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INTRODUCTION 
 

Abdominal aortic aneurysm (AAA) is a fatal vascular 

disease with a focal dilation in the abdominal aorta, 

which might lead to vascular rupture associated with a 

mortality rate of 90 to 100% [1–3]. The abdominal 

ultrasound imaging is the gold standard for AAA 

diagnosis which presents with dilated aorta diameter over 

50% than the normal [4], however, unruptured aneurysms 

are usually asymptomatic in most AAA patients, and it is 

very difficult to detect the presence of AAA at an early 

stage. Although some common risk factors of AAA have 

been identified, such as smoking, hypertension, family 

history, male gender and age [5], these are also closely 

associated with other cardiovascular diseases [6]. 

Therefore, it is urgent to find some specific diagnosis 

biomarkers for the early stage of AAA. 

 

Pyroptosis, a recently discovered pro-inflammatory mode 

of programmed cell death, is mediated by the caspase 

family and might play a pivotal role in the dysfunction of 

vessel smooth muscle cells (VSMCs) [7]. Suppression of 
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ABSTRACT 
 

Pyrocytosis is involved in the development of abdominal aortic aneurysm (AAA), we explored the pyrocytosis-
related hub genes in AAA and conducted a diagnostic model based on the pyrocytosis-related genes score 
(PRGs). A total of 2 bulk RNA-seq (GSE57691 and GSE47472) datasets and pyrocytosis-related genes were 
integrated to obtain 24 pyrocytosis-related different expression genes (DEGs). The LASSO Cox regression analysis 
was conducted to filter out 7 genes and further establish the nomogram signature based on the PRGs that 
exhibited a good diagnosis value. Weighted gene co-expression network analysis (WGCNA) established 14 gene 
modules and further identified 6 hub genes which were involved in the regulatory process of pyrocytosis in AAA. 
At the single cell level, we further identified 3 immune cells were highly associated with the pyrocytosis process 
in AAA. Finally, the cell-cell communication demonstrated that fibroblasts and endothelial cells and myeloid cells 
maintained close communications. Here, we identified the dysfunctional expressed pyrocytosis-related genes 
and immune cells in AAA, which provide a comprehensive understanding of the pathogenesis of AAA. 
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pyroptosis by Gasdermin D pathways could prevent 

AAA formation due to inhibiting the pro-inflammatory 

phenotype in VSMCs [8]. Mounting evidence shows the 

pyroptosis-related genes share an overlapping pathogenic 

effect which leads to the chronic inflammation and 

VSMCs remodeling in AAA, such as the Nod-like 

receptor family pyrin (NLRP) 3 [9, 10], the interleukin 

(IL)-1β [11] and caspase family [12]. Recently, inhibiting 

the activation of NLRP3 inflammasome by the potential 

inhibitor MCC950 which could prevent the aortic 

destruction and aneurysm in mice [13]. However, the role 

of these pyroptosis molecules in AAA is not fully 

understood. Therefore, it is necessary to explore the 

application value of pyroptosis in AAA. 

 

Single-cell (sc) RNA sequencing is an experimental 

approach to investigate the differences in gene expression 

and cell progression by generating transcriptomic profiles 

of individual cells [14, 15]. Some researchers performed 

scRNA sequencing that identified the major cell types, 

such as VSMCs and fibroblasts and macrophages, might 

contribute differently to AAA pathogenesis [16]. As 

these studies were conducted based on small samples and 

lacked the ability to further explore the potential 

molecular function. Moreover, the transcription factors 

(TFs) and downstream signaling pathways which play 

important roles in AAA were urgently needed to clarify. 

 

Here, we identify the dysfunctional expressed 

pyrocytosis-related genes and immune cells in AAA, 

which provide a comprehensively understanding about 

the pathogenesis of AAA. 

 

MATERIALS AND METHODS 
 

Data processing 

 

Two public abdominal aortic aneurysm (AAA) RNA 

chip datasets, GSE57691 [17] and GSE47472 [18], were 

obtained from the Gene Expression Omnibus (GEO) 

database (http://www.ncbi.nlm.nih.gov/geo). Following 

the standardization, 59 Homo Sapiens samples in 

GSE57691 (10 normal, 49 AAA samples) and 22 Homo 

Sapiens samples in GSE47472 (8 normal and 14 AAA 

samples) were obtained. Individual genes in the 

GSE57691 and GSE47472 datasets were annotated by 

the platform of GPL10558 Illumina HumanHT-12 V4.0 

expression beadchip. The gene information of these 

samples was provided in the Supplementary Table 1. 

 

Downloading single cell RNA-seq data 

 

Single-cell RNA-Seq data of vascular wall of 2 

transplant donors and 4 AAA patients were downloaded 

from the GEO database (GSE166676). Low-quality data 

were excluded using Seurat as described above. 

Relevant gene information of these samples was 

provided in Supplementary Table 1. 

 

Downloading pyroptosis-related genes data 

 

The key genes which may involve in the process of 

pyroptosis were obtained from the Molecular Signatures 

Database (MSigDB) [19] and the previous pyroptosis-

related research [20]. After removing overlapping genes, 

52 pyroptosis genes were included (Supplementary 

Table 2). 

 

Identification analysis of differentially expressed genes 

 

To identify potential mechanisms of action and related 

biological characteristics and pathways in AAA, we 

used “sva” R Package [21] for batch correction to 

prevent the batch effect from disrupting downstream 

analyses in GSE57691 and GSE47472. Then the 

combined data set was standardized by “limma” R 

Package, and the AAA combined datasets was obtained. 

Principal component analysis (PCA) was performed on 

the expression matrix of the datasets in order to remove 

the batch effect from the AAA combined datasets. 

 

Next, screened with log-fold change (| logFC |) >0.5 and 

adjusted P < 0.05, the differentially expressed genes 

(DEGs) between the AAA group and the normal group 

were identified by the “limma” R Package. The | logFC 

| >0.5 and adjusted P < 0.05 were up-regulated genes 

and the | logFC |<−0.5 and adjusted P < 0.05 were 

down-regulated genes. In order to clarify the expression 

of pyrogenic-related genes in AAA patients, the 

“RCircos” R Package [21] was used to demonstrate the 

localization of these genes in chromosomes. All 

pyroptosis-related genes expression levels in the 

samples were presented as a heat map by “pheatmap” R 

Package. Statistical significance of DEGs in AAA and 

normal groups was determined by Wilcoxon-test. 

 

Gene function and pathway enrichment analysis 

 

The gene ontology (GO) and Kyoto Encyclopedia of 

Genes and Genomes (KEGG) pathway enrichment 

analysis were performed by the “clusterProfiler” R 

Package (v4.0) [22] to demonstrate the function and 

molecular pathways of DEGs [23]. We used the P-value 

< 0.05 and false discovery rate (FDR) <0.05 to 

determine statistically significant enrichment, and the 

statistical analyses were conducted by Benjamini-

Hochberg procedure (B-H). 

 

Correlation analysis 

 

In order to further explore the correlation among 

pyroptosis-related genes, we performed a Spearman 

http://www.ncbi.nlm.nih.gov/geo
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correlation analysis at each gene expression level and 

created a heatmap to visualize the correlation by the 

“corrplot” R Package. The correlation coefficient and 

P-values were illustrated using “ggplot2” R Package 

shown as a scatter plot. A P value < 0.05 and 

|correlation coefficient| > 0.3 were considered 

significantly correlative. The |correlation coefficient| 

between 0.3 with 0.5 means weak correlation, between 

0.5 with 0.8 means moderate correlation, and greater 

than 0.8 means strong correlation. 

 

Diagnosis model construction 

 

To obtain diagnostic models for pyroptosis-related 

genes in AAA combined datasets, the univariate Cox 

regression was performed with parameter family = 

“binomial” by using the “glm” R Package. By 

building a penalty function, which simultaneously sets 

certain coefficients to zero and compresses some 

coefficients, the least absolute shrinkage and selection 

operator (Lasso) technique creates a more refined 

model. Next, the Lasso regression analysis was 

performed to screen for novel pyroptosis-related AAA 

biomarkers. The risk score of pyroptosis was 

calculated according to the level of gene expression 

and its related multivariate regression coefficient, the 

formula is as follows: 

 

 
riskScore ( )
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i

i

i

Coefficient hub gene

mRNA Expression hub gene
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The AAA patients were further divided into the high 

pyroptosis-related gene score (PRGs) group and low 

PRGs group according to the median value of risk score 

of pyroptosis. The Nomogram is a graph that shows the 

functional connection between several independent 

variables in a rectangular coordinate system using a 

collection of discontinuous line segments. The “rms” R 

Package (https://cran.r-project.org/web/packages/rms/) 

was used to construct the nomogram model [24]. A 

graphical analytic tool called the Receiver Operating 

Characteristic (ROC) Curve may be used to choose the 

best model, remove the second-best model, or establish 

the optimum threshold within the same model. The 

composition technique reflects the correlation between 

sensitivity and specificity, and the ROC curve is a 

complete indication of continuous variables that 

represent both sensitivity and specificity [25]. The area 

under the ROC curve (AUC) of 0.9 to 1.0 is considered 

excellent, 0.8 to 0.9 is very good, 0.7 to 0.8 is good, 0.6 

to 0.7 is sufficient, 0.5 to 0.6 is bad, and less than 0.5 is 

considered not useful. The “pROC” R Package was 

used to plot the ROC curves of both pyroptosis-related 

genes and PRGs with AAA. Then, the calibration 

curves were used to evaluate the predictive value of the 

nomogram. Decision Curve Analysis (DCA) is an 

evaluative clinical prediction model for diagnostic tests 

and molecular markers [26]. Finally, the “ggDCA” R 

Package was used to a draw DCA image to evaluate the 

accuracy and discrimination of the logistic regression 

model. 

 

Gene set enrichment analysis 

 

Gene Set Enrichment Analysis (GSEA) is a method 

utilized to evaluate the distribution pattern of genes 

within a pre-defined gene set that is rated by their 

relationship to phenotype in order to ascertain how 

much each gene contributes to the phenotype of a 

disease [27]. Accordingly, the AAA Combined Datasets 

were stratified into either the low-risk (low PRGs score) 

group or the high-risk (high PRGs score) group, and the 

DEGs from the low-risk group and the high-risk group 

were calculated by “limma” R Package, then ranked 

according to their | logFC | value. The potential 

biological mechanisms of the DEGs were determined 

using the “clusterProfiler” R Packages. The number  

of calculations was 1000 and the number of genes  

in each gene set was 10 to 500. The P-value correction 

method was Benjamini-Hochberg (BH). The 

“c2.cp.v7.2.symbols.gmt” gene datasets using GSEA 

that were downloaded from the Molecular Signatures 

database (MSigDB; https://www.gsea-msigdb.org/ 

gsea/msigdb/index.jsp) [28], and a P-value < 0.05 and 

FDR <0.05 of screening criteria was considered for 

significant enrichment. 

 

Gene set variation analysis 

 

Gene set variation analysis (GSVA) was used to 

calculate the relative enrichment of gene signatures  

of matrix of expression from the AAA Combined 

Datasets based on the reference gene sets of 

“c2.all.v7.4.symbols.gmt” that were downloaded from 

the Molecular Signatures database (MSigDB; 

https://www.gsea-msigdb.org/gsea/msigdb/index.jsp), 

and the functional differences of enriched pathways in 

GSVA enrichment analysis results between different 

risk groups were calculated. A P < 0.05 was considered 

significant. 

 

Weighted co-expression network analysis 
 

We conducted the weighted co-expression network 

analysis (WGCNA) by “WGCNA” R Package on AAA 

patients from the integrated GEO datasets with a 

standard deviation of expression > 0 for further 

analysis, excluding outlier data. Different branches of 
the cluster tree represent different gene modules, 

different colors represent different modules, and then 

the module significance is calculated. 

https://cran.r-project.org/web/packages/rms/
https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
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Here, WGCNA was used as the input of 5000 absolute 

median difference genes, the minimum number of 

module genes was set as 30, softpower was set as the 

best soft threshold of 8, module combined shear height 

was set as 0.3, and the minimum distance was set as 0.2 

to measure the correlation between high PRGs group and 

low PRGs group with different modules. The genes in 

each module were also recorded, and the genes in each 

module were regarded as module feature genes. After we 

selected the module of interest based on the correlation 

value, all genes within the module were identified as 

expressed genes highly associated with pyroptosis. 

 

Protein-protein interaction network 

 

Protein-protein interaction network (PPI network) is the 

interaction of individual proteins, which is involved in 

biological signal transmission and gene expression 

regulation in energy metabolism and cell cycle 

regulation. We used the NetworkAnalyst database 

(https://www.networkanalyst.ca/), a database searching 

for interactions between known transcription factors and 

target genes and proteins and predicted proteins, to 

construct a transcription factor-target gene interaction 

network of pyroptosis hub genes, which was visualized 

by Cytoscape (version 3.8.1) [29]. 

 

Tissue-infiltrating immune cells analysis 

 

CIBERSORTx is a web tool that evaluates the relative 

proportions of immune cells in tissue using a 

deconvolution algorithm [30]. The high and low risk 

group matrix data of the AAA integrated dataset were 

uploaded to the CIBERSORTx website. Combined with 

the patient's immune cell characteristic gene matrix, the 

data with immune cell enrichment scores greater than 

zero were screened, and the specific results of immune 

cell infiltration abundance matrix were finally obtained 

and displayed [31]. The contents of different immune 

cells in samples from the high and low risk groups of 

the AAA integrated dataset are presented by heatmaps 

and boxplots. The correlation between immune cells 

and pyroptosis in different risk groups was calculated 

by Spearman correlation analysis, and the “pheatmap” 

R Package was used to create a correlation heat map. 

 

Construction of molecular subtypes based on 

pyroptosis-related genes 

 

Consensus clustering is a consensus clustering 

algorithm based on resampling, which determines the 

number of members and subgroups and verifies the 

rationality of clustering [32]. Unsupervised clustering 
analysis was performed using the “Consensus-

ClusterPlus” R Package based on the AAA Combined 

datasets [33]. Consensus clustering method was used to 

identify different disease subtypes of AAA patients 

based on pyroptosis-related genes. In addition, the 

analysis included 1000 iterations to ensure the stability 

of the classification. 

 

ESTIMATE immunoactivity analysis 

 

In this study, we used the “ESTIMATE” R Package to 

evaluate the different sample immune activities based 

on the AAA integrated dataset [34]. ESTIMATE 

(Estimation of STromal and Immune cells in MAlignant 

Tumour tissues using Expression data) calculates the 

proportion or abundance of immune cells, stromal cells 

and tumor cells related to the tumor microenvironment. 

We calculated the immune and stromal scores of all 

patients based on the ESTIMATE algorithm, and then 

compared the differences in the immune scores of AAA 

patients between the high and low risk groups. 

 

Single cell RNA-seq data processing 

 

The single-cell dataset GSE166676 used the count  

data of original unique molecular identifier (UMI).  

Data preprocessing, quality control, normalization, 

dimensionality reduction and clustering were processed 

using the “Seurat” R package (https://cran.r-project.org/ 

web/packages/Seurat/index.html). The quality control 

(QC) process of scRNA-seq data was performed using 

“Seurat”. The gene expressed in <3 cells, the cell 

expressing <200 genes and the sample having <6000 

nFeature RNA would be removed. Also, cells 

expressing >25% of genes derived from the 

mitochondrial genome had been eliminated due to a risk 

of low quality. The “harmony” R Package is used to 

integrate data across samples. Single cell group 

nomenclature was performed using signature genes 

from published literature and manual annotation. 

 

Cell–cell interactions 

 

CellphoneDB was employed to explore the cell–cell 

interactions between AAA patients and normal of single 

cell dataset GSE166676 [35]. The expression matrix 

and annotation files were constructed and imported into 

CellphoneDB software. Finally, the communication 

molecules and the communication strength and 

significance of the communication molecules were 

obtained. 

 

Single-cell regulatory network inference and 

clustering analysis 
 

Single-cell regulatory network inference and clustering 
(SCENIC) analysis was performed by cell subtype-

specific transcription factors using the “SCENIC” R 

Package [36]. By constructing the expression matrix 

https://www.networkanalyst.ca/
https://cran.r-project.org/web/packages/Seurat/index.html
https://cran.r-project.org/web/packages/Seurat/index.html
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and annotation files, SCENIC software was imported to 

construct the co-expression network and the trans-

cription factor-target gene network, and the activity of 

transcription factor Regulons was calculated. 

 

Statistical analysis 

 

All data processing and analysis were performed using R 

software (version 3.6.1). When comparing continuous 

variables between two groups, the independent Student’s 

t-test for normally distributed variables, and the Mann-

Whitney U test for non-normally distributed variables. 

Chi-square test or Fisher exact test was used to compare 

and analyze the statistical significance between the two 

groups of categorical variables. The drawing of the 

nomogram is based on the rms R Package. P < 0.05 was 

considered statistically significant. 

 

Availability of data and materials 

 

All data generated or analyzed in this study are included 

in this article. Other data that are relevant to this article 

are available from the corresponding author upon 

reasonable request. 

 

RESULTS 
 

The flow chart of our study is shown in Supplementary 

Figure 1. 

 

To remove the batch effect of AAA combined datasets 
 

First, the “sva” R package was used to normalize and 

remove batch effects from the abdominal aortic aneurysm 

(AAA) Datasets GSE5296 and GSE47681 to obtain 

AAA Combined Datasets. Distribution boxplots were 

used to compare the total gene expression values before 

(Supplementary Figure 2A) and after (Supplementary 

Figure 2B) data processing, which confirmed that gene 

expression values were normalized between samples of 

the dataset. Next, principal component analysis (PCA) 

was used to compare global gene expression signatures 

between before (Supplementary Figure 2C) and after 

removal of batch effects (Supplementary Figure 2D), 

which suggests that the batch effect of samples in AAA 

Combined Datasets was eliminated. 

 

Differentially expressed genes and enrichment 

analysis of AAA 
 

Total 835 genes were obtained according to the filtering 

criteria (| logFC | > 0.5 and adjusted p < 0.05), and 261 

genes were significantly upregulated and 574 genes were 
significantly downregulated (Supplementary Table 3), and 

these genes were displayed by a volcano graph 

(Figure 1A). The most significant 30 up-regulated genes 

and 30 down-regulated genes were selected and used 

“pheatmap” R package to display as heatmap (Figure 1B). 

 

We further analyzed the relationship between DEGs and 

AAA from the aspects of biological processes, molecular 

functions, cell components and biological pathways. The 

results of GO analysis showed DEGs were mainly 

enriched in the energy production process, such as the 

ATP synthesis coupled electron transport, mitochondrial 

ATP synthesis coupled electron transport and positive 

regulation of defense response respiratory electron 

transport chain (Figure 1C). The KEGG pathway was 

enriched for non-alcoholic fatty liver disease, oxidative 

phosphorylation pathway and chemical carcinogenesis-

reactive oxygen species (Figure 1D). 

 

Differential expression and correlation analysis of 

pyroptosis-related genes in AAA patients 

 

To demonstrate the role of pyroptosis in the 

pathogenesis of AAA, we took the intersection of DEGs 

from the AAA combined database and pyroptosis-

related genes to obtain 24 overlapping genes (Figure 

2A), and the location was further annotated using the 

“RCircos” R package. The classic pyroptosis regulatory 

genes, such as the NLRP3 is located on chromosome 1, 

IL-1β and CASP8 on chromosome 2, and TNF on 

chromosome 6 (Figure 2B). 

 

The results of the specific differences of 24 overlapping 

genes were shown by box plots, among them 15 genes, 

such as GSDMB and IL-1β were significantly up-

regulated, and 9 genes such as PLCG1 and GSDMD 

were significantly down-regulated in AAA group 

(Figure 2C). 

 

To explore the expression relationships between 

pyroptosis-related genes, the expression matrices from 

AAA Combined Datasets were used to make correlation 

analysis and the results were shown by heatmaps 

(Figure 2D). The results showed that there were positive 

correlations between a variety of pyroptosis-related 

genes, such as CASP6, GPX4, CHMP2B and TNF, IL-

6, IL-18 (P < 0.05, r > 0). In contrast, the NLRP1 was 

negatively correlated with CASP6, GPX4, and 

CHMP2B (P < 0.05, r < 0) and the GSDMC was 

negatively correlated with CASP6, GPX4, CHMP2B 

and CHMP4A (P < 0.05, r < 0). We also observed a 

positive correlation between expression of CHMP2B 

and CHMP4A (r = 0.67, P < 0.05), IL-1β and NLRP3 (r 

= 0.6, P < 0.05), IL-18 and GSDMB (r = 0.63, P < 0.05) 

in the AAA Combined Datasets (Figure 2E–2G); IL-6 

and GPX4 (r = −0.57, P < 0.05), CASP6 and GSDMC 
(r = −0.65, P < 0.05), CHMP4A and NLRP7 (r = −0.52, 

P < 0.05) were negatively correlated in the AAA 

Combined Datasets (Figure 2H–2J). 
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Construction of a nomogram of pyroptosis-related 

genes to predict AAA 

 

To determine the diagnostic value of pyroptosis-related 

genes in the AAA Combined Datasets, the LASSO 

logistic regression was performed based on the 24 

overlapping DEGs for gene screening. Then cross-

validation was performed (Supplementary Figure 3A), 

and the goal was to select model genes corresponding to 

λ with as few variable characteristics and as little error 

 

 
 

Figure 1. Visualization of the DEGs in AAA Combined Datasets. (A) Volcano map of differential expression gene analysis of the 

difference between the AAA group and the CON group. Red represents significantly up-regulated genes and blue represents significantly 
down-regulated genes. (B) Thermogram of the expression values of 30 up-regulated and 30 down-regulated genes in the AAA group 
compared with the CON group. Red means high gene expression, blue means low gene expression. (C, D) Bubble map of differential gene 
GO functional enrichment analysis (C) and KEGG pathway enrichment (D). Bubbles represent the number of enriched genes, the larger the 
enrichment genes, the darker the color, the more significant the P-value, and the darker the color, the more significant the difference. 
Abbreviations: AAA: abdominal aortic aneurysm; CON: control; GO: Gene Ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes. 
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Figure 2. Pyroptosis-related gene expression in AAA Combined Datasets. (A) Venn diagram of pyroptosis-related genes and DEGs. 

(B) Chromosomal mapping of pyroptosis-related genes from overlapping genes. (C) Box plot of pyroptosis-related genes expression in the 
AAA and Con groups. (D) Heatmap of pyroptosis-related in combined GEO Datasets. *P < 0.05, P < 0.01, ***P < 0.001, the red represents 
positive correlation, blue represents the negative correlation. Scatter plot of the correlation between CHMP2B and CHMP4A (E), IL-1β and 
NLRP3 (F), IL-18 and GSDMB (G), IL-6 and GPX4 (H), CASP6 and GSDMC (I), and CHMP4A and NLRP7 (J) in AAA Combined Datasets. 
Abbreviations: AAA: Abdominal aortic aneurysm; CON: Control; DEG: differential gene expression. 
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as possible. We identified 7 critical genes as important 

biomarkers of AAA based on the 24 overlapping DEGs 

(Supplementary Figure 3A, 3B). These genes including 

GSDMB, GSDMD, NLRP3, PLCG1, TNF, IL-1β and 

SCAF11 were significantly associated with the 

incidence of AAA, and the AUC according to the ROC 

curve was from 0.0.729 to 0.818 (Supplementary Figure 

3C–3I), which suggests these genes had a highly 

predictive value. 

 

The pyroptosis-related genes score (PRGs) was 

calculated according to the scores corresponding to the 

gene expression value, and we combined the PRGs to 

construct a nomogram model to diagnosis for AAA 

(Supplementary Figure 3J). The nomogram model has 

the highest diagnostic accuracy with an AUC value 

0.994 (Supplementary Figure 3K). A calibration plot 

was used to visualize the performance of the 

nomogram, which confirmed the performance of our 

model (Supplementary Figure 3L). Then, both the 

decision curve analysis (DCA) and the clinical impact 

curve (CIC) were used to confirm the findings 

(Supplementary Figure 3M, 3N). 

 

Identification of key pyroptosis-related gene 

modules via WGCNA 

 

To identify the key pyroptosis-related genes associated 

with the AAA patients, co-expression network analysis 

was performed via WGCNA using the AAA combined 

database. We divided AAA patients into a high PRGs 

group and a low PRGs group based on the previously 

constructed prediction model. First, we clustered and 

labeled the high PRGs group and low PRGs group, and 

determined the optimal number of modules by setting a 

screening criterion of 0.8 based on the scale-free 

topology fitting index and the average connectivity 

degree (Figure 3A–3C). Then, we set the module 

merging shear height to 0.25, and merge the modules 

whose module merging shear height is lower than 0.25 

(Figure 3D). Finally, based on the expression patterns 

of module genes and the grouping information of 

different groups, we obtained correlations between 14 

modules and groups with high or low risk of PRGs 

(Figure 3E). 

 

Functional enrichment analysis of pyroptosis module 

and identification of the hub pyroptosis genes 

 

Next, a total of 14 modules (excluding useless modules: 

MEgrey) which met differential expression criteria (P < 

0.05, | COR | ≥ 0.3) including the black (| COR | = 0.33, 

P < 0.01), magenta (| COR | = 0.48, P < 0.01) and dark 
red (| COR | = 0.34, P < 0.01) were selected for 

subsequent analysis (Supplementary Figure 4A). The 

functional analysis of hub genes was also performed 

and found that the Magenta module genes were mainly 

enriched in biological processes such as neutrophil 

migration (Supplementary Figure 4B), the black module 

genes were mainly enriched in biological processes 

such as DNA binding and MiRNA metabolism 

(Supplementary Figure 4C) and the dark red module 

genes were mainly enriched in biological processes 

such as mitochondrial respiration (Supplementary 

Figure 4D). 

 

Next, total 6 overlapping genes between the differential 

expression modulars and pyroptosis-related genes were 

obtained as hub genes, including CHMP4B, CYCS, 

GSDMB, GZMB, PLCG1 and IL-6 (Supplementary 

Figure 4E). The transcriptional factors (TF)-gene 

interaction network was constructed using the 

NetworkAnalyst website [37], and the results showed 

these hub genes were mainly regulated by some target 

TFs, such as the TEAD1, MAFK, and FOXA3, etc. 

(Supplementary Figure 4F). 

 

Functional and enrichment analysis in DEGs from 

high PRGs group and low PRGs group 

 

The GSVA was performed to determine the difference 

of biological function between the high PRGs group and 

low PRGs group. After obtaining the pathway activity 

matrix, the “limma” R package was used for differential 

analysis (Supplementary Table 4), and the top 30 

pathways in each group were selected and displayed as 

a heatmap (Supplementary Figure 5A) and a bar graph 

(Supplementary Figure 5B). In addition, the results  

of GSEA showed that intestinal immune network for 

IgA production, cell adhesion molecules cams, 

complement and coagulation cascades, cytokine-

cytokine receptor interaction, oxidative phosphorylation 

and spliceosome pathways were enriched in the 

high PRGs group compared with the low PRGs 

group (Supplementary Table 5 and Supplementary 

Figure 5C–5H). 

 

The differential characteristics in immune infiltration 

between the high PRGs group and low PRGs group 

 

Recent researches showed the excess immune cells 

infiltration was involved in the pathogenesis of AAA 

[38, 39]. In order to demonstrate the difference of 

immune-mediated infiltration between the high PRGs 

group and low PRGs group, the CIBERSORTx 

algorithm was used to calculate the infiltration 

abundance of immune cells in two group samples 

(Supplementary Table 6). Here, a total of 22 types of 

immune cells in the samples were identified and the 
results of immune infiltration abundance were displayed 

by bar graphs (Figure 4A) and heatmaps (Figure 4B). In 

addition, there is also a certain correlation between 
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different immune cells (Figure 4C). Besides, the 

abundance of DC.resting was significantly up-regulated 

in the high PRGs group, and the T.cell.CD4.naive was 

significantly down-regulated (Figure 4D). 

We had previously identified 7 critical genes as 

important biomarkers of AAA from the 24 overlapping 

pyroptosis-related DEGs. Here, we also found a certain 

correlation between the abundance of immune-mediated 

 

 
 

Figure 3. Analysis of the weighted co-expression network in high and low PRGs. (A) Presentation of sample grouping results in 
high and low PRGs from the AAA combined datasets. (B, C) Sample module screening threshold scale-free networks in high and low PRGs 
from the AAA combined datasets displaying scale-free topological fit index (B) and average connectivity degree (C). (D) Presentation of 
module aggregation in high and low PRGs from the AAA combined datasets. (E) Presentation of correlation analysis between cluster 
modules and different groups in high and low PRGs from the AAA combined datasets. Abbreviations: WGCNA: weighted correlation 
network analysis; AAA: abdominal aortic aneurysm. 
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Figure 4. Analysis of differences in immune characteristics between high and low PRGs groups based on the AAA combined 
datasets. (A) Bar graph of abundance of immune cell infiltration between high and low PRGs groups. (B) Heatmap of the abundance of 

immune cell infiltration between the high and low PRGs groups. Red representing high cell abundance and blue representing low cell 
abundance. (C) Correlation heatmap of infiltration abundance of different immune cells. Red represents positive correlation and blue 
represents negative correlation. (D) Box plot of immune cell infiltration abundance between the high and low PRGs groups. Red represents 
the high PRGs group and blue represents the low PRGs group. (E) Heatmap of correlation between pyroptosis biomarker and infiltration 
abundance of different immune cells. Red represents positive correlation and blue represents negative correlation. (F–K) Scatter plot of 
correlation between pyroptosis biomarker and abundance of different immune cell infiltration. PLCG1 was significantly correlated with 
B.c.naive (F). There was a significant positive correlation between GSDMB and NK.cells.activated (G). The SCAF11 was significantly positively 
related to T.cell.CD4.Memory. Resting (H). The GSDMD was negatively correlated with Mast.cells.activaetd (I). The SCAF11 was negatively 
correlated with Macrophage.M0 (J). There was a significant negative correlation between GSDMB and T.cal.GMMA.delta (K). *P < 0.05, **P 
< 0.01, ***P < 0.001. Abbreviation: PCA: Principal Component Analysis. 
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infiltration with these AAA biomarkers which were 

displayed as heatmaps (Figure 4E), such as the PLCG1 

was a positive correlation with the B.cell.naive (r > 0, 

P < 0.05), the GSDMB was positive correlation with the 

NK.cells.activated (r > 0, P < 0.05) and the SCAF11 was 

positive correlation with the T.cell.CD4.memory.resting 

(r > 0, P < 0.05). In contrast, the GSDMD was negative 

correlation with the Mast.cells.activaetd (r < 0, P < 

0.05), the SCAF11 was negative correlation with the 

Macrophage.M0 (r < 0, P < 0.05) and the GSDMB was 

negative correlation with the T.cell.gmma.delta (r < 0, 

P < 0.05) (Figure 4F–4K). 

 

Construction of the specific pyroptosis-associated 

AAA subtypes 

 

We used the “ConsensusClusterPlus” R package to 

identify the different AAA subtypes based on the 24 

overlapping pyroptosis-related DEGs. Results of 

consensus cluster analysis were displayed by the 

cumulative distribution function (CDF) plot and the 

AUC (Supplementary Figure 6A, 6B), and we found the 

optimal k value is 2 as the number of clusters for 

unsupervised clustering (Supplementary Figure 6C–6E). 

Then, 2 AAA disease subtypes (cluster1 and cluster2) 

were performed for further analysis, which had 37 

samples and 26 samples, respectively. The principal 

component analysis (PCA) of the expression matrices 

from the 2 AAA disease subtypes was conducted and 

found the 2 disease subtypes were significantly separate 

(Supplementary Figure 6F). 

 

The differences of immune infiltration in pyroptosis-

related AAA subtypes 

 

The expression of 24 overlapping pyroptosis-related 

DEGs from 2 AAA subtypes based on the AAA 

Combined database was displayed by “pheatmap” R 

Package, and found that 11 genes had remarkable 

difference in expression (Supplementary Figure 7A). 

The GSDMB, IL-1β, NLRP3, IL-6, NLRP1, IRF2 and 

GSDMC were upregulated in the cluster2, and SCAF11, 

GPX4, PYCARD and CASP6 were downregulated in 

the cluster2. The results of immunocompetence analysis 

showed that the cluster2 had a higher immune score, 

stronger interferon response, more costimulatory 

molecule expression and HLA compared with the 

cluster1, which suggests that the AAA disease subtypes 

had different characteristics of immune infiltration 

(Supplementary Figure 7B). 

 

Single-cell quality control and identification of cell 

subsets 

 

To further explore which cells were involved in the 

development of AAA based on the pyroptosis-related 

genes, the single-cell dataset GSE166676 was 

downloaded. After filtration based on the gene 

features, gene counts and fraction of mitochondrial 

genes, a total of 13716 single cells were analyzed 

(Supplementary Figure 8A–8C). Thereafter, we 

identified 2000 genes with high variability for PCA 

dimensions reduction (Supplementary Figure 8D). The 

uniform manifold approximation and projection 

(UMAP) was conducted following gene expression 

normalization to reduce the dimensionality (Sup-

plementary Figure 8E–8G). 

 

As shown in Figure 5A, we clustered the cells into 24 

clusters based on the “FindNeighbors” and 

“FindClusters” function in “Seurat” R Package. 

According to the marker gene, we identified 16 cell 

types including the T cells, B cells, endothelial cells, 

fibroblasts, myeloid cells, plasmacytoid dendritic cells 

cells (pDC), cycling cells, erythrocyte, ductal cells, 

smooth muscle cells (SMC), plasma cells, epithelial 

cells, acinar cells, mast cells, natural killer T cells and 

CALML5+ cells (Figure 5B, 5C). The proportion of cell 

subclusters in each patient revealed that the AAA group 

had an increased proportion of T and B cells and a 

decreased proportion of epithelial cells compared with 

the control group, which suggests that AAA had excess 

immune cell infiltrations (Figure 5D, 5E). 

 

Identification and enrichment analysis of T 

lymphocyte subclusters in AAA 

 

Because the proportion of T lymphocyte, myeloid cells 

and B lymphocyte was significantly different between 

the AAA and CON groups, the T lymphocytes, 

myeloid cells and B lymphocyte subclusters were 

further identified based on the GSE166676 dataset. A 

total of 6 T lymphocyte subclusters were identified by 

cell-specific markers (Supplementary Figure 9A, 9B), 

and the hallmark genes of different subtypes had 

different gene expression characteristics (Sup-

plementary Figure 9C). The results are shown as bar 

graphs and box graphs (Supplementary Figure 9D, 

9E). We found that the proportion of CD8+T 

lymphocytes was significantly increased in AAA 

group than that in CON group but the proportion of 

CD4_JUN and NK cells were significantly reduced, 

and the CD8+T lymphocytes had the highest 

pyroptosis score among 6 T lymphocyte subclusters 

(Supplementary Figure 9F, 9G). 

 

To further explore the functional characteristics of T 

lymphocyte subclusters in AAA, the GSVA analysis 

was performed based on the GSE166676 dataset. Here, 
we found that the NK_NKG7 and NK_GNLY cells 

were enriched in a variety of metabolic pathways, such 

as histidine and tryptophan metabolism, the CD4_JUN 
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cells were enriched in protein trafficking and autophagy 

pathways, the CD8+T cells were enriched in glutathione 

metabolism and mucopolysaccharide synthesis path-

ways (Supplementary Figure 10A). The results of 

functional analysis showed that AAA group had 

increased activity in mucopolysaccharide degradation 

 

 
 

Figure 5. Dimension reduction clustering in GSE166676 databases. (A) When resolution = 0.5, the GSE166676 dataset was divided 

into 24 cell populations. (B) The expression of specific markers of different cell types in 24 cell clusters. The color depth represents the gene 
expression level, and the size of the dot represents the positive proportion of the gene in the cell. (C) The 24 cell populations were divided 
into 15 cell types based on cell type-specific markers. (D) Bar graph of cell proportions in AAA group and control group. (E) Box plots of cell 
proportions in AAA group and control group. Abbreviation: AAA: Thoracic aortic aneurysm. 
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and decreased activity of tyrosine metabolism compared 

with the CON group (Supplementary Figure 10B). 

 

Single-cell regulatory network inference and clustering 

(SCENIC) was used to predict transcription factors 

(TFs) and corresponding target genes [40]. The SCENIC 

analysis (Supplementary Figure 10C) point TCF7 and 

LEF1 acted as the key TF to regulate CD4_CCR7, 

TGIF1 and FOSB was key to CD4_JUN, LEF1 and 

RAD2 showed high gene regulatory activity in 

CD4_SESN3, NFIL3 and MYBL1 was key to CD8+T, 

TBX21 was key to NK_GNLY and ZNF143 was key to 

NK_GNG7 (Supplementary Figure 10D–10I). 

 

Identification and enrichment analysis of myeloid 

cells subclusters in AAA 

 

A total of 4 myeloid cell subclusters were identified by 

cell-specific markers (Supplementary Figure 11A, 11B). 

The results of the abundance of the most significant 

hallmark genes of different subtypes were shown in 

Supplementary Figure 11C. Here, we found that the 

proportion of monocytes, Macro_ZNF331, was 

significantly increased in the AAA group than in Con 

group (Supplementary Figure 11D, 11E). In addition, 

the expression level of pyroptosis-related genes was 

also elevated in the myeloid cell subclusters, such as 

Macro_ZNF331 showed higher expression of CHMP2B 

and HMGB1, Macro_CXCL3 highly expressed IL1B 

and NLRP3, Macro_APOE highly expressed GPX4 and 

CHMP4A and PYCARD was highly expressed in 

monocytes. The Macro_CXCL3 was found to have a 

higher pyroptosis score than the others (Supplementary 

Figure 11F, 11G). 

 

The GSVA showed that Macro_CXCL3 was enriched in 

extracellular matrix interaction pathways, the Monocytes, 

Macro_CXCL3 and Macro_APOE were enriched in 

linoleic acid metabolism and taurine metabolism pathways 

(Supplementary Figure 12A). Compared with CON group, 

the activities of cytochrome P450 and DNA sensing 

pathways were increased, and the activities of sphingosine-

lipid metabolism and nitrogen metabolism pathways were 

decreased in AAA group (Supplementary Figure 12B). 

 

Our SCENIC analysis found that Macro_APOE had 

highly activity of MAF and ATF5, Macro_ZNF331 had 

highly activity of STAT4 and JUNB, Monocytes 

showed highly activity of RARA and STAT2 

(Supplementary Figure 12C). We also found that the 

specific differences in TF between each cell subcluster, 

such as Monocytes specifically expressed STAT2, 

Macro_APOE specifically expressed MAF, 
Macro_CXCL3 specifically expressed NFKB1 and 

NFKB2 and Macro_ZNF331 specifically expresses 

STAT3 (Supplementary Figure 12D–12G). 

Identification and enrichment analysis of B 

lymphocyte subclusters in AAA 

 

The proportion of B lymphocytes was also increased in 

AAA, and we identified 5 subclusters by cell-specific 

markers (Supplementary Figure 13A). As shown in 

Supplementary Figure 13B, MZB1 was expressed in 

plasma cells, MS4A1 in B cells, IL-4R in naive B cells, 

RNU12 in Memeory_B_TNFRSF13B, TNFRSF13B in 

Memeory_B_TNFRSF13B, FOS in B_FOS. The results 

of the most prominent signature genes in each subcluster 

were shown as a bubble diagram (Supplementary Figure 

13C). In addition, we found that the proportion of plasma 

cells were decreased and the Naïve B cells were 

increased in AAA group compared with CON group 

(Supplementary Figure 13D, 13E). For the expression 

level of pyroptosis-related genes, we found that 

Memeory_B_RNU12 highly expressed CASP8, Naïve B 

highly expressed HMGB1 and CHMP4A, and plasma 

cells highly expressed GPX4, CASP3 and CHMP2B 

(Supplementary Figure 13F). The Naïve B had the higher 

PRGs than the others (Supplementary Figure 13G). 

 

The GSVA showed that the plasma cells were enriched in 

protein transport and polysaccharide synthesis pathways, 

while Memory_B_RNU12 and Memory_B_TNFRSF13B 

cells were enriched in ribosome and leukocyte migration 

pathways (Supplementary Figure 14A). Compared with 

CON group, the activity of base excision repair and N-

polysaccharide synthesis was increased in AAA group, 

and the activity of O-polysaccharide metabolism and drug 

metabolism was decreased (Supplementary Figure 14B). 

 

The activity of different TFs was analyzed by SCENIC, 

such as CREB3 and CREB3L2 were increased in 

plasma cells, and the JUNB and STAT3 were increased 

in B_FOS FOSB cells (Supplementary Figure 14C). 

The most specific TF for each cell subclusters were 

shown in Supplementary Figure 14D–14H. 

 

Intercellular communication analysis in AAA 

 

To determine the potential mechanism of intercellular 

communication between different cells in AAA, the 

total number of interactions between the AAA group 

and CON group of the datasets was constructed by 

CellphoneDB v2.0 (Figure 6A, 6B). Compared with the 

CON group, intercellular communication between 

fibroblasts, endothelial cells and myeloid cells was 

significantly enhanced in the AAA group. 

 

We further analyzed the communication molecules 

between different cells. Among the costimulatory 
family molecules, communication molecules such as 

CD74-MIF and CD74-APP were predominated in the 

CON group, while CD40LG-integin and CD28-CD86 
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were increased in the AAA group (Figure 6C, 6D). In 

addition, the chemokines CXCL14-CXCR4, CXCL12-

CXCR4, T cell factors TGFB1-AR, EGFR-TGFB1 and 

TGFB1-TGFBR3 were increased in the AAA group 

than that in the CON group (Figure 7A, 7B). 

DISCUSSION 
 

Abdominal aortic aneurysms (AAA), also called the 

“silent killer” as they grow without symptoms until the 

final rupture. Once an aneurysm ruptures, the mortality 

 

 
 

Figure 6. Cell-cell communication in the GSE166676 single-cell dataset. (A, B) Heatmap of cell-cell communication between 

different cell types in the control group (A) and the AAA group (B) in the GSE166676 single-cell dataset. (C, D) Interaction of costimulatory 
molecules between different cells in the control group (C) and AAA group (D). The color of the dot represents the communication strength, 
and the size of the circle represents the significance of the strong p-value. Abbreviations: AAA: abdominal aortic aneurysm; CON: Control. 
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rate could almost reach 100%. Until now, no 

pharmacological treatment has been implemented to 

prevent the formation of AAA or to cure the disease [41–

43]. As unruptured aneurysms are usually asymptomatic 

in most AAA patients which results in it being almost 

impossible to detect the presence of AAA at early stage. 

 

Pyroptosis was defined as a gasdermin-mediated pro-

inflammatory programmed cell death process, which is 

different from apoptosis (a noninflammatory program of 

cell death) [44–46]. Some studies recently demonstrated 

that the pyroptosis in the aortic wall contributes to the 

development of AAA through promoting the chronic 

inflammatory manner [47, 48]. However, the molecular 

mechanisms and their diagnostic value of pyroptosis-

related genes in AAA remain unclear, and it is urgent to 

identify the pyroptosis-related hub genes. 

 

In the present study, we obtained the DEGs between 

AAA and normal samples from the GEO database. 

After combining with pyrocytosis-related genes from 

the MSigDB, we identified 24 differential expressed 

pyrocytosis-related genes and calculated the PRGs in 

AAA. The WGCNA were performed to identify 6 hub 

genes including the CHMP4B, CYCS, GSDMB, 

GZMB, PLCG1 and IL-6, which related pyrocytosis 

process in AAA. Meanwhile, we found the immune 

cells infiltration was significantly increased in AAA 

than normal group by the CIBERSORTx evaluation. 

Finally, the publicly available scRNA-Seq datasets 

derived from AAA patients were collected and 

performed the GSVA to elucidate the underlying 

molecular pathways in AAA. 

 

Then, we identified 24 pyroptosis-related genes that 

were strongly related to AAA based on two existing 

AAA datasets and a pyroptosis database. In addition, we 

firstly constructed a diagnostic model based on the 

pyroptosis-related gene score (PRGs) and identified 6 

hub genes of pyroptosis regulatory in AAA. In addition, 

the PRGs was calculated according to the scores 

corresponding to the gene expression value, and we 

combined the PRGs to construct a nomogram model to 

diagnosis for AAA. Depends on the specific database, 

the nomogram model had a relatively high diagnostic 

accuracy (AUC = 0.994). However, as the specific 

model of single data set would cause overfitting and led 

to a false accuracy, this diagnostic nomogram model 

should be also confirmed by the other database in the 

future. Finally, the subsets of T lymphocytes, myeloid 

cells and B lymphocytes, and their characteristics of 

immunity and potential signaling pathways in AAA 

were also analyzed, respectively. 

 

Here, we screened out the hub genes by the WGCNA 

from the high PRGs and low PRGs groups. Total 6 hub 

genes were obtained from the module, including the 

CHMP4B, CYCS, GSDMB, GZMB, PLCG1 and IL-6. 

GSDMB, a unique member of the gasdermin family, 

which has the inability to form the pores in the cell 

 

 
 

Figure 7. The role of cytokine communication between different cell types in the GSE166676 single-cell dataset. (A) The role 

of chemokines between different cells in the AAA group. (B) The role of Th cytokines between different cells in the AAA. Abbreviations: 
AAA: abdominal aortic aneurysm; CON: Control. 
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membrane, and recently confirmed to be associated with 

immune diseases in humans. Rana et al., [49] identified 

the expression of GSDMB is significantly increased in 

the inflammatory bowel disease patients, and further 

demonstrated the GSDMB-dependent pyroptosis in 

activated epithelial cells is the key mechanism of 

pathogenesis. According to these results, we speculated 

that the GSDMB would have an injury effect in VSMCs 

which could promote the development of AAA. 

However, the exact molecular mechanism of GSDMB 

remains to be confirmed by future experiments. Another 

hub gene, GZMB, a protease which exocytosed from T 

cells and endocytosed through a receptor-dependent 

mechanism into the target cells, had a close relationship 

with vascular cell death [50, 51]. As GZMB could 

induced SMC death was through apoptosis, but its 

effect on AAA never been explored. So, our results 

provide a novel possible treatment target for AAA. 

 

Strong evidence has been accumulated suggesting that 

AAA is an autoimmune specific-antigen driven disease 

and that autoimmunity might be responsible for the 

pathogenesis of AAA. Next, we identified 16 cell 

clusters from a public sc-RNA sequence database, 

including the T cells, B cells, endothelial cells, fibro-

blast, myeloid cells, pDC, cycling cells, erythrocyte, 

ductal cells, SMC, plasma cells, epithelial cells, acinar 

cells, mast cells, natural killer cells and CALML5+ 

cells. Although some researchers had revealed the 

genetic characteristics at the single-cell level in AAA, 

the PRGs in different immune cells had never been 

clarified. Here, we found the CD8+ T cells, 

Macro_CXCL3 and Naïve B cells had the higher PRGs 

than others, which suggests these immune cells subsets 

might mainly depend on regulatory of pyroptosis to 

promote the development of AAA. 

 

Meanwhile, the potential signaling pathways and TFs 

were also identified by the GSVA and SCENIC 

analysis, respectively. Recent studies have established 

the mechanisms of action of T cells, myeloid cells and 

B cells in tumor microenvironment [5, 52–54]. 

Although the pathogenic molecular mechanism in AAA 

is still lacking, we identified the potential signaling 

pathways by GSVA, such as T lymphocytes were 

involved in the glycosaminoglycan degradation and 

aldosterone regulated pathways, myeloid cells were 

involved in the metabolism of xenobiotics and drugs by 

CYP450 pathways and B cells were involved in the 

base-excision-repair and non-homologous end joining 

pathways, which would affording the comprehensive 

understanding of downstream function of different 

immune cells in AAA. 
 

Not only the immune cell infiltration, and the switch 

phenotype of VSMCs, apoptosis of endothelial cells 

and proliferation of fibroblast were also involved in 

the development of AAA [55, 56], which suggests the 

imbalance of cell-cell communication could produce 

some causative agents and to affect the homeostasis of 

target organs. Depending on the “CellphoneDB” R 

package, we found the cell-cell communication 

network among the fibroblasts, endothelial cells and 

myeloid cells was significantly increased by calcu-

lating communication probability. More importantly, 

we identified the communication effects of 

chemokines, such as CXCL14-CXCR4 and CXCL12-

CXCR4, and T cell cytokine, such as TGFβ1-AR, 

EGFR-TGFβ1 and TGFβ1-TGFβR3 were increased in 

AAA. Although the pathogenic role of the CXCL12 

and its ligands in AAA had been explored [57, 58], 

our results might provide a novel approach based  

on the between different cell types to prevent the 

AAA. 
 

However, our research has some limitations. Firstly, our 

data analysis comes from the public databases and lacks 

the original sample analysis, which makes it completely 

dependent on present studies and leads to the quality of 

samples being uncontrollable. Second, we used tissue 

samples to reveal the association between pyroptosis-

related genes and AAA. This approach could provide 

more high-quality and specific and sensitive 

information for the study, and the measurement of 

biomarkers levels would more reliably. However, the 

acquisition of tissue-specific genes requires invasive 

operations that directly reduce its clinical operability. 

Besides, the acquisition and analysis of tissue-specific 

genes require special laboratory equipment and 

specialized technologies. In addition, the collected 

tissue samples may be affected by certain factors, such 

as the patient’s treatment history, the way of sample 

collection and processing, etc., which may lead to errors 

in the test results. Therefore, in order to solve the 

limitations of tissue-specific gene acquisition, we 

believe that blood markers as a method for early 

diagnosis and screening of AAA may be more 

convenient and safer. So, although tissue-specific genes 

can be used as an ideal method to reveal the mechanism 

of AAA, its disadvantages also limit its wide 

applicability in clinical application. The blood markers 

may provide a feasible method for early diagnosis and 

screening, and we suggest that the combination of tissue 

marker genes and blood markers in the future will 

improve the accuracy and wide applicability of AAA 

diagnosis. Third, although a large number of gene 

functional analyses have been performed, the 

downstream molecular mechanisms are still needing 

in vivo and in vitro validation. Next, our model had a 
good value of the diagnostic accuracy for the AAA 

patients, but it lacks validation in a large clinical 

population. 
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CONCLUSION 
 

In summary, we constructed a diagnostic model based 

on the pyroptosis-related genes for AAA, which might 

be an effective and noninvasive method for AAA in the 

early stage of the disease. Besides, we identified the hub 

pyrocytosis-related genes in AAA and demonstrated the 

potential pathogenic mechanism might be contributed 

from excess immune infiltration. Moreover, the various 

of cell subsets at single-cell level and the imbalance 

cell-cell communication network in AAA were also 

identified. Our results will contribute to the 

comprehensive understanding of the pathogenesis of 

AAA and discover some novel molecular targets for 

prevention AAA at early stage. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Flow chart of the research process. Abbreviations: GO: Gene Ontology; KEGG: Kyoto Encyclopedia of 

Genes and Genomes; DEGs: Differentially expressed genes; PRGs: Pyroptosis Related genes; PRDEGs: Pyroptosis-related differentially 
expressed genes; PRGs score: Pyroptosis-related genes score; WGCNA: Weighted gene co-expression network analysis; GSEA: Gene Set 
Enrichment Analysis; GSVA: Gene Set Variation Analysis; SCENIC: Single-Cell regulatory Network Inference and Clustering. 
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Supplementary Figure 2. Data normalization and remove batch effects of the AAA combined datasets. (A, B) Boxplot of the 
abdominal aortic aneurysm dataset before (A) and after (B) removal of batch effect processing. (C, D) PCA plots of the abdominal aortic 
aneurysm dataset before (C) and after (D) removal of batch effect processing. Abbreviation: PCA: Principal Component Analysis. 

 



www.aging-us.com 15310 AGING 

 
 

Supplementary Figure 3. Establishment of pyroptosis-related gene score model for AAA prediction. (A) LASSO to screen the 
pyroptosis biomarkers. (B) The biomarkers were cross-validated by LASSO regression analysis. ROC curves of GSDMB (C), GSDMD (D), 
NLRP3 (E), PLCG1 (F), TNF (G), IL-1β (H), and SCAF11 (I) in the combined GEO Datasets. (J) Nomogram model of pyroptosis genes in the 
logistic diagnostic model. (K) ROC curves of PRGs in combined GEO Datasets. (L) Calibration plot of PRGs in the logistic regression model. 
(M) DCA plot of pyroptosis scores in logistic regression models. The ordinate is the net benefit and the abscissa is the threshold or 
threshold probability. (N) Clinical impact curves of PRGs in logistic regression models. The abscissa is the probability threshold, and the 
ordinate is the number of people. The red line represents the number of people judged as high risk by the model at different probability 
thresholds. The blue lines represent the number of people who were judged by the model to be at high risk and who actually experienced 
an outcome event at various probability thresholds. At the bottom is the benefit ratio, which represents the proportion of losses and 
benefits at different probability thresholds. Abbreviations: ROC: receiver operating characteristic curve; AUC: Area Under Curve; OR: odds 
ratio; LASSO: Least absolute shrinkage and selection operator; PRGs: Pyroptosis-related gene score; DCA: decision curve analysis. 
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Supplementary Figure 4. Functional enrichment analysis of pyroptosis-related gene modules based on the AAA combined 
datasets. (A) Scatter plots of associations between genes in the black, magenta, and darkred modules and high and low PRGs. (B–D) 
Bubble plots of GO enrichment analysis of genes from magenta (B) and black (C) and darkred (D) modules. The bubble size represents the 
number of enriched genes, the larger the number of enriched genes, the darker the color represents the significance of the P-value, and the 
darker the color represents the more significant the difference. (E) Venn diagram of black, magenta, and darkred module genes and 
pyroptotic genes. (F) Network diagram showing the interaction between transcription factors and pyroptosis Hub genes. Abbreviations: GO: 
Gene Ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes. 
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Supplementary Figure 5. Enrichment analysis of GSVA and GSEA of high and low PRGs groups based on the AAA combined 
datasets. (A) Heatmap of GSVA enrichment analysis results between high and low PRGs groups. Red represents a high GSVA score and 

blue represents a low GSVA score. (B) GSEA enrichment analysis bar graph between high and low PRGs groups. Red represents the 
upregulation of AAA group and blue represents the downregulation of AAA group. (C–H) GSEA enrichment maps of KEGG_INTESTINAL_ 
IMMUNE_NETWORK_FOR_IGA_PRODUCTION (C), KEGG_CELL_ADHESION_MOLECULES_CAMS (D), KEGG_COMPLEMENT_AND_ 
COAGULATION_CASCADES (E), KEGG_CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION (F), KEGG_OXIDATIVE_PHOSPHORYLATION (G) and 
KEGG_SPLICEOSOME (H). Abbreviations: GSEA: Gene Set Enrichment Analysis; GSVA: Gene Set Variation Analysis; AAA: abdominal aortic 
aneurysm. 
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Supplementary Figure 6. Molecular typing of pyroptosis-related genes in AAA patients based on the AAA combined datasets. 
(A) Results of consensus cluster analysis, A function plot of the cumulative distribution of consensus clusters with k values of 2 to 9. (B) Relative 
change in the area under the curve of the cumulative distribution function plot. (C–E) Cluster plots of samples with k = 2 (C), k3 (D), and k4 (E). 
The tracking curve showed that the optimal grouping was when k = 3. (F) PCA analysis of three subgroups; Blue represents Cluster1 patients 
and red represents Cluster1 patients. 
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Supplementary Figure 7. Analysis of immune characteristics of pyroptosis subtypes in AAA patients based on the AAA 
combined datasets. (A) Boxplot of pyroptotic gene expression in 2 subgroups, blue for Cluster1 patients, orange for Cluster2 patients, 

and red for Cluster3 patients. (B) The estimate method was used to detect immune cell scores in the two subgroups. Red represents a high 
score and blue represents a low score. *P < 0.05, **P < 0.01, ***P < 0.001. Abbreviation: AAA: Abdominal aortic aneurysm. 
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Supplementary Figure 8. Single-cell quality control in GSE166676 databases. (A–C) Violin plot of number of genes and sequenced 
counts and proportion of mitochondria in the GSE166676 databases. (D) Scatter plot of hypervariable genes. (E) Scatter plot of the 
correlation between nCount and nFeature in all cells. (F) UMAP plot demonstrating the dimensionality reduction of single-cell sequencing in 
AAA group and control group. (G) UMAP plot showing the dimensionality reduction effect of single-cell sequencing in AAA group and 
control group at different times. 
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Supplementary Figure 9. Identification of T cell subsets in the GSE166676 dataset. (A) UMAP diagram showing the subtypes of T 

cells. (B) Heatmap of hallmark genes expression of T cell subsets. Gray representing low gene expression and blue representing high gene 
expression. (C) The bubble plot shows the expression level of the signature gene in different cell subsets, the color depth represents the 
expression level of the gene, and the size of the dot represents the positive proportion of the gene in the cell. (D) Bar graph of the 
proportions of T cell subsets in AAA group and CON group. (E) Box plot of the proportions of T cell subsets in AAA group and CON group. (F) 
Bubble plot shows the expression levels of pyroptosis-related genes in different cell subsets, the color depth represents the expression 
level of the gene, and the size of the dot represents the positive proportion of the gene in the cell. (G) Heatmap shows pyroptosis scores for 
T cell subsets, with black representing low pyroptosis scores and orange representing high pyroptosis scores. 
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Supplementary Figure 10. GSVA analysis and transcription factor analysis of T cell subsets in the GSE166676 datasets. (A) 
Heatmap of the results of GSVA enrichment analysis among different T cell subsets, with low expression in blue and high expression in red. 
(B) Bar graph of the enrichment analysis results of T cell subsets in the AAA and CON groups. Blue represents the upregulated pathway in 
AAA group and green represents the downregulated pathway in AAA group. (C) Bubble plot of SCENIC analysis of transcription factor activity 
between different T cell subsets, color depth represents transcription factor activity, circle size represents transcription factor specificity 
score. (D-I) Scatter plots showing specific transcription factors for CD4_CCR7 (D), CD4_JUN (E), CD4_SESN3 (F), CD8+ T (G), NK_GNLY (H) and 
NK_NKG7 (I). The horizontal axis shows sequencing, and vertical axis shows specificity, the five most specific TFS are labeled in white. 
Abbreviations: GSVA: Gene Set Variation Analysis; AAA: abdominal aortic aneurysm; CON: Control; RSS: regulon specificity score. 
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Supplementary Figure 11. Identification of myeloid cell subsets in the GSE166676 dataset. (A) UMAP diagram demonstrating 
myeloid cell subsets. (B) Heatmap of myeloid cell subsets marker gene expression, gray represents low gene expression and blue 
represents high gene expression. (C) The bubble plot shows the expression level of the signature gene in different cell subsets, the color 
depth represents the expression level of the gene, and the size of the dot represents the positive proportion of the gene in the cell. (D, E) 
Proportion of myeloid cell subsets in AAA group and CON group that displayed by bar (D) and box (E) plots. (F) Bubble plot shows the 
expression levels of pyroptosis-related genes in myeloid cell subsets, the color depth represents the expression level of the gene, and the 
size of the dot represents the positive proportion of the gene in the cell. (G) Heatmap shows the pyroptosis score of myeloid cell subsets, 
with black representing low pyroptosis score and orange representing high pyroptosis score. Abbreviations: UMAP: Uniform Manifold 
Approximation and Projection; AAA: abdominal aortic aneurysm; CON: Control. 
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Supplementary Figure 12. GSVA analysis and transcription factor analysis of myeloid cell subsets in the GSE166676 datasets. 
(A) Heatmap of GSVA enrichment analysis results between different subsets of myeloid cells, blue for low expression and red for high 
expression. (B) Bar graph of enrichment analysis results of myeloid cell AAA group compared with CON group. Blue represents the 
upregulated pathway in AAA group and green represents the downregulated pathway in AAA group. (C) Bubble plot of SCENIC analysis of 
transcription factor activity between different subsets of myeloid cells, color depth represents transcription factor activity, circle size 
represents transcription factor specificity score. (D–G) Scatter plot showing the specific transcription factors of monocyte (D), Macro_APOE 
(E), Macro_CXCL13 (F) and Macro_ZFN331 (G). The horizontal axis shows rank and vertical axis shows specificity, and the five most specific 
transcription factors are labeled in white. Abbreviations: GSVA: Gene Set Variation Analysis; AAA: abdominal aortic aneurysm; CON: Control; 
RSS: regulon specificity score. 
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Supplementary Figure 13. Identification of B cell subsets in the GSE166676 dataset. (A) UMAP map showing B cell subsets. (B) 
Heatmap of signature genes expression in B-cell subsets. Gray represents low gene expression and blue represents high gene expression. 
(C) The bubble plot shows the expression level of the signature gene in different cell subsets, the color depth represents the expression 
level of the gene, and the size of the dot represents the positive proportion of the gene in the cell. Bar (D) and box (E) plots of B-cell subsets 
AAA group and CON group. P < 0.05 was considered statistically significant. (F) Bubble plot shows the expression levels of pyroptosis-
related genes in B cell subsets, the color depth represents the expression level of the gene, and the size of the dot represents the positive 
proportion of the gene in the cell. (G) Heatmap shows pyroptosis scores for B-cell subsets, with black representing low pyroptosis scores 
and orange representing high pyroptosis scores. Abbreviations: UMAP: Uniform Manifold Approximation and Projection; AAA: abdominal 
aortic aneurysm; CON: Control. 
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Supplementary Figure 14. GSVA analysis and transcription factor analysis of B cell subsets in the GSE166676 datasets. (A) 

Heatmap of GSVA enrichment analysis results between different subsets of B cell, blue for low expression and red for high expression. (B) Bar 
graph of enrichment analysis results of the B cell in AAA group and CON group. Blue represents the upregulated pathway in AAA group and 
green represents the downregulated pathway in AAA group. (C) Bubble plot of SCENIC analysis of transcription factor activity between different 
subsets of B cells, color depth represents transcription factor activity, circle size represents transcription factor specificity score. Scatter plot 
showing the specific transcription factors in B_FOS (D), Naive_B (E), Plasma (F), Memory_B_RNU12 (G) and Memory_B_TNFRSF13B (H). 
The horizontal axis shows ranking, the vertical axis shows specificity. The five most specific TFS are labeled in white. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1 and 3–6. 

 

Supplementary Table 1. The gene information of bulk RNA-seq and single-cell RNA-seq from the GSE57691 and 
GSE47472 databases. 

 

Supplemental Table 2. The gene information of pyrocytosis-related genes. 

Genes Full-names 

AIM2 Absent in melanoma 2 

BAK1 BRI1-associated receptor kinase 1 

BAX Bcl-2-associated X protein 

CASP1 Cysteine-aspartic acid protease-1 

CASP3 Cysteine-aspartic acid protease-3 

CASP4 Cysteine-aspartic acid protease-4 

CASP5 Cysteine-aspartic acid protease-5 

CASP6 Cysteine-aspartic acid protease-6 

CASP8 Cysteine-aspartic acid protease-8 

CASP9 Cysteine-aspartic acid protease-9 

CHMP2A Charged Multivesicular Body Protein 2A 

CHMP2B Charged Multivesicular Body Protein 2B 

CHMP3 Charged Multivesicular Body Protein 3 

CHMP4A Charged Multivesicular Body Protein 4A 

CHMP4B Charged Multivesicular Body Protein 4B 

CHMP4C Charged Multivesicular Body Protein 4C 

CHMP6 Charged Multivesicular Body Protein 6 

CHMP7 Charged Multivesicular Body Protein 7 

CYCS Recombinant Cytochrome C, Somatic 

ELANE Elastase, neutrophil expressed 

GPX4 Glutathione peroxidase 4 

GSDMA Gasdermin A 

GSDMB Gasdermin B 

GSDMC Gasdermin C 

GSDMD Gasdermin D 

GSDME Gasdermin E 

GZMA Granzyme A 

GZMB Granzyme B 

HMGB1 High-mobility group box-1 protein 

IL18 Interleukin 18 

IL1A Interleukin 1 a 

IL1B Interleukin 1 beta 

IL6 Interleukin 6 

IRF1 Interferon regulatory factor 1 

IRF2 Interferon regulatory factor 2 

NLRC4 NLR family CARD domain containing 4 

NLRP1 NLR family pyrin domain containing 1 

NLRP2 NLR family pyrin domain containing 2 

NLRP3 NLR family pyrin domain containing 3 



www.aging-us.com 15323 AGING 

NLRP6 NLR family pyrin domain containing 6 

NLRP7 NLR family pyrin domain containing 7 

NOD1 Nucleotide binding oligomerization domain containing 1 

NOD2 Nucleotide binding oligomerization domain containing 2 

PJVK Pejvakin/deafness, autosomal recessive 59 

PLCG1 Phospholipase C gamma 1 

PRKACA Protein kinase camp-activated catalytic subunit alpha 

PYCARD PYD and CARD domain containing 

SCAF11 SR-related CTD associated factor 11 

TIRAP TIR domain containing adaptor protein 

TNF Tumor necrosis factor 

TP53 Tumor Protein P53 

TP63 Tumor Protein P63 

 

Supplementary Table 3. The differential expression genes between AAA and normal patients from the AAA 
Combined Datasets. 

 

Supplementary Table 4. The results of GSVA enrichment analysis of the differential expression genes from the 
high and low PRGs groups patients. 

 

Supplementary Table 5. The results of GSEA enrichment analysis of the differential expression genes from the 
high and low PRGs group patients. 

 

Supplementary Table 6. The results of immune cells infiltration by CIBERSORx in from the high and low PRGs 
group patients. 

 

 


