
www.aging-us.com 15676 AGING 

INTRODUCTION 
 

Sepsis is a potentially fatal organ failure brought on by 

an improperly controlled host response to infection [1], 

with a high morbidity and mortality rate worldwide. In 

2017, the World Health Assembly listed sepsis as a 

global health priority [2]. Sepsis is one of the leading 

causes of death in the intensive care unit (ICU) [3]. 

According to statistics, sepsis accounts for 20% of 

annual deaths worldwide [4, 5]. Sepsis has a very 

complicated etiology that involves pathophysiological 

processes such as an excessive inflammatory response, 

pyroptosis, immunological dysfunction, mitochondrial 

damage, coagulation failure, oxidative stress, apoptosis, 

and autophagy, ultimately leading to organ dysfunction 

[6–10]. Over the past few decades, there have been 

efforts to come up with sepsis treatment strategies. In 

recent years, much progress has been achieved in the 

anti-infective, fluid resuscitation, hemodynamic sustain 

and organ function support therapy of sepsis using 

microbiology facilities and nanotechnology drug delivery 

platforms [11, 12]. However, the current clinical 

management of septic patients is still supportive rather 

than curative. It must be acknowledged that sepsis is a 

challenging issue for ICU physicians to overcome due 

to its multi-causal nature. Therefore, it is essential to 
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ABSTRACT 
 

Sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection. 
It is characterized by high morbidity and mortality and one of the major diseases that seriously hang over 
global human health. Autophagy is a crucial regulator in the complicated pathophysiological processes of 
sepsis. The activation of autophagy is known to be of great significance for protecting sepsis induced organ 
dysfunction. Recent research has demonstrated that N6-methyladenosine (m6A) methylation is a well-known 
post-transcriptional RNA modification that controls epigenetic and gene expression as well as a number of 
biological processes in sepsis. In addition, m6A affects the stability, export, splicing and translation of 
transcripts involved in the autophagic process. Although it has been suggested that m6A methylation 
regulates the biological metabolic processes of autophagy and is more frequently seen in the progression of 
sepsis pathogenesis, the underlying molecular mechanisms of m6A-modified autophagy in sepsis have not 
been thoroughly elucidated. The present article fills this gap by providing an epigenetic review of the 
processes of m6A-modified autophagy in sepsis and its potential role in the development of novel therapeutics. 
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study the molecular mechanisms underlying the 

biological processes involved in sepsis in order to 

optimize treatment options for the condition. 

 
To date, there are more than 100 recognized 

modifications involved in regulating the bio-metabolic 

processes of RNA [13]. The most well studied RNA 

modification to date is N6-methyladenosine (m6A) 

methylation. Human messenger RNAs (mRNA), 

ribosomal RNAs (rRNA), and small nuclear RNAs 

(snRNA) all carry the m6A modification. m6A methy-

lation is a reversible posttranscriptional modification of 

mRNA and regulates mRNA biogenesis and function 

[14]. Such modification regulates multiple steps of 

RNA processing including splicing, export, localization, 

decay and translation. More than 12,000 m6A loci  

were found in more than 7,000 human gene transcripts 

using antibody-mediated capture and massively parallel 

sequencing-based m6A-seq [15]. Studies have shown 

that m6A modification-related proteins are strongly 

associated with disease severity and prognosis [16,  

17]. Especially, m6A methylation plays an essential  

role in inflammation by regulating three inflammatory 

signaling pathways including MAPK, JAK/STAT3,  

and PI3K [18]. Further data have demonstrated  

that METTL14-mediated m6A methylation negatively 

regulates inflammatory response in the context of sepsis 

[19]. It was discovered that insulin-like growth factor 2 

mRNA binding proteins (IGFBPs), one of the m6A 

methylation binding proteins, influence the initial stages 

of septic shock [20]. Moreover, entire or RNA-specific 

therapeutic treatment of m6A methylation dynamics 

may be helpful to prevent and mitigate sepsis-induced 

disseminated intravascular coagulation [21]. In general, 

growing data suggests that m6A methylation is a 

mechanism that affects the onset and progression of 

sepsis. However, the regulatory function and underlying 

mechanisms of m6A in sepsis haven‘t been thoroughly 

illuminated. 

 
Under physiological environments, autophagic activity 

is often limited and serves as the cell’s guardian. 

However, when cells are exposed to outside stimuli 

such as pathogenic bacteria, hypoxia, and endotoxins, 

autophagic activity is significantly increased. Clearly, 

defects in the selective regulation of autophagy may 

lead to disease [22]. Autophagy is activated in the  

early stages of sepsis, followed by a phase of impaired 

autophagy [23]. Previous researches have shown that 

autophagy activation during sepsis is crucial for 

preventing subsequent lung, renal, and cardiac injury 

[24–26]. Existing research recognizes the critical role 

played by m6A methylation modification-related proteins 

in the biogenesis of autophagy [27, 28]. There is a 

growing awareness about the biological significance  

of the m6A modification on the transcription and 

translation of genes related to autophagy as well as the 

overall impact of conferring RNA specificity [29]. 

 

Clinically, m6A methylation-modified autophagy 

mechanisms play a crucial role in improving the 

prognosis of patients with sepsis [30]. There is no  

doubt that the connection between m6A methylation  

and autophagy will offer fresh perspectives on the 

management of sepsis. However, the effect of m6A-

modified autophagy in the pathophysiology of sepsis 

remains largely unclear. Therefore, it is essential to 

clarify the potential mechanisms that revealing the  

exact biological processes and specific organ function-

protective roles of m6A-modified autophagy in sepsis. 

The relative evidence that supports whether m6A 

methylation modified autophagy influences the patho-

physiological mechanisms of sepsis is compiled in this 

review. The graphical abstract of this study is shown in 

Figure 1. 

 

m6A methylation 
 

What is m6A methylation? 

 

m6A methylation dynamically regulates RNA splicing, 

transport, localization, stability and translation [31]. 

m6A methylation, one of the common base modi-

fications of mRNA, predominantly distributed in near 

stop codons, in 3’ UTRs [32] and within unusually long 

internal exons [15]. The blocked 5’terminal structure of 

heterogeneous nuclear RNAs, which exhibits striking 

similarities to one of the two varieties of blocked 5’ 

sequences seen in mRNAs, was discovered to be the site 

of m6A methylation as early as 1975 [33, 34]. Then, it 

has been discovered that the 5′ UTR’s m6A functions to 

stimulate mRNA translation when cells are under stress 

by taking the place of the 5’cap (which is the first step 

of most mRNAs translation) [35]. Of note, m6A is 

primarily found within the highly conserved consensus 

motif known as RRACH (R=G or A, H=A, C or U) in 

the majority of RNAs [36]. And then, m6A methylation 

also presences in a sequence context of UAC-(m6A)-

GAGAA on top of a hairpin structure in transcript 

methionine adenosyltransferase 2A (MAT2A), which is 

mediated by methyltransferase-like 16 (METTL16) 

[37]. It is obvious that m6A methylation is an adenosine 

methylation at position N6, namely methylation of the 

sixth nitrogen atom on the RNA molecule adenosine.  

S-adenosylmethionine (SAM) provides nearly all the 

methyl groups necessary for cellular methylation 

reactions. The splicing of the MAT2A retained intron 

maintains high levels of intracellular SAM [38]. The 

specific mechanisms are as follows: the restriction of 

SAM prevents METTL16 from effectively inducing 

m6A methylation, which lengthens the time that it 

spends on a conserved hairpin (hp1) of MAT2A and 
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promotes the splicing of retention intron, further 

provides enough SAM for m6A methylation. 

 
Who was involved in the m6A methylation? 

 
There are three crucial m6A methylation  

modification-related proteins exist in the  

process of m6A methylation: m6A methyltransferases  

(writers), m6A demethylases (erasers) and m6A  

recognition factors (readers) [39]. According to  

recent studies, writers include methyltransferase-like  

3 (METTL3), methyltransferase-like 14 (METTL14), 

methyltransferase-like 5 (METTL5), METTL16, Wilms 

tumor 1-associated protein(WTAP), Vir-like m6A 

methyltransferase associated (VIRMA), RNA binding 

motif protein 15 (RBM15) and zinc-finger CCHC 

domain-containing protein 4 (ZCCHC4), erasers  

include fat mass and obesity-related proteins (FTO)  

and alkB homolog 5 (ALKBH5), readers include  

the YTH structural domain family (YTHDF) 1-3,  

YTH structural domain containing family (YTHDC)  

1-2, eukaryotic translation initiation factor 3 sub- 

unit A(eIF3), insulin-like growth factor 2 mRNA  

binding protein 1/2/3(IGF2BP1/2/3), heterogeneous  

nuclear ribonucleoprotein A2/B1(HNRNPA2/B1) and 

HNRNPG, HNRNPC [40–42]. The potential role  

of m6A methylation modification-related proteins on 

RNA metabolism and the outcome of disease are 

summarized in Supplementary Table 1 [43–79]. 

 

How do m6A methylation modification-related 

proteins function during m6A methylation? 
 

The METTL3-METTL14 compound is the ultimate 

important component in the writer proteins of m6A 

methylation. It is well established that the incidence  

of m6A methylation modification of various RNAs in 

mammals is inextricably linked to the activation of 

METTL3 and METTL14 [80]. In the process of m6A 

modification, METTL3 primarily functions as a catalytic 

core, while METTL14 provides a binding platform for 

RNA [81]. A recent study has shown that SUMOylation 

of METTL3 inhibits its m6A methyltransferase activity 

on RNAs [82]. The m6A methyltransferase’s core 

subunit, METTL14, works in stable heterodimer with 

METTL3 to catalyze m6A modification [83]. Subsequent 

research revealed that the methyltransferase activity of 

METTL3-METTL14 could only be elicited by the 

solution structure of the METTL3 zinc finger domain 

and not by the structural field of heterodimer between 

METTL14 and METTL3 [84]. Moreover, the METTL3-

METTL14 complex is enlisted by WTAP, a regula- 

tory subunit of the m6A methyltransferase complex,  

into nuclear patches that are enriched in pre-mRNA 

 

 
 

Figure 1. The overview of relationship between m6A methylation, autophagy, m6A-modified autophagy and sepsis. 
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processing factors [85]. Prior works have also 

demonstrated that the mTORC1 modulates m6A 

methylation through regulating WTAP level to trigger 

the translational machinery for cell growth and proli-

feration [57, 86]. Contrary to the METTL3-METTL14 

heterodimer, METTL16 is a single-component enzyme 

whose disordered loop is required to catalyze m6A 

methylation and whose N-terminal module is necessary 

for RNA binding [87]. Clearly, METTL16 in the 

cytoplasm and the nucleus serve different biological 

purposes. Only MAT2A mRNA and U6 snRNA  

were previously reported to directly deposit m6A  

from METTL16 [38, 88]. Reduced MAT2A mRNA 

degradation results from METTL16 localizing to 

hairpin 1 (hp1) on the 3’UTR of MAT2A mRNA and 

inducing MAT2A retained intron splicing [88]. In 

recent years, more RNAs with METTL16-mediated 

m6A methylation were reported in Supplementary Table 

1 [43–79]. Additionally, wang, Fei et al. found that 

METTL16 facilitates mRNA 5 ‘cap-eIF4E recognition 

by sequestering eIF4E2 (translation initiation factor) 

[89]. Further studies suggest that this process of 

METTL16-mediated protein translation is independent 

of methyltransferase activity [89]. Therefore, in addition 

to catalyzing m6A methylation in the nucleus, METTL16 

also participates in protein translation in the cytoplasm. 

The catalytic subunit m6A-METTL complex (MAC) 

and the regulatory subunit m6A-METTL-associated 

complex (MACOM) make up the m6A “writer”. The 

primary mechanism by which MACOM attaches to 

MAC is an interaction between WTAP and METTL3. 

Strikingly, WTAP and VIRMA comprise the basic 

structure of MACOM [90]. VIRMA recruits the 

METTL3/METTL14/WTAP, which are catalytic core 

components, to guide m6A methylation in 3’UTR and 

near stop codon of mRNA [91]. RBM15 plays a similar 

role to VIRMA in the methylation of m6A. RBM15 

mediates m6A modification of targeted RNAs by 

targeting METTL3-METTL14 heterodimers to sites 

with or adjacent to m6A sites across the transcriptome 

[92]. ZCCHC4, a novel m6A methyltransferase that 

catalyzes m6A modification on rRNAs via binding to S-

adenosyl-L-homocysteine, was recently reported [93]. 

ZCCHC4 is localized to the nucleolus, and ZCCHC4-

mediated rRNA modification may also involve mRNA 

translation [94]. Further research established that 

ZCCHC4’s unique structural and enzymatic properties—

namely, the formation of a complete RNA-binding 

surface by the association of the methyltransferase 

structural domain with the N-terminal GRF-type and 

C2H2 zinc finger structural domains and the C-terminal 

CCHC structural domain—are responsible for of its 

catalytic effect on rRNAs m6A modification [95]. 
 

m6A erasers predominantly catalyze demethylation of 

m6A-containing RNA. Two m6A demethylases have 

received a lot of attention to date: FTO and ALKBH5. 

FTO, one m6A eraser, primarily regulates the m6A 

modification in the nucleoplasm. FTO regulates pre-

mRNA processing via its demethylation activity, which 

also influences mRNA stability close to the 7-methyl-

guanosine cap, promotes cap-independent translation 

initiation at the 5’UTR, encourages exon jumping and 

alternative splicing at the pre-mRNA body, and 

modulates alternative poly(A) sites (APA) usage and 

3’UTR length at the 3’UTR [96]. For instance, FTO can 

demethylate GAP-43 mRNA, and demethylation of 

GAP-43 mRNA may promote axonal elongation and 

regulate neural development [97]. ALKBH5, the other 

m6A eraser, localizes to nuclear speckles that are  

in charge of assembling mRNA processing factors. 

ALKBH5, a 2-oxoglutarate (2OG) and ferrous iron-

dependent nucleic acid oxygenase (NAOX), has the 

potential to specifically bind single-stranded RNA 

attributed to a large loop (βIV–V) region that resembles 

the L1 loop of FTO [98]. ALKBH5’s demethylation 

activity has a momentous impact on gene expression, 

metabolism, and export of nuclear RNA (mainly 

mRNA), which regulates the biogenesis of m6A methyl-

ation on RNA [99]. In recent years, the crucial role  

of de-methylating of ALKBH5 in improving RNA 

stability has been particularly emphasized [100]. The 

demethylation of m6A modifications, exhibited by 

ALKBH5, improves the stability and expression levels 

of downstream RNAs that modulate heart regeneration 

and tumorigenicity [101, 102]. Does the m6A eraser’s 

demethylation activity work on methylated RNAs, 

though? A study offers an explanation: ALKBH5 and 

FTO keep their regulatory sites in an unmethylated 

stable state rather than reversing the methylated  

RNAs [103]. 

 

The variety of structural domains that m6A binding 

proteins possess allow for the division of these  

proteins into different families. Here, we’ll start out by 

introducing YTHDFs, which contain the YTH structural 

domain. YTH domain is known to directly bind the m6A 

base of methylated RNA [104]. YTHDF1 primarily 

recognizes the m6A methylation site of the downstream 

mRNA at the 3’UTR [66]. Mechanically, YTHDF1 

recruits the transcripts of m6A-modified RNAs to 

facilitate their translation initiation [105], YTHDF2 

induces the degradation of m6A-modified RNAs to 

decrease their stability [106], and YTHDF3 regulates 

the m6A methylation of downstream signal RNAs in 

synergy with YTHDF1 or YTHDF2 [107]. Contrary to 

these conventional beliefs, studies have proposed a 

novel unified model of m6A function, in which all m6A 

bits combine all three DF paralogs (YTHDF1, YTHDF2  
and YTHDF3) in a fundamentally similar manner, 

influencing the degradation of mRNA through the 

interaction of these three key redundant DF proteins 
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[108]. They did not, however, turn up any evidence that 

would support their hypothesis that these three DF 

proteins cooperating together have a role in promoting 

mRNA translation. Second, we’ll introduce the over-

view of YTHHDCs in the present paper, which share 

the same YTH structural domain. m6A methylation 

modification is a significant modality of regulation in 

mRNA splicing. The fate of the transcripts in terms  

of splicing dynamics and alternative splicing may be 

determined by early m6A sedimentation [109]. According 

to biochemical, structural, and transcriptome-wide 

PAR-CLIP (photoactivated ribonucleic acid enhanced 

cross-linking and immunoprecipitation) investigations, 

YTHDC1 is a nuclear RNA-binding protein that is 

responsible for recruiting mRNA splicing factors for 

pre-mRNA. The result from the current study has 

demonstrated that YTHDC1 promotes SRSF3 but 

antagonizes SRSF10 binding to RNAs at the m6A 

methylation site, further triggering the initiation of 

mRNA splicing [110]. It has been proposed that 

YTHDC2 may interact with translation and decay 

mechanisms in the context of particular binding to m6A 

in order to boost translation effectiveness and reduce  

the mRNA abundance of its targets [111]. Third, the 

identification of m6A by IGF2BPs depends on the K 

homology (KH) structural domain. Such m6A reading 

proteins selectively bind m6A-containing RNA using 

the KH structural domain and its flanking regions [104]. 

IGF2BPs have been reported to support the stability, 

storage and translation of their target mRNA transcripts 

by identifying their consensus GG-(m6A)-C sequences 

[78, 112]. The selectivity with which the remaining 

m6A reading proteins activate m6A causes them to  

be clustered together. Such m6A reading proteins bind 

m6A-containing transcripts through a m6A switch 

mechanism because the m6A modification weakens 

Watson-Crick base pairing of RNA and makes it easier 

for m6A reading proteins to recognize single-stranded 

RNA motifs; simultaneously, hnRNPA2B1 can also 

bind m6A-containing RNA with specificity by using the 

RRM structural domain and its flanking regions [104]. 

HNRNPG, a novel m6A methylation binding protein, 

binds purine-rich regions exposed by m6A modified 

RNA using its low-complexity region, regulating gene 

expression and selective splicing [42]. eIF3 binds 

directly to the 5’UTR m6A site of mRNA in the cyto-

plasm, which is sufficient to recruit the 43S complex 

and initiate translation in the absence of the cap-binding 

factor eIF4E [35, 113]. 

 

It is still controversial what function m6A-related 

proteins have in the pathogenic and physiological 

processes of the disease. For example, analysis reports of 
TCGA data indicate that high expression of METTL3 is 

associated with unfavorable prognosis in CRC patients 

[114]. Conversely, clinical research has demonstrated 

that METTL14 deletion is related to a poor prognosis in 

patients with CRC [52]. By modification of m6A, 

METTL3 can also assist in regulating the cardiac 

homeostasis and hypertrophy [115]. WTAP was also 

identified as an independent predictor of prognosis for 

patients with hepatocellular carcinoma [58]. According 

to one study, testicular Leydig cells experienced an 

increase in m6A methylation modification of RNA  

due to the inhibition of FTO, which led to apoptosis 

[116]. By examining the expression of m6A-related 

regulators and the probability of overall survival in 

HNSCC, Yu, Dan et al. discovered IGF2BP2 to be an 

independent prognostic factor in patients [77]. To sum 

up, various regulations of m6A methylation modification-

related proteins play a critical role in the corresponding 

modified RNAs’ transcription by affecting their splicing, 

export, translation, and stability, which ultimately 

influences the development of these modified RNAs-

mediated diseases. The diagrammatic sketch of these 

regulatory mechanisms is shown in Figure 2. It follows 

that m6A methylation is expected to develop as a 

therapeutic target for human diseases. 

 

However, as the field of study developed, we 

discovered that numerous m6A modification-related 

proteins interact to regulate the m6A methylation of 

targeted RNAs, rather than a single m6A modification-

related protein, in the disease process. Many m6A 

methylation sites on SPRED2 mRNA have been found 

to be lost as a result of METTL3 deletion [117]. This 

impairs YTHDF1-mediated translation of the modified 

SPRED2 mRNA and increases NF-kB and STAT3 

activation through the ERK pathway, which promotes 

tumor development and metastasis [117]. The level  

of SRY (sex determining region Y)-box 2 (SOX2) 

transcripts’ m6A methylation elevated as a result of 

METTL3. IGF2BP2 subsequently recognized methylated 

SOX2, maintaining its mRNA stability and expression. 

Ultimately, CRC development was triggered by high 

SOX2 expression [114]. However, when abundant in 

cellulose, METTL3’s role changes from catalyzing  

m6A methylation to promoting the initiation of mRNA 

translation. The production of dense polynucleotides, 

accelerated translation, and carcinogenic transformations 

all depend on METTL3-eIF3h interactions [118]. More-

over, another role m6A methylation frequently plays in 

disease development is targeted RNA degradation that 

is dependent on the METTL3-YTHDF2 interaction  

[73, 119]. METTL3 directs m6A modification of PKC-

η, FAT4, and PDGFRA mRNAs to induce mRNA 

degradation via YTHDF2-dependent pathway, which 

promotes diabetes-related peripapillary cell dysfunction 

and stimulates retinal vascular complications [43].  
As a result, METTL3 induces high levels of m6A 

modification in mRNA, and YTHDF2 identifies m6A 

sites in mRNA and promotes its degradation [120].  
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In the last resort, the synergistic effect of METTL3-

YTHDF2 regulates the development of diseases via 

influencing disease-related genes expression. In a 

METTL3-FTO-dependent manner, m6A methylation 

plays the crucial role in the clinical and physiological 

processes of obesity cardiomyopathy, too [121]. 

ALKBH5 deletion leads to elevated m6A levels in 

downstream RNAs, and IGF2BP1 recognizes the 

exposed m6A sites and enhances their stability, thereby 

enhancing downstream RNA expression [122]. Similarly, 

ALKBH5-mediated m6A modification of its down-

stream targets is recognized by another m6A reader, 

YTHDF2, which is also responsible for degrading 

ALKBH5’s methylated downstream targets [123, 124]. 

Supplementary Table 1 [43–79] provides additional 

information on the essential role of writer/eraser- 

reader-dependent m6A methylation in the regulation of 

disease. In a word, m6A methylation is a dynamic and 

programmed process of RNAs modification. Even 

though each of the m6A modification-related proteins 

has a specific function, m6A modification of RNAs 

seems impossible to happen without the synergistic 

effect of these proteins. The level of RNAs’ m6A 

methylation in the nucleus is regulated by the m6A 

methyltransferases and demethylases, and the modified 

RNA enters the cytoplasm. Further affecting RNA 

splicing, degradation, stabilization, and translation are 

m6A binding proteins, which find and bind  

m6A residues on the transcript of the modified  

RNA. Therefore, this distinctive “writer/eraser-reader-

dependent” paradigm for m6A methylation should  

be considered in the pathophysiological processes of 

disease, providing additional possibilities for therapeutic 

intervention. 

 

Of course, the upstream signaling of m6A methylation-

related proteins also influences their expression level, 

which in turn influences the level of downstream 

signaling that m6A regulates and, ultimately, the pro-

gression of the disease. For instance, Piwi-interacting 

RNA (piRNA)-14633 interacts with the 3’UTR of 

METTL14 to enhance the stability of METTL14 mRNA 

and encouraged the methylase activity of METTL14, 

promoting the m6A methylation levels of the down-

stream target (CYP1B1), and subsequently promoting 

the expression of CYP1B1, which in turn contributed to 

the oncogenesis of cervical carcinoma [53]. Additionally, 

by interacting with METTL3 and inhibiting its RNA 

methylation activity, cardiac-hypertrophy-associated 

piRNA (CHAPIR) prevents the m6A modification of 

PARP10 mRNA. This causes a blockage of the 

YTHDF2-mediated degradation of the PARP10 mRNA 

transcripts and an increase in PARP10 expression, 

which leads to cardiac hypertrophy [119]. 

 

 
 

Figure 2. The sketch map of m6A methylation. Writers catalyze the m6A modification of RNA, erasers maintain the RNA in an 
unmethylated state, and the readers are ultimately responsible for determining the fate of the RNA (such as splicing, stability, degradation 
and translation). 
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The regulatory role of m6A methylation in 

sepsis 
 

A complicated systemic inflammatory response, 

immuno-logical dysfunction, aberrant coagulation, 

oxidative stress, apoptosis, dysregulation of autophagy, 

and tissue damage are all factors in the pathogenesis  

of sepsis. m6A methylation facilitates these biological 

processes by differentially regulating specific RNAs. 

Trials have demonstrated a substantial correlation 

between m6A regulators including ALKBH5, HNRNPC, 

KIAA1429, WTAP, and YTHDF2 and 28-day cumu-

lative mortality in sepsis patients. Of note, HNRNPC, 

KIAA1429, and YTHDF2 are protective genes with a 

hazard ratio (HR) < 1, but ALKBH5 and WTAP are 

dangerous genes with a HR > 1 [30]. Further research 

also confirmed the protective effects of FTO, HNRNPC, 

YTHDC1, and RBM15B in sepsis patients [125]. In  

one animal study, increased expression of METTL3 and 

low expression of METTL14, ALKBH5, FTO, and 

YTHDF2 were found following lipopolysaccharide 

(LPS) induction. Subsequent research demonstrated that 

m6A modification plays a role in the pathophysiology  

of sepsis and mediates sepsis-induced liver injury [126]. 

The m6A modification may have an intimate and intricate 

interaction relationship with the cardiovascular injury 

generated by the different physio-pathological conditions 

of sepsis. Shen et al. observed that downregulation of 

METTL3 and WTAP was partially responsible for the 

decrease in major m6A levels in aortic RNA during 

sepsis [21]. Additionally, there was a significant decrease 

in the levels of m6A modification in septic cardiac 

tissue, indicating a critical role for m6A modification in 

the pathogenesis of sepsis-related myocardial damage 

[127]. In summary, the evidence that is now available 

generally points to the possibility that therapeutic 

adjustments of cellular m6A methylation may assist 

with alleviating secondary organ dysfunction during 

sepsis. 

 

We can’t only look at the overall degree of change  

in m6A methylation in sepsis, though, given the 

complicated pathophysiological mechanisms of sepsis 

and the dynamic and multifactorial role of m6A 

methylation. As a result, it is appropriate to incorporate 

the “reader/eraser-reader” model of m6A modification 

into the mechanistic investigation of sepsis and to 

clarify the specific molecular mechanisms of sepsis in 

the context of the dynamic process of cellular m6A 

modification. Data mining revealed that the majority  

of m6A-RNA methylation regulators’ expression was 

down-regulated in sepsis, with only a few up-regulated 

[128]. Recently, several in vitro experiments with the 
sepsis model observed abundant m6A methylation in 

LPS-induced cardiomyocytes (H9C2). Mechanically, 

METTL3 catalyzed m6A modification of HDAC4 

mRNA, and IGF2BP1 identified the m6A site on 

HDAC4 mRNA and strengthened its stability, which 

consequently stimulates the inflammatory damage of 

cardiomyocytes induced by sepsis [129]. Obviously, 

METTL3-mediated m6A modifications on transcripts 

of numerous inflammatory signaling pathways are 

responsible for the excessive inflammatory responses 

and pyroptosis [130, 131]. More specifically, endotoxin 

invasion stimulates m6A methylation of intracellular 

inflammatory factors IL-6 and TNF-α transcripts in 

response to myocardial inflammation in sepsis [132, 

133]. Likewise, YTHDF2 recognizes METTL3-mediated 

m6A modification of SLC7A11 mRNA and promotes 

the degradation of SLC7A11 mRNA, ultimately 

leading to ferroptosis in sepsis-induced myocardial 

injury [134]. A recent study reported that METTL3-

induced m6A modification on ferroptosis was involved 

in the pathogenesis of sepsis-associated acute lung 

injury [135]. Conversely, there is a decreased m6A 

level in sepsis-induced acute respiratory distress 

syndrome (ARDS) in vivo and in vitro. Functionally, 

YTHDF1 recognized and stabilized METTL3-mediated 

m6A-modified tripartite motif-containing (Trim59) 

mRNA to protect the vascular endothelium against 

barrier dysfunction and inflammatory responses, which 

inhibits the evolution of ARDS during sepsis [136]. 

FoxO1/NF-κB is a recognized inflammatory signaling 

pathway that mediates the inflammatory response by 

promoting the generation of the inflammasome NLRP3. 

Previous studies have demonstrated that inhibition  

of FTO mediates m6A modification of FoxO1 mRNA 

and reduces its expression, thereby suppressing the 

inflammatory response in septic shock [137]. Moreover, 

inflammatory signaling pathway TLR4/NF-κB is 

negatively regulated by SOCS1 and Spi2a. It is 

understood that SOCS1 and Spi2a mRNA stability as 

well as translation are improved by METTL14-

YTHDF1-dependent m6A methylation to prevent the 

progression of sepsis [19, 138]. Therefore, “writer/ 

eraser-reader-dependent” m6A methylation may be a 

regulator of sepsis progression. It is concluded that  

the alterations in m6A modification during sepsis  

are closely associated with ferroptosis, pyroptosis, 

inflammatory and immune responses. Meanwhile, 

autophagy as a protective mechanism in sepsis and 

more m6A methylation regulating its biological role in 

the pathophysiological processes of sepsis need to be 

elucidated. 

 

The regulatory role of m6A methylation in 

autophagy 
 

The regulatory role of m6A methylation in the 
development of autophagy must be established in  

order to gather evidence for the association between 

m6A methylation-modified autophagy and sepsis, which 
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indicates that this RNA modification contributes 

essentially to the biological processes of autophagy 

initiation, extension, and maturation. Basal autophagy is 

tightly regulated by transcriptional and epigenetic 

mechanisms to preserve intracellular homeostasis. The 

epigenetic regulation of m6A in the autophagic process 

of human diseases has gradually come to light in recent 

studies [139]. In reviewing the literatures, considerable 

evidences were found on the association between m6A 

methylation and autophagy. The regulation of m6A 

methylation on autophagy can be negative or positive, 

which may be related to the different functions of 

modified RNAs during autophagy and the specific 

effect of m6A modification-related proteins on targeted 

RNAs. 

 

The direct regulatory role of m6A methylation 

in autophagy 
 

The m6A modification directly regulates maturity of 

autophagy by affecting the activity of the autophagy-

related proteins. One could argue that this regulation  

is negative. The stimulation of the ULK1 complex, 

which is comprised of ULK1 and the noncatalytic 

subunits FIP200 and ATG13, is the first step in the 

onset of autophagy. ALKBH5 maintained FIP200 at 

unmethylated steady-state levels, and YTHDF2 was 

unable to induce degradation of FIP200 in the 

cytoplasm because it failed to recognize m6A residues 

on the FIP200 transcript, resulting in increased FIP200 

expression and activation of the autophagic pathway 

[140]. FTO-YTHDF2-dependent m6A methylation 

regulates the biological process of autophagy on ULK1 

mRNA through the same mechanism as aforementioned 

[141]. Transcription factor EB (TFEB) is necessary  

for lysosomal biogenesis and autophagy [142, 143]. 

Increased m6A methylation of TFEB mRNA and 

decreased m6A expression level of TFEB mRNA are 

caused by upregulation of METTL3 and down-

regulation of ALKBH5 in ischemic heart disease, which 

together prevent the maturation of autophagy [144]. 

ATGs are a class of regulatory proteins that are 

essential for the formation of autophagosomes. Reduced 

FTO-mediated m6A modification on ATGs has been 

demonstrated to activate autophagy [145]. Moreover, 

when FTO is silenced, YTHDF2 binds to m6A 

methylation-enriched ATG5 and ATG7 transcripts, 

causing mRNA to decay and protein production to 

decline. This prevents the formation of autophagosomes 

[146]. Even though previous studies claimed that up-

regulation of FTO would prevent autophagy from 

maturing [147]. The evidence presented thus far 

supports the idea that at the level of gene metabolism 
where m6A methylation regulates autophagy, the 

“writer” is primarily responsible for catalyzing m6A 

modification of RNA, while the “eraser” maintains the 

RNA in an unmethylated stable state, and it is the 

“reader” that ultimately determines the fate of the RNA. 

Furthermore, METTL3-mediated m6A modification 

reduces ATG7 expression by weakening the stability of 

ATG7 mRNA, the autophagic process is ultimately 

blocked [148]. Taken together, there are no studies on 

negative regulation factors of autophagy in this context, 

but the negativity of m6A methylation directly regulates 

autophagy is primarily reflected in the interaction 

between m6A modification-related proteins that can 

ultimately down-regulate the expression of autophagy-

positive regulation factors. 

 

However, such regulation may also be positive. YTHDF1 

contributed to the translation of ATG2A and ATG14  

by binding to the m6A site of methylated ATG2A  

and ATG14 mRNA, thus facilitating autophagy [149, 

150]. Beclin1 contributes to the elongation of the auto-

phagosome membrane. Several lines of evidence suggest 

that METTL14-YTHDF1-dependent m6A modification 

appears to trigger autophagy activation by stabilizing 

Beclin1 mRNA [151]. Consistently, METTL14-IGF2BPs-

dependent m6A methylation plays the same role on 

Beclin1-mediated autophagy as above [152]. Moreover, 

down-regulated ALKBH5 promotes m6A methylation of 

Beclin1 and LC3 II/I mRNAs, resulting in the high 

expression of Beclin1 and LC3 II/I and activation of 

autophagy [153]. The presence of p62/SQSTM1-droplet, 

an autophagy selective receptor, creates a foundation  

for the formation of autophagosome [154], which may 

be related to recruiting more LC3. Therefore, the nuclear 

m6A methylation of SQSTM1 mRNA, which is mediated 

by YTHDC1, upregulates the expression of SQSTM1 

and increases autophagic flux [76]. The evidences listed 

here suggest that the connection between proteins 

connected to m6A modification, which has the potential 

to up-regulate the expression of autophagy-positive 

regulation factors, is the main way that the positivity  

of m6A methylation directly regulates autophagy is 

manifested. 

 

The indirect regulatory role of m6A methylation 

in autophagy 
 

The m6A modification can also indirectly regulate 

maturity of autophagy by affecting the activity of  

the autophagy-related pathways. Additionally, there  

are both negative and positive correlations between  

m6A alterations and pathways involved in autophagy. 

We preferentially focus on expanding the conversation 

around negative regulation. Autophagy is positively 

regulated by the AMPK pathway in the progression of 

sepsis-induced cardiomyopathy [155]. Previous research 
has shown that m6A methylation inhibits autophagy  

by increasing the translation of protein phosphatase  

1A (PPM1A), an AMPK negatively regulated factor,  



www.aging-us.com 15684 AGING 

which is mediated by YTHDF1, while decreasing  

the stability and expression of calcium/calmodulin-

dependent protein kinase kinase 2 (CAMKK2), an 

AMPK actively regulated factor, which is mediated by 

YTHDF2 [156]. They also found that a decrease in 

METTL3 and METTL14 and an increase in ALKBH5 

in the process [156]. In the same way, our research goes 

further and focuses on the LKB1, an upstream kinase of 

AMPK. WTAP-mediated m6A methylation impaired 

the stability and expression of LKB1 mRNA, which 

prevents the AMPK pathway from being activated  

and inhibits autophagic flux [157]. Additionally, SIRT1 

pathway activates autophagy by deacetylating a  

variety of ATGs. Mechanically, METTL14-dependent 

m6A modification mediates the degradation of SIRT1 

mRNA, which provide a potential possibility for 

curbing autophagy [158]. On the other hand, the 

synergy of tumor protein p53 inducible nuclear protein 

2 (TP53INP2) with LC3 and ATG7 is also critical for 

autophagy activation. FTO induces the decreased m6A 

modification of TP53INP2 transcript as well as high 

expression of TP53INP2, which ultimately promotes 

autophagy [159]. In response to extracellular stress, the 

FOXO3 pathway maintains cellular homeostasis by 

acting on high levels of intracellular ROS to mediate 

autophagy [160]. METTL3-induced m6A methylation 

decreases autophagic flux through enhancing FOXO3 

RNA stability and expression in an YTHDF1-dependent 

manner [161]. Similar to the above, Rubicon is a cellular 

autophagy negative regulator gene that binds to Beclin1 

to inhibit the autophagic pathway; METTL3-YTHDF1-

dependent m6A methylation also decreases autophagic 

flux by enhancing the stability and translation of 

Rubicon mRNA [162]. Initial observations suggest that 

PI3K/AKT/mTOR signaling pathway plays an important 

role in the anti-autophagy effect [163]. IGF2BP3 

promotes translation machinery associated 7 homolog 

(TMA7) mRNA stability and translation through 

recognition of the m6A site on the TMA7 3’-UTR, 

which in turn activates the PI3K/AKT/mTOR pathway 

and ultimately inhibits autophagy [164]. Conversely, 

activating transcription factor 4 (ATF4) negatively 

regulates the mTOR signaling pathway. High expression 

of FTO maintained ATF4 mRNA at unmethylated 

steady-state levels, and YTHDF2 was unable to induce 

degradation of ATF4 in the cytoplasm because it failed 

to recognize m6A residues on ATF4 mRNA transcripts, 

thus increasing ATF4 expression levels and activating 

the mTOR-suppressed autophagic pathway [165]. 

Overall, the m6A modification negatively regulates 

autophagic activity mainly by mediating the expression 

of upstream signaling pathways of autophagy regulators. 

 
Then, we develop the discussion of positive regulation. 

ALKBH5-mediated reduction of m6A methylation 

indirectly inhibits the development of autophagy by 

regulating the expression of GSK3β/mTOR signaling 

pathway [166]. Earlier, study has observed that miR-

199a impairs autophagy in thick heart muscle cells in a 

cell-autonomous way through targeted GSK3β/mTOR 

signal pathway [167]. More precisely, autophagy is 

negatively regulated by the GSK3β/mTOR signal 

pathway [168]. USP13 is known to be an essential 

deubiquitinase that stabilizes ATG5 by deubiquitination. 

Mechanically, USP13’s m6A modification is catalyzed 

by METTL3, and IGF2BP2 promotes USP13 mRNA 

translation by identifying m6A residues on USP13 

transcripts, ultimately triggering autophagy [169]. 

Decapping Protein 2 (DCP2) is degraded as a result  

of METTL3’s induction of m6A methylation, which 

facilitates mitophagy via the Pink1-Parkin pathway 

[170]. 

 

To sum up, a sizable and intricate regulatory  

network of signaling pathways exists upstream of the  

autophagy regulators, and m6A modification in any  

member of this regulatory network will govern the 

bioprocess of autophagy by affecting the expression  

of its downstream signals. As shown in Figure 3,  

the aforementioned empirical findings in the present 

study provide a new understanding of m6A methylation 

regulates autophagy. First, we summarize the regulation 

of m6A methylation in the biological metabolism of 

autophagy as a “writer/eraser-reader-dependent” model, 

where the “writer” is mainly responsible for catalyzing 

the m6A modification of RNA, while the “eraser” 

maintains the RNA in an unmethylated state, and the 

“reader” is ultimately responsible for determining the 

fate of the RNA. Second, two approaches exist for  

m6A methylation to control autophagic activity: directly 

by altering the autophagic regulators themselves, or 

indirectly by altering the upstream signaling pathways 

that mediate the autophagic regulators’ expression. 

Then, m6A modification up-regulates autophagic activity 

by inhibiting the degradation of autophagy-negative 

factors or encouraging the expression of factors that 

promote autophagy. Conversely, it down-regulates auto-

phagic activity. Last but not least, m6A modifications 

have an impact on autophagy regulators and autophagic 

activity by mediating the expression and degradation of 

the regulators’ upstream signaling pathways. 

 

The regulatory role of m6A methylation 

modified autophagy in sepsis 
 

Autophagy is a conserved lysosomal degradation 

pathway that transports substrates (including large 

amounts of cytoplasm, organelles (e.g., mitochondria 

and peroxisomes), aggregation-prone proteins, and 

infectious agent) to lysosomes via double-membrane 

vesicles. The autophagy pathway plays homeostatic 

activities in protein and organelle quality control to 
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maintain mammalian developmental and differentiation 

processes [171]. Although autophagy is generally 

regarded as an adaptable and protective biological 

process, it can be destroying when it occurs in excess  

or has defects. From the focus of studies on the 

biological functions of autophagy genes over the past 

two decades, autophagy specifically targets disease-

causing proteins, intracellular microorganisms, and 

dysfunctional organelles; deficits in these processes that 

cause abnormal accumulations of inflammatory signals 

may be relevant to the pathophysiological mechanisms 

of inflammatory diseases [22]. Research shown that 

inhibiting autophagic flux increases the likelihood of 

non-canonical inflammasome pathways being activated, 

which impairs with the host’s ability to fight off 

infection [172]. Improved autophagic flux-based sepsis 

therapy options are suggested by a clinical investigation 

that reveals impaired autophagic flux in septic patients 

[173]. Our previous basic studies have revealed that 

activation of autophagy is protective of multiorgan 

function in a sepsis model [174, 175]. Then, cognitive 

dysfunction in sepsis-related encephalopathy is ame-

liorated by activation of PPAR-γ signaling pathway-

mediated autophagy in astrocytes, as evidenced by  

high expression of LC3, ULK1, and low expression  

of P62 [176]. Conversely, inhibition of the auto- 

phagy pathway may likewise ameliorate sepsis-induced 

organic depression. In the pathogenesis of sepsis, for 

instance, it has become clear that suppressing autophagy 

mechanisms by targeting SIRT4, MAPKs, and Nrf2 

pathways may be a useful strategy for protecting  

organ function [177–179]. Indeed, it has also been 

demonstrated that autophagy is activated early in the 

onset of sepsis, but that as the condition progresses, 

autophagic activity declines [180, 181]. There are 

opposing views in the existing literature on the crucial 

protective or destructive functions of autophagy in 

sepsis-induced organ damage. We speculate that the 

cause of this phenomenon might be connected to the 

respective alteration of post-transcriptional processes 

that autophagy regulators and their upstream signaling 

pathways go through during sepsis. Needless to say, the 

dynamic change of autophagy during the development 

of sepsis will continue to receive attention in the 

subsequent research. Consequently, the autophagy path-

way appears to be closely involved in the pathogenesis 

of sepsis, and its modulation may be of therapeutic 

value in the clinical context. 

 

 
 

Figure 3. A summary of molecular mechanisms of m6A-modified autophagy on sepsis. Red arrows represent the role of m6A 
methylation in maintaining the stability of autophagy regulators and their upstream signaling pathways; Blue arrows represent the 
degradation of autophagy regulators and their upstream signaling pathways by m6A methylation. 
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According to studies, the most common post-

transcriptional modification is the m6A methylation, and 

the internal modifications it exerts in mRNAs are an 

intricate biological process [182]. Since the relationship 

between m6A methylation and autophagy has been 

elucidated in many human diseases [183], the molecular 

mechanisms by which m6A-autophagy interactions 

induce sepsis have received extensive attention  

from emergency physicians. The dual role of m6A 

modifications in sepsis is strikingly similar to that  

of autophagy, which can both promote and hinder  

the occurrence and development of sepsis [136, 184]. 

Furthermore, the mutual control of m6A modification 

and autophagy is becoming increasingly clear as a result 

of profound autophagy research, and their interactions 

can further affect the efficacy of sepsis therapy. 

Research on the sepsis-associated characteristic gene 

METTL3 has been increasingly prevalent in recent 

years, with the goal of exploring potential epigenetic 

treatment targets for sepsis patients. Under disease-

related circumstances, the expression of METTL3  

target genes can fluctuate, which affects the patho-

physiology of inflammatory diseases by affecting  

the expression of downstream target genes [185]. A  

key pathogenic mechanism in sepsis, PINK1/Parkin-

mediated mitochondrial autophagy, is negatively 

regulated by DCP2 [26]. The latest report indicates that 

the m6A methyltransferase METTL3 can facilitate 

mitochondrial autophagy mediated by the PINK1/ 

Parkin pathway by triggering the m6A methylation  

of DCP2, which results in the degradation of DCP2 

[170]. Additionally, it was discovered that METTL3-

IGF2BP2-dependent m6A modification emerged as  

a contributing factor in the deterioration of sepsis- 

induced acute lung damage [184]. Likewise, such  

m6A modification means promote autophagy in certain 

diseases [186]. Further researches that METTL3-

mediated m6A methylation inhibits the activation  

of autophagy also supported the anti-inflammatory 

function of this modulation in infectious illnesses [187]. 

More precisely, m6A modification leads to impaired 

autophagic flux ending in reduced cellular viability 

during sepsis-induced organ dysfunction [188]. 

Consequently, m6A methylation affects the regulation 

of autophagy during a dysregulated host response  

to infection in addition to being involved in the 

pathophysiology of sepsis and the development of 

autophagy. To summarize, m6A methylation modified 

autophagy may be the potential molecular mechanism 

and have clinical value in sepsis, but more research is 

needed. 

 

CONCLUSIONS 
 

In this review, we present a hypothesis on “writer/ 

eraser-reader-dependent” m6A methylation-modified 

autophagy that may aid in the discovery of novel 

therapeutic targets to reduce morbidity and mortality 

related to organ dysfunction subsequent to sepsis  

and give a theoretical basis for more comprehensive 

management of sepsis patients. Globally, the health of 

people is seriously threatened by the complex series of 

diseases known as sepsis. Over the last few decades, 

we have been working hard to uncover the underlying 

molecular mechanisms in sepsis. As sepsis progresses, 

there is growing evidence that alterations in gene 

expression and epigenetic regulation are related to 

organ dysfunction. It is well known that one of the 

recognized RNA modifications that controls epigenetic 

and gene expression is m6A methylation. In addition, a 

series of investigations have demonstrated that m6A 

methylation regulates a variety of biological processes 

in sepsis. On the other hand, m6A methylation plays a 

crucial role in the post-transcriptional steps of genes, 

affecting the stability, export, splicing and translation 

of the transcripts involved in the autophagic process. 

Previous studies have also confirmed the importance  

of maintaining the orderly and complete autophagic 

process in the prevention of sepsis. Unfortunately,  

there is only limited evidence elucidating a potential 

relationship between m6A-modified autophagy and 

sepsis. For example, a recent study revealed that 

METTL3 mediates the m6A methylation of SIRT1 

mRNA, which suppresses SIRT1 protein expression 

and autophagic flux and eventually results in sepsis-

induced acute lung injury [188]. In conclusion, the 

novel regulatory model of m6A methylation modi-

fication proposed in this paper provides an innovative 

research direction for the therapies of sepsis. 

 
The following are some of the key points that  

needs to be covered in this article: (1) A gene’s whole 

post-transcriptional biological process is impacted by 

m6A methylation, and each of the proteins involved  

in this modification has a specific function in this 

process. By summarizing the current evidence on m6A 

modification-related proteins acting on the metabolism 

of RNA, we emphasize the importance of synergistic 

interactions among m6A modification-related proteins in 

regulating m6A methylation during the pathophysiology 

of disease. (2) We suggest a novel m6A modification 

model-“writer/eraser-reader-dependent” m6A methy-

lation (Figure 2), and thoroughly analyze the specific 

molecular mechanisms by which it regulates sepsis. (3) 

At the level of gene metabolism where m6A methylation 

regulates autophagy, the “writer” is mainly responsible 

for catalyzing the m6A modification of RNA, while  

the “eraser” maintains the RNA in an unmethylated 

state, and the “reader” is ultimately responsible for 

determining the fate of the RNA. (4) In order provide 

new insights into the regulatory role of m6A modi-

fications throughout the autophagic process, we have 
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meticulously collated relevant potential mechanisms 

between m6A modifications and autophagy, including 

direct evidence for particular molecular mechanisms  

and indirect evidence for pertinent signaling pathways 

(Figure 3). (5) We speculate that the pathophysiology  

of sepsis may also be influenced by the putative 

molecular mechanisms between m6A modification and 

autophagy. However, there is still no clear evidence for 

the effect of m6A-modified autophagy on sepsis, and 

further exploration of potential links between the listed 

mechanisms is required. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Table 
 

Please browse Full Text version to see the data of Supplementary Table 1. 

 

Supplementary Table 1. Effects of m6A on RNA metabolism. 

 


