 1.496, p < 0.001) and TLS score (HR = 1.201, 

p < 0.001) were able to serve as independent prognostic 

factors for GC patients (Figure 6D, 6E). 

 

Immune landscape and immunotherapy in different 

TLS scoring groups 

 

The abundance of 23 immune cells in the TLS score 

subgroups was analyzed by ssGSEA, and the results 

showed that there were significant differences in the 

distribution of the other 20 immune cells in different 

TLS scoring groups, except for CD56dim natural killer 

cell, Type 17 T helper cell and Type 2 T helper cell 

(Figure 7A). As shown in Figure 7B, 7C, SD/PD group 

had higher TLS scores. ESTIMATE results indicated 

that the high TLS score group had higher ESTIMATE 

score, immune score as well as lower tumor purity 

(Figure 7D–7G). Notably, there was more potential for 

immune escape in the high TLS score group due to the 

higher TIDE score in the high TLS score group 

compared to the low TLS score group (Figure 7H). In 

the analysis of ICP, we found that the expression of ICP 

was higher in the high TLS score group than in the low 

TLS score group, with the exception of HHLA2 (Figure 

7I). In conclusion, we found significant immunological 

differences between subgroups of TLS score groups, 

with patients in the low TLS score group receiving 

immunotherapy with better outcomes than the high TLS 

score group. 

 

Analysis of tumor mutation landscape and drug 

sensitivity in different TLS score groups 

 

Microsatellite Instability (MSI) is considered as one  

of the important indicators of tumor immune response. 

In our study, patients in the low TLS score group were 

associated with MSI-L and MSI-H, while patients in  

the high TLS score group were associated with MISS 

(Figure 8A, 8B). Tumor mutation burden (TMB) can 

help predict patient response to immunotherapy. In our 

 

 
 

Figure 5. Assessment and classification results of TLS scores. (A) Differences in TLS scores among gene clusters. (B) Differences in 

TLS scores among TLS clusters. (C) Distribution of TLS scores among gene clusters, TLS clusters and TLS score subgroups. (D) Scatter plot of 
GC patients with different TLS scores. (E) KM curve results of GC patients with different TLS scores. (F) PCA results of GC patients with 
different TLS scores. *p < 0.05; **p < 0.01; ***p < 0.001. 
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study, TMB was negatively correlated with TLS score 

(Figure 8C). Notably, TMB was higher in the low TLS 

score group than in the high TLS score group (Figure 

8D), indicating that patients in the low TLS score group 

had a better immunotherapy response. Subsequently, we 

performed survival analysis on patients with different 

TMB, and the results showed that patients with high 

TMB tended to have better OS (Figure 8E). Further 

combined with the TLS score, patients with low TLS 

score accompanied by high TMB had the best prognosis 

(Figure 8F). The results of somatic mutation analysis 

for TLS score showed that the incidence of mutations  

in TTM, TP53, MUC16 and ARID1A were all higher 

than 20%, and it should be noted that the incidence of 

 

 

 
Figure 6. Results of nomogram based on clinical characteristics and TLS scores. (A) Prognostic nomogram based on clinical 

characteristics and TLS scores. (B) C-index results of the prognostic nomogram. Result is close to 45° indicating that the nomogram 
prediction is accurate. (C) Decision curve results of the prognostic nomogram. (D) Results of univariate Cox regression analysis of clinical 
characteristics and TLS scores. (E) Results of multifactorial Cox regression analysis of clinical characteristics and TLS scores. *p < 0.05; **p < 
0.01; ***p < 0.001. 
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mutations in these genes was higher in low TLS  

score than in high TLS score (Figure 8G, 8H).  

These results suggest that TLS-RGs can influence the 

response to tumor immunotherapy. Drug sensitivity 

can reflect the patient’s response to drug therapy, and 

drug sensitivity analysis for TLS score was performed 

in our experiments. The results showed that Rapamycin, 

Dasatinib, Sunitinib and Saracatinib had a higher IC50 

 

 
 

Figure 7. Results of immune landscape and immunotherapy in different TLS score groups. (A) Abundance results of 23 immune 

cells by ssGSEA in different TLS score groups. (B) Results of anti-PD-L1 immunotherapy responses in different TLS score groups; 
Abbreviations: CR: complete remission; PR: partial remission; SD: stable disease; PD: progressive disease. (C) Distribution of TLS scores in 
different immunotherapy responses. (D–G) ESTIMATE results in different TLS score groups. (H) TIDE results in different TLS score groups. (I) 
Results of ICP in different TLS score groups. *p < 0.05; **p < 0.01; ***p < 0.001. 
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in the low TLS score group of patients, in contrast  

to AKT inhibitor VII (Figure 8I–8M). In conclusion, 

TLS-RGs was also associated with drug sensitivity in 

GC patients. 

DISCUSSION 
 

As one of the most common tumors worldwide, gastric 

cancer occupies the fourth place in the tumor incidence 

 

 
 

Figure 8. Results of tumor mutation landscape and drug sensitivity analysis in different TLS score groups. (A) MSI results in 

different TLS score groups. (B) Correlation results of MSI and TLS score. (C) Correlation results of TMB and TLS score. (D) Distribution of 
TMB in different TLS score groups. (E) KM curves of patients with different TMB. (F) KM curves of patients with different TMB and different 
TLS scores. (G) Somatic mutation analysis results in low TLS scores. (H) Somatic mutation analysis results in high TLS scores. (I–M) Drug 
sensitivity analysis results in different TLS score groups. *p < 0.05; **p < 0.01; ***p < 0.001. 
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and the fifth place in the mortality rate of all tumors 

[24]. The treatment of tumors is largely related to the 

staging of tumors, however the highly heterogeneous 

nature of GC has led to more challenges facing 

traditional staging [25]. Therefore, there is an urgent 

need to focus on more factors to guide the staging  

of GC and provide personalized treatment for GC 

patients. TLS as a factor associated with tumorigenesis 

and prognosis, is gradually demonstrating its impor-

tance [26]. In particular, TLS may play a direct role  

in the tumor immune response [27]. Therefore, a 

comprehensive analysis of the role of TLS in GC may 

be able to overcome the poor outcome due to the high 

heterogeneity of GC patients. 

 
In this study, we found that most TLS-RGs were 

altered in GC patients in terms of expression and 

variation, especially IL-1R2, STAT5A and CD4 with 

higher mutated frequency. Interleukin-1 receptor type 

II (IL-1R2), as a negative regulator of the IL-1 system, 

plays a key role in many inflammatory diseases and 

cancers [28]. The signal transducer and activator of 

transcription 5A (STAT5A) can influence the major 

regulators of cell growth and regulate tumorigenesis 

[29]. CD4 is mainly expressed by helper T cells and 

has a crucial role in human immunity [30]. These genes, 

once altered, may be able to influence tumorigenesis, 

immune landscape, and immune escape. 

 
Based on TLS-RGs, we divided GC into three TLS 

clusters. It is worth noting that differences in immune 

pathways may be a key factor influencing the prognosis 

of different TLS clusters, since in our study immune 

pathways in TLS cluster C were found to be enriched 

and accompanied by an optimal prognosis. Differences 

in the infiltration of immune cells can often influence 

the prognosis of GC patients [31]. In our study, both 

TLS cluster A and TLS cluster C had high immune 

scores, but their prognosis was very different, especially 

TLS cluster A had a higher degree of immune escape. 

By ssGSEA analysis, we found that the proportion  

of Neutrophils and Type 17 T helper cells differed 

significantly in TLS cluster A and TLS cluster C. 

Perhaps they are the key cells affecting GC immune 

escape. 

 
Based on the co-DEGs between the TLS clusters,  

we divided GC patients into two gene clusters and 

obtained TLS scores by PCA analysis. Thereafter 

optimal threshold was screened and GC patients were 

divided into different TLS score groups. Notably,  

the high TLS score group had a worse prognosis. 

Prognostic nomogram with good predictive accuracy 

was constructed. Cox regression analysis showed  

that TLS score was an independent prognostic factor 

for GC patients. Similarly, we found differences in 

immunity between the different TLS score groups. 

Cancer growth and progression are directly associated 

with suppression of the immune system, in which 

suppressive immune checkpoints play a crucial role 

[32]. We found that most ICP differed among different 

TLS score groups, especially with increased expression 

in the high TLS score group. The low TLS score group 

induced antitumor immune responses and inhibited 

tumor immune escape resulting in better response to 

immunotherapy. We also analyzed the sensitivity of 

different TLS score groups to potential drugs. The 

results revealed that Rapamycin, Dasatinib, Sunitinib 

and Saracatinib had high IC50 in the low TLS score 

group, while AKT inhibitor VII had high IC50 in  

the high TLS score group. It indicates that patients 

with different TLS scores have different sensitivity to 

chemotherapy, and we can rely on TLS scores to 

personalize the treatment for GC patients. 

 

This study has been predicated upon an analysis  

of publicly available datasets, bearing the inherent 

limitation of lacking sample validation. Nevertheless, 

we plan to validate our signature in gastric cancer  

in future studies. Further experimental validation is 

needed regarding the exact regulatory mechanism of 

TLS RGS in GC. 

 

CONCLUSION 
 

In summary, we performed a comprehensive analysis 

of the role of TLS-RGs in GC, indicating that TLS-

RGs are able to serve as biomarkers for the predictive 

of GC patients’ prognosis. TLS-RGs also influences 

and embodies the immune landscape of GC patients, 

which in turn can predict the outcome of patients 

receiving immunotherapy or chemotherapy and provide 

a new reference basis for personalized treatment of GC 

patients. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Table 2. 

 

Supplementary Table 1. The 39 TLS-RGs obtained from the TCGA dataset. 
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Supplementary Table 2. The co-differential expressed genes between TLS clusters. 

 

 


