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INTRODUCTION 
 

Renal cell carcinoma (RCC) is a common solid tumor 

of the urinary system, the tumor mostly originates from 

renal tubular epithelial cells [1]. The incidence of RCC 

is increasing gradually annually [2]. There are many 

histologic types of RCC, including clear cell carcinoma, 

papillary carcinoma, smoky cell carcinoma, etc., [3]. 

Among them, clear cell renal cell carcinoma (ccRCC)  

is the most common, accounting for about 70–75% of 

all cases [4]. A significant proportion of patients with 

metastatic ccRCC will have a 5-year survival rate of no 

more than 10% [5, 6]. The development of targeted 

drugs can be considered a milestone in the treatment of 

malignant tumors. The application of targeted drugs in 

ccRCC has brought a ray of hope to some patients with 

advanced ccRCC [7–10]. Nevertheless, there is still 

much room for improvement in the field of targeted 

drug therapy for ccRCC, and therefore, finding new and 

more effective therapeutic targets is of great clinical 

significance for the treatment of ccRCC. 

 
LRP6, one of the many members of the low  

density lipoprotein (LDL) receptor family, plays a key 
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regulatory role upstream of the Wnt/β-catenin 

signaling pathway. Typically, LRP6 acts as a co-

receptor for the Wnt ligands of frizzled proteins, 

stimulating downstream signaling that regulates the 

stability of β-catenin in the cytoplasm. β-catenin can 

translocate to the nucleus, where it interacts with  

other transcriptional regulators, thereby influencing 

the expression of genes critical for cell proliferation, 

differentiation, and tumorigenesis [11–13]. LRP6 has 

been reported to have a role in promoting epithelial 

cell tumors such as hepatocellular carcinoma, colorectal 

carcinoma, and pancreatic ductal carcinoma, which 

correlates with tumor malignant phenotype, metastatic 

potential, and poor prognosis, and is accompanied by 

increased wnt/β-catenin signaling [13–17]. It has been 

shown that decreasing LRP6 activity or expression 

mediates cellular protective mechanisms and inhibits 

the progression of papillary thyroid and bladder 

cancers [18, 19]. 

 
Systemic treatment for advanced kidney clear cell 

carcinoma includes radiotherapy, chemotherapy, 

cytokine therapy, targeted therapy and immuno-

therapy. Chemotherapy has limited therapeutic effect 

on metastatic renal cell carcinoma and is often 

combined with immunosuppressive drugs. With the 

continuous breakthroughs in targeted therapy and 

immunotherapy, the treatment of advanced kidney 

cancer has entered the era of combining targeted 

therapy and immunotherapy, and the median over- 

all survival of patients has been greatly improved  

[20–23]. Currently, commonly used targeted drugs  

for the treatment of advanced kidney clear cell 

carcinoma include anti-vascular targeted drugs 

(sunitinib, sorafenib, pezopanib, axitinib, cabozantinib, 

lenvatinib, bevacizumab, etc.) and anti-rapamycin-

targeting protein (mTOR)-targeted drugs (everolimus 

and tesilomox) [24]. 

 
Here, we found that LRP6 is abnormally highly 

expressed and significantly correlated with micro-

satellite instability (MSI), tumor mutation burden 

(TMB), and immune cell infiltration and immune 

checkpoint expression in a variety of tumors, including 

renal, breast, colorectal, and lung cancers, etc. 

Moreover, we found that LRP6 was significantly 

associated with the prognosis of renal clear cell 

carcinoma. Further we found a significant correlation 

between LRP6 and the expression of m6A-related 

genes and ferroptosis-related genes. Finally, we  

also found a significant correlation between the 

expression of LRP6 and the sensitivity to common 

drugs used in kidney clear cell carcinoma treatment. 

These results suggest that LRP6 is likely to be a 

potential target for kidney clear cell carcinoma 

treatment. 

MATERIALS AND METHODS 
 

Expression analysis 

 

Expression profiling data for all tumor as well as 

normal samples were obtained using the The Cancer 

Genome Atlas (TCGA) database, and bioinformatics 

was used to analyze the differences in LRP6 expression 

in all tumor samples and normal tissues. 

 

TMB and MSI analysis 

 

TMB and MSI data for all tumors as well as  

normal samples were obtained using the TCGA 

database, and the correlation between LRP6 expression 

and TMB and MSI in all tumors was analyzed using 

bioinformatics. 

 

Immune cell infiltration and immune checkpoint 

analysis 

 

Immunocorrelation was assessed for all tumors as  

well as normal samples using the TCGA database, and 

the correlation between LRP6 expression and immune 

cell infiltration in all tumors was analyzed using the 

CIBERSORT algorithm. 

 

Prognostic analysis 

 

Expression data of all tumors as well as the 

corresponding clinical information were obtained using 

the TCGA database, and univariate Cox regression  

was used to analyze the correlation between LRP6 

expression and prognosis among different tumors. 

 

Differentially expressed gene, KEGG and gene 

ontology (GO) analysis 

 

RNAseq data for kidney clear cell carcinoma  

were obtained from the TCGA database. Differential 

expression of LRP6 was studied using the Limma 

package of R software. Adjusted P-values were 

analyzed in TCGA to correct for false positive results. 

“Adjusted P < 0.05 with log2 (fold change) > 1 or log2 

(fold change) < −1” was defined as a screen for 

threshold mRNA differential expression. 

 

To further confirm the potential function of potential 

targets, the LRP6-regulated differentially expressed 

genes were analyzed by functional enrichment. GO is  

a widely used tool for annotating genes with func- 

tions, especially molecular functions (MF), biological 

pathways (BP), and cellular components (CC). KEGG 

enrichment analysis is practical and can be used to 

analyze gene functions as well as related high-level 

genomic functional information. 



www.aging-us.com 1486 AGING 

Drug sensitivity analysis 

 

LRP6 expression data in each kidney cancer sample 

were obtained from the TCGA database. The chemo-

therapy response of each sample was predicted based  

on the largest publicly available pharmacogenomics 

database. The half maximal inhibitory concentration 

(IC50) of one of the samples was estimated by ridge 

regression to analyze the correlation between LRP6 

expression and different drug sensitivities. 

 

RESULTS 
 

LRP6 is highly expressed in a variety of tumors 

 

LRP6 is an important membrane receptor in the  

Wnt/β-catenin signaling pathway. To explore the role of 

LRP6 in tumorigenesis and development, we first 

analyzed the expression of LRP6 in all tumors using the 

TCGA database. By comparing the expression of LRP6 

in 33 cancer types and their corresponding normal 

tissues. LRP6 was found to be abnormally expressed  

in 13 cancer types, including BRCA, CESC, COAD, 

KICH, KIRC, KIRP, LIHC, LUAD, LUSC, PRAD, 

STAD, THCA, UCEC (Figure 1). This suggests that 

LRP6 is likely to play an important role in a variety of 

tumors. 

 

LRP6 correlates with TMB and MSI 

 

TMB and MSI, not only are important predictors of the 

efficacy of immunotherapy, but have also been reported 

to be associated with the efficacy and prognosis of 

chemotherapy in patients in a variety of tumors [25, 26]. 

Using data from the TCGA database we investigated  

the relationship between LRP6 and tumor TMB and 

MSI, and found that LRP6 expression was significantly 

positively correlated with tumor TMB in LUSC, TGCT, 

GBM, READ, and KICH, and significantly negatively 

correlated with tumor TMB in DLBC, UCS, etc., (Figure 

2A). Similarly, we also found that LRP6 expression  

was significantly positively correlated with the MSI  

of tumors such as THYM, ACC, LAML, GBM, and 

significantly negatively correlated with the MSI of 

tumors such as UCS, THCA, UVM (Figure 2B). These 

results indicate that LRP6 expression correlates signi-

ficantly with TMB and MSI, suggesting to us that LRP6 

expression may be related to whether tumor patients can 

benefit from immunotherapy. 

 
Correlation of LRP6 expression with immune cell 

infiltration and immune checkpoint expression 

 
To explore whether LRP6 expression correlates with 

immune infiltrating cells, we used the CIBERSORT 

algorithm for analysis. The results showed that the 

expression level of LRP6 correlated with the infiltration 

level of immune cells such as T cells CD8+, T cells 

CD4+, neutrophils, macrophages, dendritic cells, etc.,  

in 33 cancer types (Figure 3A). Subsequently, we  

also explored the correlation between the expression 

levels of LRP6 and the expression levels of common 

immune checkpoints in 33 cancers, such as SIGLEC15, 

IDO1, CD274, HAVCR2, PDCD1, CTLA4, LAG3 and 

PDCD1LG2. We found that LRP6 expression was 

significantly correlated with the expression of immune 

 

 
 

Figure 1. Expression of LRP6 in pancancer. The expression distribution of LRP6 in tumor tissues and normal tissues. The abscissa 

represents different tumor tissues, and the ordinate represents the expression distribution of gene, different colors represent different 
groups. *p < 0.05, **p < 0.01, ***p < 0.001. 
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checkpoints in most of the tumors except UCS, CHOL, 

BLCA and ACC (Figure 3B). These results suggest that 

the expression level of LRP6 is closely related to the 

immune infiltration of various tumors as well as the 

expression of immune checkpoints. 

 

LRP6 expression correlates with the prognosis of 

patients with KIRC 

 

To test the correlation between LRP6 expression and 

prognosis of tumor patients, we used univariate Cox 

regression analysis in order to construct a forest plot 

and found that LRP6 expression was associated with 

prognosis in KIRC (HR = 0.574, p = 0.0004) (Figure 4). 

These findings suggest that LRP6 can predict patient 

survival in certain cancer types and that high LRP6 

expression is associated with poor prognosis in kidney 

clear cell carcinoma. 

 

Tumor-associated signaling pathways regulated by 

LRP6 

 

To explore the mechanisms by which LRP6 may 

regulate the development of kidney cancer, we first 

analysed differential gene expression in samples with 

differential LRP6 expression using TCGA kidney clear 

cell carcinoma samples, and in total we identified 9 up-

regulated and 739 down-regulated genes (Figure 5A, 

5B). We further performed KEGG and GO analysis on 

the differential genes regulated by LRP6 and found that 

these gene-enriched pathways are closely related to 

tumor development, such as Ras, ECM, PI3K-AKT and 

other signaling pathways (Figure 5C, 5D). These results 

suggest that LRP6 may promote the progression of renal 

clear cell carcinoma by activating tumor-associated 

signaling pathways. 

 

Correlation of LRP6 with m6A-related genes 

 

Many studies have been conducted on the relation- 

ship between m6A methylation and cancer, such as 

glioblastoma, hepatocellular carcinoma, breast cancer, 

pancreatic cancer and prostate cancer, etc., and its 

related mechanisms and functions have been gradually 

explored [27]. To investigate whether LRP6 may affect 

renal clear cell carcinoma progression by regulating 

m6A, we analyzed the correlation between LRP6  

and the expression of m6A-related genes, including 

class “writter” genes (METTL3, METTL14, ZC3H13, 

VIRMA, WTAP, RBM15 and RBM15B), class “eraser” 

genes (FTO and ALKBH5), and class “reader” genes 

(YTHDC1, YTHDC2, YTHDF1, YTHDF2, YTHDF3, 

 

 
 

Figure 2. Correlation analysis of TMB/MSI and LRP6 expression. The abscissa represents the correlation coefficient between LRP6 

and MSI (A) and TMB (B), the ordinate represents different tumors. The size of the dots represents the size of the correlation coefficient, 
and different colors represent the significance of p-value. 
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Figure 3. Correlation between LRP6 expression and various immune cells infiltration and expression distribution of 
immune checkpoint. The heatmap of immune score (A) and immune-checkpoint-related gene expression (B) and LRP6 expression. Each 
box in the figure represents the correlation analysis between the expression of the LRP6 and the immune score and immune checkpoint in 
corresponding tumors. *p < 0.05, **p < 0.01, ***p < 0.001. 
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HNRNPC, HNRNPA2B1, IGFBP1, IGFBP2, IGFBP3 

and RBMX), and found that there was a significant 

correlation between LRP6 and all 20 m6A-related genes 

(Figure 6). 

 

LRP6 is associated with ferroptosis 

 

Ferroptosis is a novel mode of programmed cell death 

caused by excessive accumulation of iron-dependent 

lipid peroxidation products. In recent years, more  

and more therapeutic modalities targeting ferroptosis 

have been developed for anti-tumor therapy [28, 29].  

In order to explore whether LRP6 might affect tumor 

progression through the regulation of ferroptosis, we 

analyzed the correlation between LRP6 and the 

expression of 25 common ferroptosis related genes in 

renal clear cell carcinoma samples, and found that 

LRP6 was significantly correlated with most ferroptosis

 

 
 

Figure 4. LRP6 expression correlates with the prognosis of patients with KIRC. The p-value, risk coefficient (HR) and confidence 

interval of LRP6 in multiple tumours are analyzed by univariate Cox regression. 
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related genes except for SAT1, MT1G, and SLC1A5 

genes (Figure 7). This suggests that LRP6 may affect 

the occurrence and development of renal clear cell 

carcinoma by regulating ferroptosis. 

 

Expression of LRP6 is correlated with drug 

sensitivity 

 

To test the association of LRP6 with common  

drugs currently used to treat KIRC patients, including 

sunitinib, sorafenib, pazopanib, axtinib and erlotinib, 

we analyzed the correlation between the expression  

of LRP6 and drug sensitivity, and found that the 

expression of LRP6 was significantly positively 

correlated with the IC50 (half inhibitory concentration)  

of sunitinib and erlotinib, and significantly negatively 

correlated with the IC50 of sorafenib, pazopanib, and 

axtinib (Figure 8). These data implied that LRP6 could 

be an effective factor in the drug sensitivity of KIRC 

patients. 
 

DISCUSSION 
 

Renal cell carcinoma (RCC) is one of the most 

common urological tumors worldwide, and according 

to the World Health Organization, there are more than 

 

 
 

Figure 5. Biological functions of LRP6 in KIRC samples. (A) Heat map showing differentially expressed genes in KIRC with high and 
low expression of LRP6. (B) Venn diagram showing LRP6-regulated differentially expressed genes. (C, D) KEGG and GO analyses of LRP6-
regulated differentially expressed genes in KIRC. 
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Figure 6. LRP6 is associated with m6A modification. Heat map showing the correlation of LRP6 expression with the expression of 

common m6A-related genes. *stands for significance levels, *p < 0.05, **p < 0.01, ***p < 0.001. 

 

 
 

Figure 7. LRP6 is associated with ferroptosis. Heat map showing the correlation of LRP6 expression with the expression of common 

ferroptosis-related genes. *stands for significance levels, *p < 0.05, **p < 0.01, ***p < 0.001. 
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140,000 RCC-related deaths each year [30]. Among 

RCCs, clear cell renal cell carcinoma (ccRCC) is the 

most common subtype, accounting for about 70% to 

80% of cases [31]. Patients with early-stage RCC are 

usually treated with radical nephrectomy or partial 

nephrectomy and have a favorable prognosis. However, 

about 25% of RCC patients have metastasis at the time 

of diagnosis and have a poorer prognosis. In addition, 

about 20% to 50% of RCC patients will eventually 

develop metastatic RCC [32]. This progression is 

closely related to various genes, and it is important to 

search for potential therapeutic targets. In this study,  

we found that LRP6 was abnormally highly expressed 

in a variety of tumors and significantly correlated  

with microsatellite instability, tumor mutation burden, 

and immune cell infiltration and immune checkpoint 

expression in a variety of tumors. Moreover, we found 

that LRP6 was significantly associated with the 

prognosis of renal clear cell carcinoma. Further we 

found a significant correlation between LRP6 and the 

expression of m6A-related genes and ferroptosis-related 

genes. Finally, we also found a significant correlation 

between the expression of LRP6 and the sensitivity  

to common drugs used in kidney clear cell carcinoma 

treatment. These results suggest that LRP6 is likely to 

be a potential target for kidney clear cell carcinoma 

treatment. 

 

Ferroptosis is a regulated mode of cell death charac-

terized by iron accumulation and lipid peroxidation 

damage [33]. The process of ferroptosis is characterized 

by iron overload and accumulation of reactive oxygen 

species (ROS) generated by lipid peroxidation products. 

Ferroptosis cells show normal-sized nuclei without 

chromatin condensation and mitochondrial atrophy and 

increased membrane density. It can be triggered in cancer 

cells by depletion of glutathione (GSH) and the amino 

acid cysteine or by inhibition of glutathione peroxidase  

4 (GPX4) [34], but it can be blocked by the iron chelator 

desferrioxamine (DFO) and by inhibitors of lipid 

peroxidation, such as ferrostatin-1, liproxstatin-11, etc. 

Ferroptosis is an intracellular iron-dependent form of  

cell death, distinct from apoptosis, necrosis, and cellular 

autophagy [28]. Ferroptosis as a novel and effective 

cancer therapeutic strategy can influence the efficacy of 

cancer treatment, and inducing ferroptosis in tumor cells 

may represent a promising strategy. Here, we found that 

LRP6 was significantly associated with the expression  

of ferroptosis-related genes, and whether LRP6 can 

influence the progression of kidney clear cell carcinoma 

 

 
 

Figure 8. Correlation between LRP6 expression and drug sensitivity. Spearman correlation analysis of sunitinib, sorafenib, pazopanib, 
axtinib and erlotinib IC50 score and LRP6 expression. 
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through the regulation of ferroptosis requires further 

confirmation. 

 

N6-methyladenosine (m6A) modification is one of  

the most widely distributed and abundant messenger 

RNA modifications in eukaryotes. m6A methylation 

can affect the development of tumor by regulating the 

expression level of oncogenes or tumor suppressor 

genes. There are three main types of enzymes involved 

in m6A methylation modification: methyltransferases, 

eraser, and reader proteins [35]. Here, we found that 

LRP6 was associated with the expression of a variety  

of m6A modification-related molecules, and further 

confirmation is needed as to whether LRP6 can influence 

tumor progression by regulating the expression of m6A 

modification-related genes. 
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