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INTRODUCTION 
 

Ulcerative colitis (UC) is a chronic relapsing bowel 

disease that results in inflammation, mucosal injury, 
and fibrosis of the intestinal wall [1]. Bloody  

diarrhea, weight loss, and abdominal pain are the most 

common symptoms of UC [2]. Recently, UC has 

exhibited an increasing prevalence worldwide and 

carries a significant global burden of disease [3]. The 

administration of certain medications may indeed 

control the inflammatory process to some extent, 

alleviate related symptoms, and improve the patient’s 

quality of life [4]. However, such medical remedies 

prove to be far from optimal, as patients frequently 
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ABSTRACT 
 

Background: UC is increasingly prevalent worldwide and represents a significant global disease burden. 
Although medical therapeutics are employed, they often fall short of being optimal, leaving patients struggling 
with treatment non-responsiveness and many related complications. 
Materials and Methods: The study utilized gene microarray data and clinical information from GEO. Gene 
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Lasso Regression Algorithm was constructed using glmnet and heat maps were generated using pheatmap. ROC 
curves were used to assess diagnostic parameter capability, while XSum was employed to screen for small-
molecule drugs exacerbating UC. Molecular docking was carried out using Autodock Vina. The study also 
performed Mendelian randomization analysis based on TwoSampleMR and used CTD to investigate the 
relationship between exposure to environmental chemical toxicants and UC therapy responsiveness. 
Results: Six genes (ELL2, DAPP1, SAMD9L, CD38, IGSF6, and LYN) were found to be significantly overexpressed in UC 
patient samples that did not respond to multiple therapies. Lasso analysis identified ELL2 and DAPP1 as key genes 
influencing UC treatment response. Both genes accurately predicted intestinal inflammation in UC and impacted 
the immunological infiltration status. Clofibrate showed therapeutic potential for UC by binding to ELL2 and DAPP1 
proteins. The study also reviews environmental toxins and drug exposures that could impact UC progression. 
Conclusions: We used microarray technology to identify DAPP1 and ELL2 as key genes that impact UC treatment 
response and inflammatory progression. Clofibrate was identified as a promising UC treatment. Our review also 
highlights the impact of environmental toxins on UC treatment response, providing valuable insights for 
personalized clinical management. 
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experience a lack of response to treatment along with a 

gamut of correlated complications [4]. 

 

Aminosalicylates (5-ASA) are the cornerstone of the 

medical management of mild-to-moderate UC [5]. The 

drugs have localized anti-inflammatory activity in the 

colon and are available in various forms such as 

suppositories, enemas, and oral medications. Cortico-

steroids are effective in controlling moderate-to-severe 

UC but are not suitable for long-term use due to 

substantial side effects such as immunosuppression  

and osteoporosis [6]. Immunomodulators, including 

azathioprine, 6-mercaptopurine, methotrexate, and cyclo-

sporin, are effective in controlling UC’s inflammation 

and reducing the need for corticosteroids [7]. However, 

the onset of the therapeutic effect of these drugs may 

take weeks to months. Biologic therapies like anti-TNF-

alpha (infliximab, adalimumab, golimumab), anti-IL 

12/23 (ustekinumab), and anti-α4β7 (vedolizumab) have 

optimized the management of UC in the last decade [8–

12]. The mechanisms of action of these drugs target 

specific pro-inflammatory cytokines or cells, reducing 

inflammation, and improving disease outcomes. 

However, as the incidence of UC increases, there is a 

gradual rise in the number of patients with refractory UC, 

characterized by poor or no response to traditional drug 

therapy, prolonged disease duration, and recurrent 

episodes [13]. It is, therefore, crucial to delve into 

biomarkers that are linked to treatment response in 

individuals with UC, and to devise novel methods for 

improving response rates. Such efforts hold tremendous 

clinical relevance and possess the potential to enhance 

patient outcomes, reduce symptom severity, and improve 

overall quality of life. 

 

While previous research has identified several factors 

that contribute to the development and progression of 

UC, including dietary habits, lifestyle factors, and 

exposure to environmental toxins [14–17]. However, 

the role of genetic factors and environmental toxin 

exposures influencing therapeutic response in UC 

remains largely unexplored. In recent years, the 

proliferation of high-throughput sequencing and 

bioinformatics analysis has enabled the expeditious and 

precise detection of heterogeneity in scores of diseases 

[18–22]. Consequently, bioinformatics analysis has 

potential to be instrumental in identifying diverse gene 

expression patterns among UC patients with varying 

treatment response levels, thereby paving the way for 

the development of novel biomarkers as well as 

innovative treatment modalities. 

 

In this context, our study aims to conduct a 

comprehensive analysis of the genetic factors contributing 

to the therapeutic responsiveness of UC patients. Our 

investigation endeavors to incorporate a comprehensive 

array of microarray data concerning the response of UC 

treatment after the administration of diverse 

pharmacotherapies to generate a more all-inclusive Pan-

therapy Analysis. Our findings have the potential to 

inform clinical decision-making in UC treatment and 

identifying patients who may benefit most from targeted 

intervention strategies. Ultimately, we hope that our study 

contributes to the broader efforts of developing more 

effective and personalized treatments for UC. 

 

MATERIALS AND METHODS 
 

Data acquisition 

 

In this study, we acquired high-throughput sequencing 

data for ulcerative colitis, along with its clinical 

information, from the Gene Expression Omnibus (GEO) 

database [23]. To ensure that the dataset we used met 

our research criteria, we implemented a rigorous 

selection process based on four criteria. Firstly, we 

limited our selection to specimens that were intestinal 

mucosal tissues. Secondly, we ensured that the clinical 

information included details of therapeutic drugs that 

had already been approved by the FDA for clinical use 

in ulcerative colitis patients. Thirdly, we only included 

clinical data for patients who had demonstrated a 

response to the administered medication. Fourthly, we 

required follow-up information on the effectiveness of 

the drugs to be available for at least one month. 

 

Following this selection process, we obtained five datasets 

that met our inclusion criteria and provided information 

regarding the therapeutic efficacy of four distinct 

medications: GSE109142, GSE92415, GSE12251, and 

GSE14580. Specifically, we found that in the GSE109142 

cohort, 53 individuals were treated with 5-aminosalicylic 

acid (5ASA), while 153 individuals received cortico-

steroid treatment. Additionally, in the GSE92415 cohort, 

109 individuals were treated with golimumab. For the 

GSE12251 and GSE14580 cohorts, treatment response 

information for 23 and 24 patients, respectively, all treated 

with infliximab, was available. 
 

To merge the GSE12251 and GSE14580 datasets, we 

employed the R software package inSilicoMerging, and 

then applied the method proposed by Johnson WE et al. 

to eliminate batch effects [24–26]. This resulted in a 

matrix (GSE12251 and GSE14580) that was free of 

such effects, and suitable for further analysis. 

 

Differential gene expression analysis and least 

absolute shrinkage and selection operator (Lasso) 

regression algorithm 

 

In this study, we used the R package Limma to identify 

differential expression genes (DEGs) between  
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drug-responsive and non-responsive samples [27, 28]. A 

fold change (FC) greater than 1.2 or less than 0.8 and a 

p-value less than 0.05 were used to select DEGs [29–

32]. We conducted Limma analysis on GSE109142, 

GSE92415, and the merged dataset GSE12251 and 

GSE14580 separately and obtained candidate hub genes 

by taking the intersection of all the differentially 

expressed genes (DEGs). Next, we incorporated these 

candidate hub genes into the analysis of the Lasso 

Regression Algorithm, which was executed using the R 

package glmnet [33–36]. The Lasso Regression 

Algorithm eliminates collinear genes, with default 

parameter values [37, 38]. We identified a set of key 

genes associated with the responsiveness of all drugs 

included in this study by intersecting the genes obtained 

from different datasets using the Lasso Regression 

Algorithm. A heat map was created using the R package 

“pheatmap” [39]. 

 

Evaluation of immune cell infiltration status 

 

The immune cell infiltration status of all samples was 

evaluated using the online network tool Immune Cell 

Abundance Identifier (ImmuCellAI), which provides a 

comprehensive analysis of 18 T-cell subtypes and 6 

other immune cell types, including B cells, NK cells, 

monocytes, macrophages, neutrophils, and DC cells. 

The input file for the analysis consisted of the complete 

gene expression profiles of each dataset [40, 41]. The 

specific URL for ImmuCellAI is http://bioinfo. 

life.hust.edu.cn/ImmuCellAI#!/. 

 

Prediction of the biological function 

 

GeneMANIA (http://www.genemania.org) is a web-

based platform that facilitates the construction of 

protein-protein interaction (PPI) networks, offering 

hypotheses on gene function prediction and 

identification of genes that have similar roles [42]. The 

network integration algorithm incorporates various 

bioinformatics techniques such as physical interaction, 

co-expression, colocalization, gene enrichment analysis, 

genetic interaction, and website prediction. In this 

study, the PPI was analyzed using GeneMANIA to 

predict the biological function of individual genes. 

GeneMANIA performs Gene Ontology (GO) 

enrichment analysis on genes in the interaction network, 

and corrects the p-values using the Benjamini-Hochberg 

procedure [43]. Categories are presented up to a false 

discovery rate (FDR) cutoff of 0.01. 

 

Enrichment analysis of biological functions for a set of 

genes was carried out using the Metascape database 

[44]. All parameters except those specified were set to 

default values. In the next step of the analysis, terms 

with a p-value less than 0.01, a minimum count of 3, 

and an enrichment factor greater than 1.5 were selected. 

Applying screening criteria of kappa scores equal to 4 

and similarity greater than 0.3, enrichment terms were 

categorized into clusters by Metascape using 

hierarchical clustering. Term representatives were 

chosen based on minimum p-values. 

 

Chemical-gene interaction analysis 

 

Based on the meticulously curated research on 

Comparative Toxicogenomic Database (CTD), we 

analyzed the relationship between environmental 

chemical toxicant exposure and the responsiveness to 

UC therapy [45]. Our analysis examined all previously 

identified key genes for their effects on gene 

expression caused by environmental toxicants and 

drugs. The analysis was not restricted to any particular 

species [46].  

 

Discovery of potential drugs by computational 

methods 

 

The eXtreme Sum (XSum) algorithm was employed to 

identify potential small molecule drugs from the 

Connectivity Map (CMAP) database using a similarity 

scoring approach [47]. The input files consisted of the 

top 150 upregulated and top 150 downregulated genes, 

and the XSum algorithm calculated a score for each 

patient, with a lower score indicating a higher potential 

for a drug to act as a therapeutic agent. Using the 

Protein Data Bank (PDB) at the RCSB 

(https://www.rcsb.org/pdb/home/home.do), the crystal 

structures of hub gene proteins were determined. 

PubChem was used to download the 3D structures of 

the small molecule drugs (https://www.ncbi.nlm.nih. 

gov/pccompound) [48, 49]. Autodock Vina was used 

for molecular docking, which involved the preparation 

of proteins and ligands, setting up a grid, and docking 

the compounds [50]. We selected the best pose based on 

the docking score and the rationality of the molecular 

conformation. 

 

Data sources of mendelian randomization (MR) 

analysis 

 

Our research utilizes summary-level data derived from 

IEU Open GWAS database (https://gwas.mrcieu.ac.uk) 

with a MR approach. It’s noteworthy that the IEU Open 

GWAS database consists of study participants who have 

provided informed consent in their respective studies. 

The GWAS data for DAPP1 and ELL2 were obtained 

from GWAS ID: eqtl-a-ENSG00000070190 and GWAS 

ID: eqtl-a-ENSG00000118985, respectively. The UC 
GWAS database (GWAS ID: ieu-a-1126) provided us 

with information on 463,010 individuals of European 

ancestry, including 1,987 cases and 461,023 controls. 

http://bioinfo.life.hust.edu.cn/ImmuCellAI#!/
http://bioinfo.life.hust.edu.cn/ImmuCellAI#!/
http://www.genemania.org/
https://www.rcsb.org/pdb/home/home.do
https://www.ncbi.nlm.nih.gov/pccompound
https://www.ncbi.nlm.nih.gov/pccompound
https://gwas.mrcieu.ac.uk/
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Instrumental variable (IVs) selection 

 

Instrumental variables (IVs), using genetic variations, 

are leveraged in MR to obtain unbiased estimations of 

the causal impact of the exposure variable of interest on 

an outcome variable. Firstly, we identified single-

nucleotide polymorphisms (SNPs) significantly 

associated with the exposure variable (p < 5*10-8) to 

serve as IVs for MR analysis. The clumping technique 

was employed to address any linkage disequilibrium 

issues between the selected SNPs. Furthermore, 

sensitivity analysis was undertaken to validate the 

robustness of the identified IVs. A clumping method 

with a window size of 10,000kb and R2 value below 

0.001 was utilized to eliminate SNPs indicating 

significant Linkage Disequilibrium (LD). To ensure the 

reliability of our data, we utilized the Phenoscanner 

database (http://www.phenoscanner.medschl.cam.ac.uk/) 

to investigate the likely correlation of included SNPs 

with confounding variables and outcomes of interest (p 

< 5X10-8). MR-PRESSO was also applied to our results 

for excluding outliers and incorporating horizontal 

pleiotropy. Additionally, the F-statistics were calculated 

cumulatively for SNPs using the following formula: F = 

(N-k-1)R2/k(1-R2), where R2 represents the variation 

in the exposure explained by each IV. The strength of 

the instrument was evaluated using the F-statistics, 

where an F value above 10 is indicative of adequate 

statistical power. 

 

MR analysis 

 

In the quest to verify the causal connection between 

exposure and outcome, our study conducted MR analysis 

using R Version 4.2.1 and the “TwoSampleMR” 

package, utilizing multiple MR methods, including the 

inverse variance weighted (IVW), the weighted median 

(WM), the MR-Egger method, simple mode, and 

weighted model. The IVW approach was predominantly 

utilized as it provides superior statistical validity 

compared to other available methods and can estimate 

the causal impact of exposure on the outcome 

consistently. 

 

Real time quantitative PCR (RT-qPCR) 

 

The present study describes the methodology employed 

for total RNA extraction, cDNA synthesis, and gene 

expression quantification using RT-qPCR assay. RNA 

was isolated using TRIzol reagent (Ambion, USA), 

while cDNA was synthesized using PrimeScriptTM RT 

Master Mix (Takara, Japan). We measured the relative 

expression levels of DAPP1, ELL2, and GAPDH genes 

using ChamQ SYBR qPCR Master Mix (Vazyme, 

China) and the 2-ΔΔCT method. The specificity of the 

RT-qPCR reaction was ensured by using gene-specific 

primers designed for DAPP1, ELL2, and GAPDH 

genes. The results were evaluated based on GAPDH as 

the internal reference gene, and the experiment was 

performed in triplicates for establishing the average 

value. Our findings demonstrate the successful 

detection of gene expression levels through RT- 

qPCR assay. To detect DAPP1, ELL2 and GAPDH 

expression levels, the forward primer of DAPP1 was 5′-

GGTTACCTCACCAAACAGGGA-3′, and the reverse 

primer of DAPP1 was 5′-GGTTCTGGTGACAT 

CTGGTCTT-3′; the forward primer of ELL2 was 5′-

TGACTGCATCCAGCAAACAT-3′, and the reverse 

primer of ELL2 was 5′-TCGTTTGTTGCACACACT 

GTAA-3′; while the forward primer of GAPDH was 5′-

CATGTTCGTCATGGGTGTGA-3′ and the reverse 

primer of GAPDH was 5′-GGTGCTAAGCAGTTG 

GTGGT-3′. The current research utilized samples 

obtained from eight UC patients, who were admitted to 

The PLA Navy Anqing Hospital. The samples were 

subjected to RT-qPCR analysis as per established 

protocols. Informed consent was obtained from all 

patients involved in the study. 

 

Statistics 

 

The statistical analyses were conducted using R 

software (version 4.2.1). Continuous variables were 

compared using the Wilcoxon test, while differences in 

proportions were evaluated using the chi-square test. 

Statistical significance was defined as a p-value below 

0.05. A Receiver Operating Characteristic (ROC) curve 

was generated to evaluate the predictive performance. 

The correlation analysis was conducted using 

Spearman’s correlation coefficient. 

 

Data availability statement 

 

Publicly available datasets were analyzed in this study. 

This data can be found in Gene Expression Omnibus 

(GEO) database (https://www.ncbi.nlm.nih.gov/geo/). 

 

RESULTS 
 

Key genes influencing therapeutic response in UC 

uncovered through Limma and Lasso analyses 

 

Using Limma analysis, we identified DEGs between 

non-responding and responding UC patients treated 

with 5-ASA, corticosteroid, golimumab, and infliximab 

(Supplementary Table 1). In individuals unresponsive to 

5-ASA treatment, 163 genes were upregulated, while 

757 genes were downregulated, as shown in Figure 1A. 

For golimumab, 699 genes were upregulated, while 402 

genes were downregulated (Figure 1B). Notably, 1,057 

upregulated genes and 1,553 downregulated genes were 

observed in corticosteroid non-responders (Figure 1C). 

http://www.phenoscanner.medschl.cam.ac.uk/
https://www.ncbi.nlm.nih.gov/geo/
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Similarly, infliximab unresponsive patients exhibited 

upregulation of 1,758 genes and downregulation of 

2,400 genes (Figure 1D). Supplementary Figure 1 

presents a heatmap representation of the top 20 

differentially upregulated and downregulated genes. 

Using a Venn diagram to perform an intersection 

analysis of the DEGs, six hub genes, namely ELL2, 

DAPP1, SAMD9L, CD38, IGSF6, and LYN, were 

consistently found to be upregulated in all treatment-

resistant patients. 

 

Using the expression profiles of the six hub genes 

mentioned above from patient samples subjected to 

distinct treatments as input files, we conducted a Lasso 

analysis to remove collinear genes (Figure 2A–2D and 

Supplementary Table 2). Intersecting the Lasso analysis 

 

 
 

Figure 1. The volcano plot depicts the upregulated (in red) and downregulated (in green) genes observed in UC patients who remain 

unresponsive to treatment with 5-ASA (A), golimumab (B), corticosteroids (C), or infliximab (D). (E) The Venn diagram exhibits genes that are 
differentially expressed across all treatment modalities. 

 

 
 

Figure 2. Lasso regression analysis results and partial likelihood deviance for the Lasso regression in infliximab (A), corticosteroids  

(B), golimumab (C), or 5-ASA (D) treatment cohorts. (E) Venn diagram showing overlapping key genes in Lasso regression. 
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outcomes, we identified a pair of genes (DAPP1 and 

ELL2) that were the key genes in modulating drug 

response of UC patients to 5-ASA, corticosteroid, 

golimumab, and infliximab (Figure 2E). We categorized 

patients according to the median levels of DAPP1 

(ELL2) expression. Regardless of the therapeutic 

intervention used, patients grouped as high DAPP1 

(ELL2) exhibited a significantly higher frequency of 

treatment non-responsiveness (Supplementary Figure 2). 

 

Immune infiltration between different treatment 

responses 

 

In order to gain deeper insights into the factors affecting 

the responsiveness of UC drug therapy due to DAPP1 

and ELL2, our investigation centered around the 

dissimilarities in the infiltration status of immune cells. 

We evaluated the correlation between DAPP1 and 

ELL2 expression and the extent of immune cell 

infiltration in each cohort of UC patients after every 

treatment. The correlation between DAPP1 and ELL2 

with immune cell infiltration was notable, particularly 

for DAPP1, which exhibits a strong positive correlation 

(correlation coefficient R =0.72, P<0.001) with iTreg 

cells in samples receiving 5ASA treatment (Figure 3A–

3D). Supplementary Figure 3 depicted the alterations in 

the proportions of various immune cell infiltrates in 

response to the upregulation of DAPP1 or ELL2 gene 

expression levels within the sample. 

 

We then explored the immune cell types affected by 

both DAPP1 and ELL2 across all treatment modalities. 

The immunocyte types demonstrating significant 

differences in infiltration levels between UC patients 

with high and low DAPP1 (ELL2) after treatments with 

5-ASA, corticosteroid, golimumab, or infliximab were 

presented in Supplementary Table 3. The Venn diagram 

suggested that regardless of the treatment, the 

expression level of DAPP1 affects the infiltration levels 

of B cells and iTreg cells (Figure 4A). Patients with 

elevated DAPP1 gene expression levels exhibit 

significantly higher levels of infiltration of B cells and 

iTreg cells (Figure 4B–4E). The Venn diagram also 

illustrated that the expression level of ELL2 impacts the 

infiltration levels of CD4-naive and nTreg cells, 

regardless of the administered treatment (Figure 5A). 

Notably, patients displaying heightened expression 

levels of ELL2 demonstrate a marked increase in 

infiltration levels of both CD4-naive and nTreg cells, as 

shown in Figure 5B–5E.  

 

Prediction of the biological function of DAPP1 and 

ELL2 

 

We utilized the Human Protein Atlas (HPA) database to 

illustrate the structure of the DAPP1 protein, as shown 

in Figure 6A. Subsequently, we employed the 

GeneMANIA database to explore the proteins that 

interact with DAPP1, resulting in a total of twenty 

proteins (Figure 6B). All types of interactions among 

these proteins have been summarized in Supplementary 

Table 4. GeneMANIA also performed a gene 

enrichment analysis on these twenty interacting proteins 

and DAPP1, revealing significant enrichment in four 

biological processes including antigen receptor-

mediated signaling pathway, B cell activation, Fc 

receptor signaling pathway, and lymphocyte 

differentiation (Figure 6C). These results support our 

previous findings that DAPP1 impacts the infiltration 

levels of B cells and iTreg cells. 

 

Then we utilized the HPA database to depict the 

structure of the ELL2 protein, which is depicted in 

Figure 6D. Employing the GeneMANIA database, we 

then investigated the interacting proteins of ELL2, 

which were found to total twenty (Figure 6E and 

Supplementary Table 4). Through gene enrichment 

analysis via GeneMANIA, we found that these twenty 

interacting proteins and DAPP1 were significantly 

enriched in three distinct biological processes: DNA-

templated transcription, elongation, regulation of DNA-

templated transcription, elongation, and snRNA 

transcription.  

 

Predictive capacity of DAPP1 and ELL2 for 

inflammatory status in UC colonic 

 

Accurately predicting and monitoring the inflammatory 

status of UC colonic is crucial for managing the 

condition. In this study, we aimed to investigate the 

predictive ability of DAPP1 and ELL2 regarding the 

inflammatory status of UC colonic. By analyzing the 

predictive capacity of these biomarkers, we can gain 

more insight into their potential utility in clinical 

interventions for managing UC. The GSE179285 

sequencing dataset consists of intestinal mucosal 

specimens obtained from patients with Inflammatory 

Bowel Disease (IBD), including 31 control samples, 55 

samples with UC, and 168 samples with Crohn’s 

disease (CD). The inflammatory status of each IBD 

patient’s intestines was assessed and classified into two 

categories: Uninflamed and Inflamed.  

 

The Wilcoxon test indicated significant upregulation of 

DAPP1 and ELL2 in Inflamed UC samples (Figure 7A, 

7B). DAPP1 and ELL2 showed excellent predictability 

for intestinal inflammation in UC, with respective AUC 

scores of 0.841 and 0.871 (Figure 7C, 7D). Similarly, 

DAPP1 and ELL2 were upregulated in Inflamed 
Crohn’s disease samples (Supplementary Figure 4A, 

4B). ROC analysis demonstrated excellent predictive 

ability of DAPP1 and ELL2 for intestinal inflammation 
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Figure 3. The Spearman correlation analysis demonstrated the correlation between gene expression levels of DAPP1 and ELL2 and the 

extent of immune cell infiltration in cohorts of UC patients who received 5-ASA (A), corticosteroids (B), golimumab (C), or infliximab (D), 
respectively. 
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in Crohn’s disease, with AUCs exceeding 0.8 

(Supplementary Figure 4C, 4D). Additionally, our study 

suggested that DAPP1 and ELL2 may serve as 

promising biological markers for IBD diagnosis, since 

we observed significant elevation in their expression 

levels in IBD samples compared to those from healthy 

controls (Supplementary Figure 4E, 4F). 

 

Exploring potential small molecule drugs for the 

alleviation of UC inflammation 

 

In GSE179285, we employed the Limma analysis to 

explore DEGs between Uninflamed and Inflamed UC 

(Supplementary Table 5). Using the top 150 upregulated 

and top 150 downregulated genes in Inflamed UC as 

 
 

Figure 4. (A) The Venn diagram displays immune cells with differential infiltration between high and low levels of DAPP1 expression across 

all treated cohorts. The differences in infiltration of B cells and iTregs between patients with high and low levels of DAPP1 in UC cohorts 
treated with 5-ASA (B), corticosteroid (C), golimumab (D), and infliximab (E). 

 

 
 

Figure 5. (A) The Venn diagram displays immune cells with differential infiltration between high and low levels of ELL2 expression across all 
treated cohorts. The differences in infiltration of B cells and iTregs between patients with high and low levels of ELL2 in UC cohorts treated 
with 5-ASA (B), corticosteroid (C), golimumab (D), and infliximab (E). 
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Figure 6. (A) The structure of the DAPP1 protein from HPA database. (B) The proteins that interact with DAPP1 obtained from GeneMANIA 

database. (C) Prediction of the biological function of DAPP1 based on GeneMANIA database. (D) The structure of the ELL2 protein from HPA 
database. (E) The proteins that interact with ELL2 obtained from GeneMANIA database. (F) Prediction of the biological function of ELL2 based 
on GeneMANIA database. 
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input for XSum algorithm, we calculated XSum scores 

for all small molecule drugs in the CMap database 

(Supplementary Table 6). The 300 genes used as input 

files were subjected to biological process enrichment 

analysis in the Metascape database. The enrichment of 

these 300 genes is primarily noticeable in the biological 

processes of immune response and inflammatory reaction, 

comprising NABA MATRISOME ASSOCIATED, 

humoral immune response, inflammatory response, Bile 

secretion, and Interleukin-4 and Interleukin-13 signaling 

(Supplementary Figure 5). 

 

Clofibrate obtained the lowest XSum score, suggesting 

it holds the greatest potential for reversing the 

Inflamed state of UC colonic. The chemical formula 

and structure of Clofibrate are presented in Table 1.  

To explore the potential targets for the therapeutic 

efficacy of Clofibrate, we performed molecular 

docking of Clofibrate and DAPP1 and ELL2. The 

optimal poses of the molecular docking were displayed 

in three-dimensional and two-dimensional formats in 

Figure 8A, 8B, respectively. The affinity scores of the 

molecular docking between Clofibrate and both 

DAPP1 and ELL2 were -4.9 kcal/mol and -5.2 

kcal/mol, respectively, indicating a relatively favorable 

binding. Therefore, Clofibrate also has the potential to 

become an adjuvant therapeutic drug for UC patients 

who are unresponsive to 5-ASA, corticosteroids, 

golimumab, and infliximab, although further 

experimental research is necessary. 

 

 
 

Figure 7. Boxplots of the gene expression levels of DAPP1 (A) and ELL2 (B) in inflamed and uninflamed UC samples in GSE179285 cohort. 

AUCs of DAPP1 (C) and ELL2 (D) in ROC analysis predicting Inflamed UC samples. 



www.aging-us.com 14151 AGING 

Table 1. Chemical structure formulae of clofibrate. 

Tag Description 

PubChem CID 2796 

Structure 

 

Molecular Formula C12H15ClO3 

InChI 

1S/C12H15ClO3/c1-4-15-11(14)12(2,3)16-10-7-5-9(13)6-8-10/h5-8H,4H2,1-3H3 

clofibrate 

637-07-0 

Synonyms 

Ethyl 2-(4-chlorophenoxy)-2-methylpropanoate 

Ethyl clofibrate 

Atromid 

Molecular Weight 242.70 

 

 
 

Figure 8. The optimal poses of the molecular docking between Clofibrate and DAPP1 (A) and ELL2 (B) presenting in both three-dimensional 

and two-dimensional formats. 

https://pubchem.ncbi.nlm.nih.gov/#query=C12H15ClO3
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Exploration of environmental toxin exposures that 

impact therapeutic responsiveness in UC 

 

The CTD database was used to investigate all potential 

Environmental Toxin Exposures that might affect 

DAPP1 and ELL2 gene expression levels, including 

methylation (Supplementary Table 7). In total, 17 

types of environmental toxins were identified that 

could influence the methylation state and expression 

levels of DAPP1 and ELL2 genes, including  

1,2-Dimethylhydrazine, Asbestos (Crocidolite), 

Benzo(a)pyrene, Bisphenol A, Dibutyl Phthalate, 

Fipronil, Hydrogen Peroxide, Carbon Nanotubes, 

Nickel, Particulate Matter, Silicon Dioxide,  

Sodium Arsenite, Sulforaphane, T-2 Toxin, Tetra-

chlorodibenzodioxin, Tobacco Smoke Pollution, and 

Vehicle Emissions (Table 2). Therefore, these 

Environmental Toxin Exposures could potentially 

influence the therapeutic response of UC patients, a 

response that is mediated by the intermediary factors 

DAPP1 and ELL2.  

 

It is worth mentioning that Tobacco Smoke Pollution 

and Particulate Matter (PM), as highly accessible 

environmental toxins, are believed to concurrently 

upregulate the expression levels of DAPP1 and ELL2 in 

human species. Therefore, avoiding exposure to these 

toxins may improve UC patients’ therapeutic 

responsiveness. 

 

In addition, we examined the relationship between 

certain drugs and DAPP1 and ELL2 using the CTD 

database (Table 3). In humans, Zoledronic Acid and 

Tretinoin were found to enhance the expression levels 

of DAPP1 and ELL2 genes, whereas Antirheumatic 

Agents were observed to decrease their gene expression. 

Therefore, during anti-UC therapy, co-administration of 

Zoledronic Acid and Tretinoin may potentially reduce 

the therapeutic responsiveness of UC patients, whereas 

the administration of Antirheumatic Agents may 

potentially enhance their therapeutic responsiveness. 

There is still a need for further research to understand 

the underlying mechanisms, optimize drug choice and 

dosage, and ultimately improve the management of UC. 

 

Validation of the causal relationship between 

DAPP1/ELL2 and UC via MR analysis 

 

Application of MR analysis integrated with GWAS and 

eQTL data facilitated the investigation of the 

association between UC and eQTL of DAPP1 and 

ELL2 (Figure 9A). Results obtained from the IVW, 

WM, MR-Egger methods, simple mode, and weighted 
model analyses all support that DAPP1 is a protective 

element against UC occurrence (IVW: p<0.001, WM: 

p<0.001, simple mode: p<0.001, and weighted model: 

p<0.001; Figure 9B). In addition, the analyses revealed 

a causal relationship between ELL2 and UC occurrence 

(IVW: p<0.001, WM: p<0.001, simple mode: p=0.02, 

and weighted model: p=0.02; Figure 9C). 

 

Using an independent validation set and RT-qPCR 

analysis for the validation of DAPP1 and ELL2 

expression levels 

 

To validate the link between DAPP1, ELL2, and 

cigarette pollution, an independent validation set, 

GSE72163, was employed. GSE72163 investigates the 

changes in the gene expression of intestinal epithelial 

cell line (DLD-1) and T-lymphocyte cell line (Jurkat) 

following exposure to cigarette smoke extract. cigarette 

smoke extract did not cause a significant change in the 

expression of ELL2 gene in Jurkat cells. However, both 

DLD-1 cells and Jurkat cells exposed to cigarette smoke 

extract exhibited a significant downregulation in 

DAPP1 expression levels (Supplementary Figure 6). 

Previous studies have suggested that smoking may 

prevent the occurrence and reduce the severity of 

ulcerative colitis [51]. However, our study found that 

DAPP1 was upregulated in UC patients with intestinal 

inflammation. Therefore, the results obtained from the 

independent validation set GSE72163 are consistent 

with our findings. 

 

DISCUSSION 
 

In this study, we retrieved and incorporated 4 micro-

array queues of patients who received treatment with 5-

ASA, corticosteroid, golimumab, or infliximab, and 

demonstrated treatment responsiveness over an explicit 

four-week follow-up period. We subsequently 

conducted a Pan-therapy Analysis of UC. Through this 

bioinformatic and machine learning-based Pan-therapy 

Analysis, we have obtained two key genes, namely 

DAPP1 and ELL2, that hold the potential to influence 

the response to all the aforementioned four pharmaco-

therapies of UC. The specific research process can be 

found in Supplementary Figure 7. 

 

It is worth noting that this study represents the first time 

that the study of DAPP1 and ELL2 has been linked to 

UC, indicating potential avenues for further research. 

DAPP1, also known as B cell adaptor molecule of 32 

kDa (Bam32), has been proposed to regulate 

lymphocyte proliferation and recruitment during 

inflammation [52–54]. During the process of neutrophil 

recruitment, DAPP1-dependent, ERK1/2-involving 

ROS generation in neutrophils is deemed crucial in 

inducing WKYMVm-induced microvascular hyper-

permeability [52]. In UC, areas infiltrated by 

neutrophils witness mucosal damage [55, 56]. 

Neutrophil extracellular traps (NETs), released by 
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Table 2. The interaction between environmental toxin exposure and DAPP1 and ELL2. 

Chemical name 
Gene 

symbol 
Interaction actions Organism 

Reference 

pubMedID 

1,2-Dimethylhydrazine DAPP1 
affects response to substance|increases 

expression 
Rattus norvegicus 27840820 

Asbestos, Crocidolite DAPP1 decreases expression Homo sapiens 29523930 

Benzo(a)pyrene DAPP1 decreases methylation Homo sapiens 27901495 

Benzo(a)pyrene DAPP1 decreases methylation Homo sapiens 27901495 

Benzo(a)pyrene DAPP1 increases methylation Homo sapiens 27901495 

Benzo(a)pyrene DAPP1 affects expression|affects reaction Mus musculus 22228805 

Benzo(a)pyrene DAPP1 decreases expression Mus musculus 19770486 

Benzo(a)pyrene DAPP1 increases expression Mus musculus 22228805 

Bisphenol A DAPP1 affects cotreatment|increases methylation Homo sapiens 31601247 

Bisphenol A DAPP1 affects expression Rattus norvegicus 25181051 

Dibutyl Phthalate DAPP1 decreases expression Mus musculus 21266533 

Fipronil DAPP1 increases expression Rattus norvegicus 23962444 

Hydrogen Peroxide DAPP1 affects expression Homo sapiens 21179406 

Nanotubes, Carbon DAPP1 increases expression Mus musculus 25554681 

Nanotubes, Carbon DAPP1 increases expression Mus musculus 25554681 

Nickel DAPP1 increases expression Homo sapiens 25583101 

Particulate Matter DAPP1 increases expression Homo sapiens 29703138 

Silicon Dioxide DAPP1 increases expression Homo sapiens 25351596 

Silicon Dioxide DAPP1 decreases expression Mus musculus 19073995 

Sodium arsenite DAPP1 affects expression Homo sapiens 29319823 

Sulforaphane DAPP1 decreases expression Homo sapiens 31838189 

T-2 Toxin DAPP1 increases expression Gallus gallus 31299295 

Tetrachlorodibenzodioxin DAPP1 affects expression Mus musculus 21570461 

Tetrachlorodibenzodioxin DAPP1 decreases expression Mus musculus 19770486 

Tetrachlorodibenzodioxin DAPP1 increases expression Mus musculus 19465110 

Tetrachlorodibenzodioxin DAPP1 decreases expression Rattus norvegicus 34747641 

Tetrachlorodibenzodioxin DAPP1 increases expression Rattus norvegicus 32109520|33387578 

Tobacco Smoke Pollution DAPP1 increases expression Homo sapiens 33660061 

Tobacco Smoke Pollution DAPP1 affects expression Mus musculus 20133372 

Vehicle Emissions DAPP1 affects response to substance Mus musculus 31869344 

1,2-Dimethylhydrazine ELL2 decreases expression Mus musculus 22206623 

Asbestos, Crocidolite ELL2 increases expression Homo sapiens 18687144 

Asbestos, Crocidolite ELL2 decreases expression Mus musculus 29279043 

Benzo(a)pyrene ELL2 decreases expression Homo sapiens 26238291 

Benzo(a)pyrene ELL2 decreases methylation Homo sapiens 27901495 

Benzo(a)pyrene ELL2 increases methylation Homo sapiens 27901495 

Bisphenol A ELL2 affects expression Danio rerio 21786754 

Bisphenol A ELL2 affects expression Homo sapiens 20170705 

Bisphenol A ELL2 decreases expression Homo sapiens 22576693 

Bisphenol A ELL2 increases expression Homo sapiens 25047013 

Bisphenol A ELL2 increases methylation Homo sapiens 22576693 

Bisphenol A ELL2 increases expression Mus musculus 25594700 
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Bisphenol A ELL2 affects expression 
Pimephales 

promelas 
21786754 

Bisphenol A ELL2 decreases expression Rattus norvegicus 25181051 

Dibutyl Phthalate ELL2 increases expression Mus musculus 21266533 

Fipronil ELL2 affects expression Danio rerio 32977147 

Hydrogen Peroxide ELL2 affects expression Homo sapiens 20044591 

Nanotubes, Carbon ELL2 increases expression Mus musculus 25554681 

Nanotubes, Carbon ELL2 increases expression Mus musculus 25554681 

Nickel ELL2 affects expression Homo sapiens 14575637 

Nickel ELL2 affects expression|decreases reaction Homo sapiens 14575637 

Particulate Matter ELL2 
affects cotreatment|increases 

abundance|increases expression 
Homo sapiens 29432896 

Particulate Matter ELL2 decreases expression Mus musculus 32873817 

Silicon Dioxide ELL2 decreases expression Homo sapiens 25895662 

Sodium arsenite ELL2 affects expression Danio rerio 19590694 

Sodium arsenite ELL2 affects methylation Homo sapiens 28589171 

Sulforaphane ELL2 increases expression Homo sapiens 26833863 

T-2 Toxin ELL2 decreases expression Gallus gallus 31299295 

Tetrachlorodibenzodioxin ELL2 affects expression Homo sapiens 22298810 

Tetrachlorodibenzodioxin ELL2 increases expression Homo sapiens 19684285 

Tetrachlorodibenzodioxin ELL2 affects expression Mus musculus 21570461 

Tetrachlorodibenzodioxin ELL2 decreases expression Mus musculus 19770486 

Tetrachlorodibenzodioxin ELL2 increases expression Mus musculus 17035482 

Tetrachlorodibenzodioxin ELL2 
decreases expression|increases response to 

substance 
Mus musculus 25975270 

Tetrachlorodibenzodioxin ELL2 decreases expression Rattus norvegicus 32109520 

Tetrachlorodibenzodioxin ELL2 increases expression Rattus norvegicus 18796159 

Tobacco Smoke Pollution ELL2 increases expression Homo sapiens 33660061 

Tobacco Smoke Pollution ELL2 decreases expression Mus musculus 31705857 

Vehicle Emissions ELL2 increases methylation Mus musculus 25560391 

 

neutrophils, also play a vital role in sustaining mucosal 

inflammation in UC [57–59]. These findings highlight 

the potential of DAPP1 to modulate inflammation in 

UC, consistent with our own research indicating 

elevated expression of DAPP1 in the inflamed gut of 

UC patients. The research reveals that Bam32-/- mice 

exhibit impaired innate B cells, leading to increased 

susceptibility to infections. This is mainly due to a 

significant decrease in serum levels of specific IgG, 

especially IgG1 and IgG2a classes, in Bam32-/- mice 

post-infection, while IgM antibody levels remain 

unaffected [60]. Previous studies have suggested that 

the sustained efficacy of biologic therapies in 

autoimmune diseases like pemphigus is linked to a 

lasting depletion of IgG-switched memory autoreactive 

B cells. This, in turn, leads to the disappearance of 
antibody-secreting cells [61]. In addition, B cells 

encode focused antibody repertoires that include 

antibodies that stimulate macrophage TNF-α production 

[62–64]. Incidentally, TNF-α is one of the therapeutic 

targets for treating UC, for instance, through 

golimumab [65, 66]. Therefore, the regulation of the 

DAPP1-B cell-TNF-α axis may be one potential 

mechanism for the therapeutic response in UC. In the 

context of our study, the positive correlation between 

DAPP1, B cells, and iTreg cells lends some plausibility 

to this hypothesis. It has been reported that regulatory T 

cells exhibit minimal levels of effector cytokine 

expression, thereby suppressing immune responses and 

inflammatory processes [67–69]. Elevated levels of 

Treg cells have been noted in ulcerative colitis and 

colon cancer. Following T-cell receptor engagement, 

colitic Treg cells produce high amounts of IL-8, further 

demonstrating their importance as IL-8 producers 

within the gut [67]. A retrospective analysis involving 
271 UC patients and healthy controls concluded that IL-

8 could serve as an excellent biomarker for predicting 

the severity of UC [67]. By modulating inflammatory 
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Table 3. The interaction between drug exposure and DAPP1 and ELL2. 

Chemical name Gene symbol Interaction actions Organism 
Reference 

PubMedID 

Abrine DAPP1 increases expression Homo sapiens 31054353 

Acetaminophen DAPP1 decreases expression Rattus norvegicus 33387578 

Antirheumatic 

Agents 
DAPP1 decreases expression Homo sapiens 24449571 

Choline DAPP1 affects cotreatment|increases expression Mus musculus 20938992 

Dronabinol DAPP1 decreases expression Homo sapiens 29691375 

Estradiol DAPP1 increases expression Homo sapiens 31614463 

Ethinyl Estradiol DAPP1 decreases expression Xenopus tropicalis 23129252 

Folic Acid DAPP1 increases expression Mus musculus 25629700 

Folic Acid DAPP1 affects cotreatment|increases expression Mus musculus 20938992 

Gentamicins DAPP1 increases expression Rattus norvegicus 33387578 

Methionine DAPP1 affects cotreatment|increases expression Mus musculus 20938992 

Pirinixic acid DAPP1 
affects binding|decreases 

expression|increases activity 
Mus musculus 19710929 

Tretinoin DAPP1 increases expression Homo sapiens 33167477 

Zoledronic Acid DAPP1 increases expression Homo sapiens 20977926|24714768 

Abrine ELL2 increases expression Homo sapiens 31054353 

Acetaminophen ELL2 decreases expression Homo sapiens 26497421 

Acetaminophen ELL2 increases expression Homo sapiens 21420995 

Acetaminophen ELL2 affects expression Mus musculus 15606129|17562736 

Acetaminophen ELL2 increases expression Rattus norvegicus 32479839|33387578 

Antirheumatic 

Agents 
ELL2 decreases expression Homo sapiens 24449571 

Choline ELL2 affects cotreatment|decreases methylation Mus musculus 20938992 

Dronabinol ELL2 increases expression Rattus norvegicus 30283037 

Estradiol ELL2 decreases expression|decreases reaction Homo sapiens 24758408 

Estradiol ELL2 decreases expression Homo sapiens 24758408 

Estradiol ELL2 increases expression Homo sapiens 31614463 

Ethinyl Estradiol ELL2 affects expression Homo sapiens 20170705|26865667 

Folic Acid ELL2 affects cotreatment|decreases methylation Mus musculus 20938992 

Gentamicins ELL2 decreases expression Rattus norvegicus 22061828 

Gentamicins ELL2 increases expression Rattus norvegicus 33387578 

Methionine ELL2 affects cotreatment|decreases methylation Mus musculus 20938992 

Pirinixic acid ELL2 increases expression Mus musculus 18445702 

Tretinoin ELL2 increases expression Homo sapiens 21934132|33167477 

Zoledronic Acid ELL2 increases expression Homo sapiens 20977926 

 

cytokines like IL-8, 5ASA can relieve inflammation of the 

UC intestinal mucosa. Therefore, higher levels of ELL2 

may lead to increased infiltration of Treg cells and 

subsequent production of IL-8. This could partly explain 

how ELL2 may affect the efficacy of UC treatment. 

 

Hence, targeting DAPP1 and ELL2 has the potential to 

be a promising approach to improving response rates to 

current UC treatment regimens. It is worth noting that 

DAPP1 and ELL2 are excellent biomarkers for UC in 

its inflammatory stages, making them potential targets 

for slowing down the progression of UC-associated 

inflammation. In this regard, we used the XSum 

algorithm to identify potential small molecule drugs 

from the CMAP database that could alleviate the 

inflammatory course of UC. Among these molecules, 
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Clofibrate was subjected to molecular docking with 

DAPP1 and ELL2, and the relatively impressive 

docking scores suggest that it can bind well with the 

DAPP1 and ELL2 proteins. Nevertheless, we must 

approach these findings with caution, as the 

identification of potential drugs was achieved through 

computational methods. In-depth mechanistic studies 

are necessary to validate these results rigorously. In 

summary, we have identified two therapeutic targets 

that affect treatment response in UC patients, and this 

effect is not limited to only one single treatment 

modality. These results may pave the way for 

subsequent solutions to combat drug resistance or lack 

of response to medication in UC patients. 

 

In this study, we further employed MR analysis to 

explore the causal relationship between essential genes 

and UC incidence. Mendelian randomization, a 

technique that utilizes genetic data to investigate causal 

relationships between variables, was utilized. Our 

findings indicate that despite the up-regulation of 

DAPP1 and ELL2 in the inflammatory sites of UC, MR 

analysis revealed that DAPP1 up-regulation serves as a 

protective factor against UC, whereas ELL2 up-

regulation is linked to the onset of UC. As previously 

reported, DAPP1 plays an essential role in the adhesion, 

migration, and recruitment of neutrophils, and excessive 

neutrophil infiltration is one of the reasons for the 

elevated levels of UC inflammation [52, 57, 70]. 

However, it is worth noting that the recruitment of 

neutrophils is beneficial for eliminating invading 

intestinal pathogens, which is crucial for maintaining a 

balanced intestinal microbiota [71–73]. Imbalance of 

intestinal microbiota plays a role in UC pathogenesis [3, 

74–76]. Therefore, DAPP1 serves as a preventive factor 

in the initial stage of UC disease, while excessive 

recruitment of neutrophils mediated by DAPP1 

aggravates UC inflammation during the course of the 

 

 
 

Figure 9. (A) Forest plot showing results from the Mendelian randomization analysis. (B) The scatter plot of five MR methods between 
DAPP2 and UC. (C) The scatter plot of five MR methods between ELL2 and UC. 
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disease. Furthermore, we noted that ELL2 plays a 

consistent role in both the incidence and inflammation 

of UC, highlighting the promising potential of targeting 

ELL2 for drug development and validation in the 

treatment and management of UC. However, the present 

study did not further explore whether the ability of 

DAPP1 and ELL2 to predict treatment response in UC 

is due to their regulation of inflammation in the 

intestinal tract of UC patients, which is also one of the 

limitations of the study. 
 

It is worth mentioning that Tobacco Smoke Pollution 

and Particulate Matter, as highly accessible environ-

mental toxins, are thought to simultaneously upregulate 

the expression levels of DAPP1 and ELL2 in humans. 

In addition to increasing the likelihood of developing 

and exacerbating CD, smoking reduces the severity of 

UC and protects against its onset [51]. It remains 

unclear whether smoking elicits any influence on the 

therapeutics’ effectiveness in treating IBD. However, 

there are some limited clinical data that suggest 

Tobacco Smoke may exert deleterious effects on the 

therapeutic efficacy of certain drugs for IBD. Smokers 

who receive infliximab for IBD manifest markedly 

lower median trough levels as compared to nonsmokers 

[77]. Moreover, smokers were observed to exhibit 

significantly elevated levels of anti-infliximab anti-

bodies as compared to nonsmokers, thereby suggesting 

a compromised response towards infliximab in IBD 

from a pharmacokinetic perspective [77]. Simul-

taneously, previous research implied that smoking is 

also an independent risk factor for augmenting the 

likelihood of terminating thiopurine-based therapy 

owing to unfavorable impacts [78]. The ingestion of 

PM emanating from cigarette smoke causes gastro-

intestinal dysfunction, leading to disturbance of mucus 

secretion, mucosal microcirculation, and mucous repair 

processes in the intestinal tract [78]. Not only this, 

roughly 85% of lung cancers are attributed to cigarette 

smoking, whereas the remaining fraction is accredited 

to passive smoking, which non-smokers are exposed to 

[79]. In addition, the relationship between cigarette 

smoke and immune cells has been widely investigated. 

Under inflammatory conditions, cigarette smoke alters 

the peptide repertoire of antigens on MHC class I 

molecules. Importantly, activation of IAV-specific 

CD8+ T cells mediated by MHC class I is inhibited by 

cigarette smoke [80]. Cigarette extract leads to 

activation of ROCK2 and reduced phosphorylation of 

IRF4 in T cells. This effect is associated with an 

increased production of IL-22 [81]. The above 

evidence suggests a close relationship between 

cigarette smoke and T cells, whereas T cells are closely 
linked to the occurrence and progression of UC. 

Therefore, our investigation suggests that UC patients 

should avoid Tobacco Smoke Pollution during their 

treatment regimen. Another interesting finding of our 

study is that PM is also responsible for affecting the 

treatment response of UC, a scenario that has not been 

previously explored in the literature. The ingestion of 

PM and cigarette smoke pollution can cause 

gastrointestinal dysfunction, leading to disturbance of 

mucus secretion, mucosal microcirculation, and 

mucous repair processes in the intestinal tract [82, 83]. 

In addition, it is worth mentioning that PM in the 

ambience was recently categorized as a Group I 

carcinogen by the International Agency for Research 

on Cancer (IARC) [84]. Hence, a salubrious air quality 

may be advantageous for UC patients during the course 

of their treatment.  

 

This investigation has provided innovative concepts and 

resources for individualized clinical regimens for those 

afflicted with UC, although certain limitations of the 

present inquiry must be acknowledged. The study only 

included bioinformatics analysis, with limited 

experimental validation to provide a robust foundation. 

Limitations in the availability of microarray datasets 

meeting the inclusion criteria resulted in the restriction 

of only four therapeutic modalities and corresponding 

treatment response states being analyzed in the Pan-

therapy Analysis of UC as presented in this study. 

Consequently, future research endeavors must remain 

focused on obtaining more diverse treatment modalities 

to enable further in-depth exploration. Furthermore, one 

of the study’s drawbacks is its retrospective nature, 

rather than a prospective trial. Hence, further follow-up 

investigations utilizing mechanistic exploration and 

prospective clinical trials are crucial to validate our 

findings. 

 

CONCLUSIONS 
 

We utilized microarray technology to conduct a Pan-

therapy Analysis and identify two key gene signatures 

(DAPP1 and ELL2) as biomarkers of unresponsiveness 

to multiple therapies and inflammatory progression in 

IBD. Our research also identified Clofibrate as a 

potential small molecule drug for UC treatment and 

comprehensively reviewed environmental toxins and 

drug exposures that may affect UC responsiveness. This 

contribution enables personalized clinical management 

and treatment regimens for UC. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 

 
 

Supplementary Figure 1. Heatmap illustrating the top 20 genes that were differentially up-regulated and down-regulated in 
the UC patients who do not respond to 5-ASA (top left), corticosteroids (top right), golimumab (bottom left), or infliximab 
(bottom right) treatment. 
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Supplementary Figure 2. The proportion of patients who respond or do not respond to 5-ASA, corticosteroids, golimumab, 
or infliximab treatment varies with high and low levels of DAPP1 and ELL2 gene expression. 
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Supplementary Figure 3. The immunological cell infiltration landscape in samples from treatment cohorts with 5-ASA, 
corticosteroids, golimumab, or infliximab changes as the gene expression levels of DAPP1 and ELL2 are upregulated. 
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Supplementary Figure 4. Boxplots of the gene expression levels of DAPP1 (A) and ELL2 (B) in inflamed and uninflamed Crohn's disease 

samples in GSE179285 cohort. AUCs of DAPP1 (C) and ELL2 (D) in ROC analysis predicting Inflamed Crohn’s disease samples. Boxplots of the 
gene expression levels of DAPP1 (E) and ELL2 (F) in IBD samples and Healthy controls. 
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Supplementary Figure 5. Enrichment analysis results of the top 150 upregulated and top 150 downregulated genes in 
Inflamed UC based on the Metascape database. 
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Supplementary Figure 6. (A) Changes in the gene expression levels of DAPP1 and ELL2 in DLD-1 cells and Jurkat cells exposed to cigarette 
smoke extract. (B) The RT-qPCR analysis validated the differential expression of DAPP1 and ELL2 in the intestinal mucosa of UC patients and 
healthy controls. 
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Supplementary Figure 7. The flowchart of this study. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1, 3–7. 

 

Supplementary Table 1. The DEGs between non-responding and responding UC patients treated with 5-ASA, 
corticosteroid, golimumab, and infliximab. 

Supplementary Table 2. Lasso 
analysis results in 5-ASA, 
corticosteroid, golimumab, and 
infliximab treatment cohort. 

Treatment Lasso genes 

5ASA 

DAPP1 

ELL2 

IGSF6 

SAMD9L 

Corticosteriods 
DAPP1 

ELL2 

Golimumab 

DAPP1 

ELL2 

LYN 

SAMD9L 

Infliximab 

DAPP1 

ELL2 

IGSF6 

LYN 

 

Supplementary Table 3. The immunocyte types demonstrating significant differences in infiltration levels 
between UC patients with high and low DAPP1 (ELL2) after treatment with 5-ASA, corticosteroid, golimumab, or 
infliximab. 

Supplementary Table 4. Proteins that interact with DAPP1 and ELL2, along with the types of interactions, were 
obtained through the GeneMANIA database. 

Supplementary Table 5. The DEGs between uninflamed and inflamed UC in GSE179285 cohort. 

Supplementary Table 6. The XSum scores for all small molecule drugs in the CMap database. 

Supplementary Table 7. The detailed account of the specific interplay between environmental toxin and drug 
exposure with DAPP1 and ELL2. 


