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INTRODUCTION 
 

Age-related skeletal muscle strength decline is an 
independent risk factor for high mortality in older  

adults [1]. Because handgrip strength (HGS) is easy to 

measure and can represent global muscle strength in 

older people [2], it is not only a powerful indicator of 

physical activity, nutritional status, and even disability 

[3], but can also be used for the diagnosis of sarcopenia 

[4, 5] and physical frailty [6]. The inverse association 
between HGS assessed at a single point in time and 

subsequent mortality (higher values are associated with 

lower mortality risk) has been established among older 

people [7, 8]. Moreover, the clinical value of HGS 
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ABSTRACT 
 

Handgrip strength (HGS), which represents global muscle strength, is a powerful indicator of disability and 
mortality in older adults; it is also used for the diagnosis of possible- or probable- sarcopenia and physical 
frailty. This study aimed to explore the metabolic mechanisms and potential biomarkers associated with 
declining HGS among older adults. We recruited 15 age- and environment-matched inpatients (age, 77–90 
years) with low or normal HGS. Liquid chromatography-mass spectrometry (LC-MS) and 16S ribosomal DNA 
(rDNA) gene sequencing were performed to analyze the metabolome of serum and stool samples and the gut 
microbiome composition of stool samples. Spearman’s correlation analysis was used to identify the potential 
serum and fecal metabolites associated with HGS. We assessed the levels of serum and fecal metabolites 
belonging to the class of cinnamic acids and derivatives and reported that the levels of carboxylic acids and 
their derivatives decreased in the low-HGS group. Serum levels of microbial metabolites, including 
cinnamoylglycine, 4-methoxycinnamic acid, and (e)-3,4,5-trimethoxycinnamic acid, were positively correlated 
with HGS. We found that gut microbial α-diversity was significantly higher in the low-HGS group, whereas 
higher β-diversity was observed in the normal group. The relative abundances of the genera Parabacteroides 
and Intestinibacter increased significantly in the low-HGS group and were negatively correlated with the serum 
levels of cinnamoylglycine. The identified metabolites whose levels were markedly altered, and intestinal flora 
associated with these metabolites suggest the potential metabolic underpinnings for HGS and provide a basis 
for the further identification of biomarkers of muscle strength decline in older adults. 
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measured longitudinally to assess the risk of mortality 

among older people has also been validated [9]. Hence, 

understanding the biological underpinnings and identifying 

biomarkers for declining HGS that accompany aging is 

imperative. 

 

Previous studies have found that inflammation- 

induced loss of muscle mass, elevated oxidative  

stress, mitochondrial dysfunction, and accumulation  

of advanced glycation end-products are involved in the 

mechanisms of, and serve as biomarkers for, muscle 

dysfunction-associated conditions, including muscle 

mass and strength loss. In fact, age-related decline in 

muscle strength does not parallel the decline in muscle 

mass [10]. Biomarkers reflecting muscle strength 

decline in the early stage have only been scarcely 

investigated, especially in older adults with normal or 

low HGS. In recent years, studies have shown that all 

the pathological bases of aging can cause metabolic 

reactions and that there is a “metabolic clock” that 

controls aging [11]. Thus, as products of metabolic 

reactions, metabolites play an important role in 

physiological and pathological aging [12, 13], making 

metabolomics an important tool for the non-invasive 

identification and quantification of biomarkers in 

biological matrices. However, studies using metabolo-

mics to investigate the metabolites associated with HGS 

decline in older adults are limited. 

 

The metabolic capacity of the human body is influenced 

by the gut microbiota and its interactions with host cells 

[14–16]. Gut microbiota dysbiosis, described as a 

profitless gut microbiota composition and diversity,  

has been proposed to occur during aging. Therefore, it 

has been proven that various age-related conditions, 

such as frailty and sarcopenia, are associated with the 

gut microbiome [17, 18]. The literature supports the 

possible presence of a “gut-muscle axis,” whereby  

gut microbial metabolism influences the functionality  

of muscle cells by producing mediators that drive  

the systemic effects of the gut microbiota [19, 20]. 

However, the potential relationship between the gut 

microbiome and metabolite profiles in older adults with 

low muscle strength is not well understood. 

 

In this study, liquid chromatography-mass spectrometry 

(LC-MS) and 16S ribosomal DNA (rDNA) gene 

sequencing were performed to analyze the metabolome 

of serum and stool samples and the gut microbiome 

composition of stool samples from older adults with 

normal and low HGS. Correlation analysis was used 

to identify potential serum and fecal metabolites 

associated with the decline in HGS in older people. 

We further applied an integrated analysis of the 

microbiome and metabolome profiling to explore  

the correlations between altered gut microbiota  

and metabolites. The workflow is illustrated in  

Figure 1. The identified between-group differences  

for metabolites and their associated intestinal flora 

could indicate interactions between the host and gut 

microbiome in older adults with declining muscle 

strength. 

 

 
 

Figure 1. Overview of the study. 
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MATERIALS AND METHODS 
 

Clinical assessment 
 

Individuals included in the study were recruited from 

the Division of Geriatric Endocrinology of the First 

Affiliated Hospital of Nanjing Medical University from 

2019 to 2020 [21]. Patients with malignant tumors in the 

acute phase of the disease, those with severe cognitive 

impairment, and those taking antibiotics within the past 

month were excluded. Participants were given a form 

with questions concerning several lifestyle variables 

(smoking, alcohol consumption, comorbidities, and 

medications). Body mass index (BMI) was calculated 

based on height and weight measurements. 
 

Handgrip strength measurement 
 

HGS of the dominant hand was measured using a 

portable hydraulic dynamometer (Jamar 5030J1, Jamar 

Technologies, Horsham, PA, USA). The participants 

adopted a seated upright position on a height-adjustable 

chair [22]. The test arm was positioned on a table to 

support the dynamometer’s weight. The participants 

were instructed and verbally encouraged to squeeze 

their handgrip as hard as possible. The best performance 

of the three trials was used in the analysis. Low HGS 

diagnostic cutoffs are <28.0 kg for men and <18.0 kg 

for women, according to the standard of the Asian 

Working Group for Sarcopenia (AWGS 2019) [4]. All 

measurements were performed by the same staff. Other 

methods for muscle mass measurement and physical 

performance, including the usual 4-m gait speed, 5-time 

chair stand test, and the Short Physical Performance 

Battery (SPPB), are specified in the Supplementary 

Materials and Methods. 
 

Blood and stool sample collection 
 

Blood samples were collected from all participants  

by nurses on the second day of overnight fasting. 

Samples were centrifuged at 3,000 rpm for 10 min  

at 4°C to obtain the serum, and then aliquoted and 

stored at −80°C until further analyses. Stool samples  

were collected within three days of admission using a 

Commode specimen collection system (Thermo Fisher 

Scientific, Waltham, MA, USA), aliquoted, frozen 

immediately in liquid nitrogen, and then stored at 

−80°C before further processing. 
 

Untargeted metabolomics analysis of serum and 

stool samples 
 

All the samples were thawed on ice before extraction 
using a solvent with a vortex or grinding step before 

centrifugation. After centrifugation, the reconstituted 

solution was added to the supernatant with a 60-s 

vortexing step before centrifugation for reconstitution. 

The supernatants were collected for metabolomic 

profiling using LC-MS analysis. A quality control (QC) 

sample was prepared by mixing equal volumes of the 

supernatant of each sample to assess the analytical 

variability. Untargeted metabolomics LC-MS analysis 

was performed, and data were collected in both the 

positive- and negative-ion modes to improve the 

coverage of metabolites. Refer to the Supplementary 

Materials and Methods for further details. 

 

Raw LC-MS data were extracted and processed using 

multivariate statistical analysis (Partial Least Squares 

Method-Discriminant Analysis, PLS-DA) to establish a 

relationship model between the metabolite and sample 

groups. Univariate methods (Wilcoxon test and two-

tailed Student’s t-test) were used to detect the metabolites 

whose levels were significantly altered; then, correction 

was performed by calculating the false discovery rate 

(FDR) to ensure that the metabolite peaks were 

reproducibly detected. Metabolites responsible for the 

difference in the metabolic profile scan between the 

groups were obtained based on a variable importance in 

the projection (VIP) threshold of 1 from the 7-fold cross-

validated PLS-DA model. By combining the univariate 

and multivariate statistical analyses, metabolites whose 

levels were significantly altered between groups were 

acquired under the following conditions: p-value < 0.05, 

q-value < 0.05, fold change < 0.8 or > 1.2, and VIP > 1. 

 

The online HMDB database (http://www.hmdb.ca)  

was used to annotate metabolites by matching the  

exact molecular mass data (m/z) of the samples with 

those from the database [23]. The KEGG database 

(https://www.genome.jp/kegg/) was used to understand 

the functional characteristics of the differential 

metabolites and to determine the main biochemical 

metabolic pathways and signal transduction associated 

with the metabolites. A hypergeometric test was used to 

identify the significantly enriched pathway entries. 

Metabolic pathways with a p-value < 0.05 were deemed 

to be significantly enriched by differential metabolites. 

 

16S rDNA microbiome analysis of stool samples 

 

DNA was extracted from all fecal samples and the 16S 

rDNA was PCR-amplified and sequenced on the MiSeq 

system (Illumina, San Diego, CA, USA). The sequence 

reads with a similarity greater than 97% were identified 

for further analysis. Operational taxonomic unit (OTU) 

representative sequences were taxonomically classified 

using the Ribosomal Database Project (RDP) Classifier, 

and community composition was analyzed for each 
taxonomic rank: domain, kingdom, phylum, class, order, 

family, genus, and species. The complete protocol can be 

found in the Supplementary Materials and Methods. 

http://www.hmdb.ca/
https://www.genome.jp/kegg/
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Table 1. Sarcopenia-associated parameters in accordance with handgrip strength in 15 participants. 

Normal HGS 

Gender 
Age  

(years) 

Muscle strength Muscle mass Physical performance 

HGS (kg) RASM (kg/m2) 
4-m gait  

speed (m/s) 
5-time chair  
stand test (s) 

SPPB 

M† 82 29.80 5.80 0.99 17.01 8 

M† 81 29.90 6.06 1.20 15.40 10 

M 79 29.93 7.07 1.26 11.18 12 

M 83 31.10 6.41 1.72 9.39 12 

M† 87 34.30 5.56 0.80 ‒ 5 

F† 82 20.00 5.35 1.29 11.55 9 

F† 77 20.10 4.75 1.15 ‒ 8 

Avg ± std 81.57 ± 3.15 27.88 ± 5.57 5.86 ± 0.75 1.20 ± 0.28 12.91 ± 3.17 9 ± 2 

Low HGS (Male:  28 kg, Female:  18 kg) 

Gender 
Age  

(years) 

Muscle strength Muscle mass Physical performance 

HGS (kg) RASM (kg/m2) 
4-m gait  

speed (m/s) 
5-time chair  
stand test (s) 

SPPB 

M‡ 81 27.10 4.66 1.04 18.30 9 

M‡ 90 18.80 5.45 ‒ ‒ 0 

M‡ 84 15.00 5.95 ‒ ‒ 0 

M‡ 80 26.67 5.38 0.72 18.97 6 

M‡ 90 23.37 5.19 1.16 15.34 10 

M‡ 85 24.40 5.98 0.98 24.50 9 

F* 80 15.90 5.98 1.26 12.07 11 

F* 87 10.37 5.82 0.57 23.17 4 

Avg ± std 84.63 ± 4.14 20.20 ± 6.11 5.55 ± 0.47 0.95 ± 0.26 18.73 ± 4.67 6 ± 4 

P-value 0.1364 0.0252 0.3559 0.1364 0.0427 0.1326 

Abbreviations: M: male; F: female; HGS: handgrip strength; RASM: relative appendicular skeletal muscle mass; SPPB: Short 
Physical Performance Battery; -: Participants cannot complete the test. *: Possible sarcopenia, †: Sarcopenia, ‡: Severe 
sarcopenia (according to the diagnosis criteria of Asian Working Group for Sarcopenia, 2019). 

 

Spearman’s multiomics correlation analysis 

 

Spearman correlation analysis based on the R package 

(v3.4.1) was used to analyze the correlation between the 

metabolites and microbiota. Spearman’s correlation 

coefficients were also computed for the relationships 

between the HGS values and individual metabolomic 

features. Differences were considered significant when 

the p-value was < 0.05 and |r| was > 0.5. If r < 0, there 

was a negative correlation; otherwise, there was a 

positive one. 

 
Data availability 

 
Raw LC-MS data are available in the  

MetaboLights repository (accession no. MTBLS4367 
and MTBLS4372). The sequencing data of the 16S 

rDNA were deposited in the BioProject database 

(accession no. PRJNA787524). 

RESULTS 
 

Clinical data of study participants 

 

Eight inpatients with low HGS and seven age- and 

environment-matched inpatients with normal HGS  

(age, 77–90 years) were recruited. HGS is an important 

component of sarcopenia diagnosis and a representative 

indicator of muscle strength. Thus, we also collected 

information regarding other components of sarcopenia, 

including appendicular skeletal muscle (ASM), 4-m  

gait speed, 5-time chair-stand test, and SPPB (Table 1). 

The clinical characteristics of the study participants are 

shown in Table 2. There were no statistically significant 

differences between the two groups with regard to age, 

BMI, health behaviors, ASM, 4-m gait speed, or SPPB. 
The total number of comorbidities and medications, 

especially, diabetes and antidiabetic medications, was 

higher in the low-HGS group than in the normal group. 
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Table 2. Clinical characteristics of the study participants. 

 
Handgrip strength 

P-value 
Normal (n = 7) Low (n = 8) 

Age, years 81.57 ± 3.15 84.63 ± 4.14 0.1364 

Sex (male/female) 5/2 6/2 N/A 

BMI, kg/m2 24.00 ± 1.61 23.26 ± 2.43 0.5062 

Health behavior (n (%))    

Smoking 2 (29%) 3 (38%) 0.7144 

Alcohol drinking 1 (14%) 2 (25%) 0.6048 

Total number of comorbidities (n (%)) 0.96 ± 0.11 2.75 ± 0.37 0.0024 

Hypertension 2 (28.57%) 5 (62.50%) 0.1888 

Diabetes mellitus 0 (0%) 5 (62.50%) 0.0104 

Stroke  0 (0%) 3 (37.50%) 0.0701 

Coronary artery disease  0 (0%) 1 (12.50%) 0.3329 

Total number of medications (n (%)) 1.43 ± 0.53 5.25 ± 0.84 0.0026 

Psycho-drugs 0 (0%) 0 (0%) N/A 

Antidiabetic agent  0 (0%) 5 (62.50%) 0.0104 

Statin 3 (42.86%) 1 (12.50%) 0.1847 

β-blocker 0 (0%) 1 (12.50%) 0.3329 

Antiplatelet 2 (28.57%) 1 (12.50%) 0.4376 

ACEi and/or ARB 1 (14.29%) 3 (37.50%) 0.3104 

β2 sympathomimetic inhaler 0 (0%) 0 (0%) N/A 

 
Similar to the HGS, a 5-time chair stand test was 

another evaluation method used to determine “Possible 

sarcopenia”. The time for the test increased in the low-

HGS group. 

 

Serum metabolomics analysis 

 

Metabolomics analysis yielded 386 metabolites in the 

negative-ion mode and 861 metabolites in the positive-

ion mode. Supervised PLS-DA revealed that the 

metabolomic profiles differed between the normal and 

low HGS groups (Figure 2A). In total, the abundance of 

67 annotated metabolites was found to be significantly 

different between the two groups, with 25 metabolites 

having higher concentrations and 42 metabolites having 

lower concentrations in the serum of older adults with 

low HGS (Supplementary Table 1). Class information 

was available for only 47 of these 67 metabolites, 

according to the Human Metabolome Database (HMDB 

version 5.0). Analysis of these metabolites showed  

that compared with the normal group, the shifts in the 

low-HGS group mainly included benzene and their 

(substituted) derivatives, cinnamic acids and their 

derivatives, and fatty acids (Figure 2B). In particular, 

the levels of metabolites belonging to the class of 

cinnamic acids and their derivatives were lower in the 
serum of older adults with low HGS, while the levels of 

metabolites belonging to the class of fatty acids were 

higher in the normal group (Supplementary Table 1). 

KEGG metabolic pathway analysis revealed a significant 

enrichment of 10 pathways, including linoleic acid 

metabolism, biosynthesis of unsaturated fatty acids, and 

ABC transporters (Figure 2C, Supplementary Table 2). 

The results revealed alterations in serum metabolic 

characteristics in subjects with decreased HGS. 

 

To evaluate the relationship between the HGS value and 

the 67 annotated metabolites, Spearman’s correlation 

analysis was performed. Six metabolites were positively 

correlated with the HGS values: cinnamoylglycine,  

4-methoxycinnamic acid, (e)-3,4,5-trimethoxycinnamic 

acid, dimethyl ((e)-(1-methoxy-2-oxo-1,2-dihydro-3h-

indol-3-ylidene)methyl)carbonodithioimidate, dalpanin, 

and Af4878000 (Figure 3). Among these metabolites,  

the appearance of cinnamoylglycine, 4-methoxycinnamic 

acid, and (e)-3,4,5-trimethoxycinnamic acid suggested 

that cinnamic acid metabolism may play a role in the 

decline of HGS in older adults. 

 

Fecal metabolomics analysis 

 

In total, 1268 metabolites were identified in  

the negative-ion mode and 2255 metabolites were 

identified in the positive-ion mode. PLS-DA showed  

a clear separation trend between the normal and low 
HGS groups (Figure 4A). All fecal metabolites with 

annotations that were higher (n = 78) or lower (n = 99) 

in the low-HGS group are shown in Supplementary 
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Table 3. Analysis of 96 metabolites for which class 

information was available revealed that the levels of 

fecal metabolites were altered in the low-HGS group; 

these metabolites mainly included benzene and its 

(substituted) derivatives, carboxylic acids and their 

derivatives, flavonoids, and phenol ethers (Figure 4B). 

Moreover, the relative concentration of metabolites 

belonging to the class of cinnamic acids and their 

derivatives also decreased in the feces of older 

subjects with low HGS (Supplementary Table 3). 

KEGG metabolic pathway mapping showed that  

the metabolites were significantly enriched in seven 

pathways, including cholesterol metabolism, primary 

bile acid biosynthesis, and bile secretion (Figure 4C, 

Supplementary Table 4). 

 

Similarly, to determine the differences that could be 

associated with HGS, we examined the correlations 

between the relative concentrations of the annotated 

metabolites and HGS values. Thirteen metabolites  

were found to be associated with changes in HGS 

values, of which four were positively correlated with 

HGS and nine were negatively correlated with HGS 

(Supplementary Figure 1). Most of the metabolites  

were drugs and their metabolic derivatives, such as 

sitagliptin, pioglitazone, emedastine, and venlafaxine. 

Gamma-glu-gln and histidylphenylalanine, which were 

included in the class of carboxylic acids and their 

derivatives, showed a positive correlation with HGS. 

Indole-2-carboxylic acid was positively correlated  

with HGS. Importantly, one metabolite from the class  

of cinnamic acids and their derivatives, (2e)-5-

hydroxyferulic acid, was also positively correlated with 

HGS. These results suggest that the fecal metabolite 

profiles between the normal and low-HGS groups 

differed. 

 

 
 

Figure 2. Serum metabolomics analysis. (A) PLS-DA analysis of the grouped discrimination by the first two principal components (PCs) 

in negative and positive ion modes. (B) Pie graph of the class composition according to the number of altered metabolites. (C) Bubble chart 
of the pathway enrichment analysis of differential metabolites analyzed in the negative- and positive-ion modes. RichFactor was the 
number of differential metabolites divided by the identified metabolites annotated to the pathway. 
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Microbiome analysis 

 

Previous studies demonstrated a surprisingly notable 

effect of the gut microbiome on mammalian blood 

metabolites [24] and approximately 58% of metabolites 

detected in human body originate from microbiota  

[25]. To identify the changes in the gut microbiota  

of older adults with low HGS, we performed 16S  

rDNA amplicon sequencing of fecal samples from 15 

participants. In total, 543 OTUs were detected, and 349 

OTUs overlapped between the normal and low-HGS 

groups (Figure 5A). The number of unique OTUs in  

the low-HGS group was slightly higher than that in the 

normal group, indicating a more abundant microbiota  

in individuals with low HGS. According to the species 

associated OTUs and sequence number, rarefaction 

curves of the samples were calculated, and a flat trend 

indicated that the sampling size was reasonable (Figure 

5B). Gut microbial α-diversity was lower in the low-

HGS group than in the normal group, as calculated 

using the Simpson indices (Figure 5C). For β-diversity, 

UPGMA cluster analysis based on weighted UniFrac 

analysis was performed, and the phylogenetic distance 

between the samples was calculated (Figure 5D). We 

observed a higher β-diversity in the gut microbiota  

of older adults with normal HGS, indicating a more 

heterogeneous community structure among participants 

with normal HGS than among those with low HGS 

(Figure 5E). 

Next, the gut microbial composition abundances  

in the stool samples were analyzed at the phylum  

and genus levels (Figure 5F, 5G). At the phylum level,  

Bacteroidetes and Firmicutes were the predominant phyla.  

There were no significant differences in microbiome  

composition abundance at the phylum level between the  

normal and low-HGS groups. At the genus level, the  

relative abundance of the genera Parabacteroides and 

Intestinibacter increased in the low-HGS group (Table 3). 

Furthermore, we used linear discriminant analysis effect 

size (LEfSe) to generate a cladogram to identify specific 

bacteria associated with decreased HGS. The results 

showed that members from Bacteroidaceae, Bacteroides, 

Selenomonadales, Negativicutes, Porphyromonadaceae, 

Parabacteroides, Intestinibacter, Enterococcus, and 

Enterococcaceae were the most abundant microbiota in 

the low-HGS group (all | Linear discriminant analysis 

(LDA) scores (log10) | > 3.6). However, participants with 

normal HGS were mainly characterized by higher 

abundances of Sporobacter and Terrisporobacter (all | 

LDA scores (log10) | > 3.6) (Figure 5H). The data 

revealed pronounced differences in microbiota between 

the two groups. 

 

Correlations between gut microbiota and serum/ 

fecal metabolites 

 

To explore the potential dependencies between 

microbiome composition, host metabolism, and the 

 

 

 
Figure 3. Correlation analysis of the HGS values and differential metabolites in serum samples. 
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metabolome, we examined the correlations between  

the two datasets. Spearman’s correlation coefficient  

was computed between the relative abundance of  

HGS-associated species at the genus level and the 

different serum and fecal metabolites. Enrichment of 

members from the genus Parabacteroides in stool 

samples from older adults with low HGS was negatively 

correlated with the six serum metabolites whose  

levels increased with the HGS value (Figure 6A).  

The correlation coefficient between cinnamoylglycine 

and Parabacteroides was the most significant (|r| = 

0.82). Moreover, Intestinibacter, whose abundance  

also increased in older adults with low HGS,  

correlated negatively with cinnamoylglycine. For fecal 

metabolites associated with low HGS, the abundance  

of Parabacteroides was also negatively correlated  

with (2e)-5-hydroxyferulic acid, a cinnamic acid 

derivative (Figure 6B). The abundances of the genera 

Parabacteroides and Intestinibacter were negatively 

correlated with indole-2-carboxylic acid. Correlations 

between serum and fecal metabolites altered by HGS 

were also analyzed. Six serum metabolites showed 

positive correlations with HGS and were positively 

correlated with fecal indole-2-carboxylic acid and 

gamma-glu-gln levels. Serum cinnamoylglycine was 

positively correlated with fecal (2e)-5-hydroxyferulic 

acid, which also belongs to the class cinnamic acids and 

their derivatives (Figure 6C). These results indicated 

that alterations in the levels of serum metabolites and 

their related fecal metabolites in the low-HGS group 

may be associated with the gut microbiota. 
 

DISCUSSION 
 

Declining muscle strength with aging is almost 

inevitable; however, the metabolic mechanisms 

underlying this phenomenon remain poorly understood. 

Using an LC-MS-based metabolomics approach, we 

 

 
 

Figure 4. Fecal metabolomics analysis. (A) PLS-DA analysis of the grouped discrimination by the first two principal components (PCs) in 

the negative- and positive-ion modes. (B) Pie graph of the class composition according to the number of altered metabolites. (C) Bubble 
chart of pathway enrichment analysis of differential metabolites analyzed in the negative- and positive-ion modes. RichFactor was the 
number of differential metabolites divided by the identified metabolites annotated to the pathway. 
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Figure 5. Microbiome analysis. (A) The Core-Pan graph of OTU distribution between the two groups. (B) The rarefaction curve of 

random sequences per sample and their corresponding number of observed species. (C) Species diversity differences estimated on the 
basis of the observed Sobs, Chao, Ace, Shannon, Simpson, and Coverage indices. (D) UPGMA cluster analysis of 15 samples at the genus 
level. A1–A7 represent the normal handgrip strength group; B8–B15 represents the low handgrip strength group. (E) β-diversity box-plot 
constructed on the basis of Weighted UniFrac analysis between the two groups. (F) The percentages of gut microbiota diversity at the 
phylum level. (G) The percentages of gut microbiota diversity at the genus level. (H) Linear discriminant analysis (LDA) integrated with 
effect size (LEfSe). Left: the phylogenetic distribution of microbiota in the Cladogram. Right: the differences in the abundance of microbiota. 
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Table 3. Relative abundance of fecal microbiota at the genus level. 

Bacteria species 
Normal HGS Low HGS 

P-value FDR 
Relative abundance (%) 

Parabacteroides 0.400073 6.889853 0.006536 0.466388 

Intestinibacter 0.004498 0.027854 0.008969 0.466388 

 
investigated the serum and fecal metabolites whose 

levels were altered in older adults with normal and low 

HGS. In addition to the metabolites belonging to the 

class of benzene and its (substituted) derivatives, the 

shifts in the low-HGS group mainly included cinnamic 

acids and derivatives. 4-methoxycinnamic acid, (e)-

3,4,5-trimethoxycinnamic acid, sinapinic acid, and (2e)-

3-(3,4-dimethoxyphenyl) acrylic acid were the four 

metabolites belonging to the class of cinnamic acids  

and their derivatives, and their relative concentrations 

decreased in the serum of older adults with low  

HGS. In particular, 4-methoxycinnamic acid and (e)- 

3,4,5-trimethoxycinnamic acid levels were positively 

correlated with HGS. Fecal metabolites of this class 

also decreased in the low-HGS group. Cinnamic acids 

and their derivatives, both synthetic and derived from 

natural sources, have been reported to exert a wide 

range of biological activities, including anticancer, 

hepatoprotective, neuroprotective, cardioprotective, and 

antidiabetic effects, and potent functions in muscle  

cell proliferation, differentiation, and development  

[26–30]. Sinapinic acid is one of the most common 

hydroxycinnamic acids; it is widespread in the plant 

kingdom [31]. It has also been reported to be a major 

active component of traditional Chinese remedies [32]. 

The antioxidant and anti-inflammatory activities of 

sinapinic acid have been reported to be highly significant. 

Sinapinic acid scavenges native peroxynitrite (ONOO−) 

and is more efficient than its alkyl esters [33, 34].  

Lee et al. [35] showed that sinapinic acid modulates 

inflammation by suppressing NOD-like receptor pyrin 

domain-containing 3 (NLRP3) inflammasome activation. 

In addition, supplementation with sinapinic acid 

affected the intestinal microbiome by improving the 

proportion of the butyrate acid producers Blautia and 

Dorea and inhibiting the growth of bacterial species 

associated with diseases and inflammation, such as 

Bacteroides [36]. Although further studies on other 

cinnamic acids and their derivatives are needed, the 

above findings, including those of our study, fully 

suggest the potential role of this class of metabolites  

in aging and related diseases. 

 

Cinnamoylglycine, another metabolite involved in  

the metabolism of cinnamic acid, is a glycine conjugate 

of cinnamic acid; it belongs to the class of carboxylic 

acids and their derivatives. In the present study, the 

relative concentration of cinnamoylglycine decreased 

with the decrease in the HGS. We also found that the 

levels of hippurate, a glycine conjugate of benzoic acid,

 

 
 

Figure 6. Correlations between gut microbiota and serum/fecal metabolites. (A) Spearman’s correlation coefficient between the 

genera Parabacteroides and Intestinibacter and serum metabolites. (B) Spearman’s correlation coefficient between the genera 
Parabacteroides and Intestinibacter and fecal metabolites. (C) Spearman’s correlation coefficient between the serum and fecal metabolites. 
Differences were considered significant when the p-value was < 0.05 and |r| was > 0.5. If r < 0, there was a negative correlation. 
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decreased in the serum of older adults with  

declining HGS. These two metabolites are derived  

from catabolism of dietary polyphenols found in  

plant-based foods, which is performed by the intestinal 

microflora [24, 37]. Hippuric acid in plasma has been 

recognized as a plausible hallmark of frailty and 

geriatric syndromes [38]. Lustgarten et al. found that 

cinnamoylglycine, which is related to gut bacterial 

metabolism, was negatively associated with muscle 

quality [39] and physical function in older adults  

[40]. Cinnamoylglycine also predicted a higher gut 

microbiome diversity and was linked to a lower 

incidence of type 2 diabetes [41]. Although the current 

findings regarding the role of cinnamoylglycine in 

muscle strength and body function are inconsistent, 

cinnamoylglycine has the potential to serve as a 

biomarker of age-related changes in muscle strength; 

this warrants further studies. 

 

A few integrated studies regarding the relationship 

between serum, fecal metabolomics, and gut microbiome 

and muscle dysfunction have been published [42, 43]. 

The microbial species and their associated metabolites 

involved in HGS-associated alterations were identified 

in the present study. We found that the abundance of 

two genera, Parabacteroides and Intestinibacter, which 

belong to the phyla Bacteroidetes and Firmicutes, 
respectively, increased in the low-HGS group. The two 

gut commensal bacteria have been reported to produce 

short-chain fatty acids [44, 45]. Parabacteroides 

produces acetate to reduce neutrophil infiltration [45] 

and can be affected by prebiotic supplementation  

in frail older subjects [46]. The metabolic benefits  

of Parabacteroides distasonis in decreasing weight 

gain, hyperglycemia, and hepatic steatosis have  

been previously studied [47]. A higher abundance  

of Intestinibacter, which can produce butyrate, is 

associated with the reduced incidence of type 2 diabetes 

[44] and its abundance decreases immediately after 

metformin treatment [48, 49]. A recent study on 

coronavirus disease 2019 (COVID-19) found that 

Intestinibacter bartlettii was positively correlated with 

anorexia and fatigue in survivors of COVID-19 after 

discharge from the hospital [50]. We found that the 

members of Parabacteroides, which were enriched in 

stool samples of low-HGS older adults, were negatively 

related to six serum metabolites that were associated 

with HGS, including cinnamoylglycine, a cinnamic  

acid derivative. The abundance of Parabacteroides was 

also negatively correlated with fecal (2e)-5-hydroxy- 

ferulic acid, which is a cinnamic acid derivative. The 

abundances of members from Parabacteroides and 

Intestinibacter were negatively correlated with the fecal 
metabolite indole-2-carboxylic acid. The discovery  

of these microbial metabolites and their correlated 

microbiota in older adults with low HGS indicates that 

microbial metabolites, along with other traditional 

markers, can be used as potential biomarkers for muscle 

strength decline. 

 
This study has limitations including small sample  

size. Although environmental-matched controls were 

recruited and participated, an important limitation was 

the lack of dietary control among participants. Dietary 

patterns consistently correlate with groups of bacteria 

with shared functional roles in both health and disease 

[51]. The influence of dietary protein on the gut 

microbiome and its impact on sarcopenia also has been 

explored [52]. We will expand the sample size and 

consider various influencing factors, including diet, in 

future studies. 

 
In summary, this work demonstrates that the levels of 

serum and fecal metabolites, especially, gut microbiota-

related metabolites, are notably altered in older people 

with low HGS. The findings of the current study 

suggest potential metabolic underpinnings for HGS 

and provide a basis for the further identification of 

biomarkers of muscle strength decline in older adults. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Materials and Methods 
 

Skeletal muscle mass measurement 

 

Limb fat-free mass (the sum of lean mass in the arms  

and legs) obtained from whole-body dual-energy X-ray 

absorptiometry (DXA; Hologic Inc., Bedford, MA, USA) 

was used to quantify for appendicular skeletal muscle 

(ASM) mass. Height-adjusted relative appendicular 

skeletal muscle mass (RASM) was calculated (ASM/ 

height2, kg/m2). 

 

Physical performance 

 

4-m gait speed 

Gait speed was evaluated using a 4-meter walk,  

which served as an indicator of physical performance. 

The participants walked straight for 4 m at their usual 

pace, and skilled staff measured the time they spent 

performing this task using the same stopwatch. Each 

participant was asked to perform the test twice, and the 

shortest time was recorded for the analysis. 

 

5-time chair stand test 

The chair stand test, also known as the chair rise  

test, was used as a proxy for leg muscle strength. 

Participants were asked to stand and sit in a chair five 

times as quickly as possible with their arms crossed 

over the chest, and skilled staff measured the time they 

spent performing this task using a stopwatch. 

 

Short physical performance battery (SPPB) 

The SPPB is a composite test that includes an 

assessment of gait speed and the balance and chair stand 

test [1]. For balance, participants were asked to remain 

standing with their feet as close together as possible, 

then move to a semi-tandem position (heel of one foot 

alongside the big toe of the other foot), and finally,  

to a tandem position (heel of one foot directly in front 

of the other foot). Each position was held for 10 s. Each 

test was scored from 0 (worst performance) to 4 (best 

performance), and a total score was obtained for the 

entire battery, which was the sum of all three tests and 

varied between 0 and 12 [2]. 
 

Untargeted metabolomics analysis of serum and 

stool samples 
 

Serum samples were thawed on ice before extraction 

using 100 μL of serum and 300 μL of solvent 

(methanol/ACN (1:1)) with a 60-s vortex step before 

centrifugation at 4000 × g. After centrifugation, 150 μL 

of the reconstituted solution (methanol: H2O = 1:1, v: v) 

was added to 300 μL of the supernatant with a 60-s 

vortex step before centrifugation at 4000 × g for 

reconstitution. For extraction, first, the feces samples 

were thawed on ice; next, 25 mg feces and 800 μL 

solvent (methanol/acetonitrile/ACN (2:2:1)) were ground 

together for 5 min before centrifugation at 25000 rpm 

for 15 min at 4°C. After centrifugation, 600 μL of  

the reconstituted solution (methanol: H2O = 1:9, v: v) 

was added to 600 μL of the supernatant with a 60-s 

vortex step before centrifugation at 25000 rpm for 

reconstitution. The supernatants were collected for 

metabolomic profiling using LC-MS analysis. A quality 

control (QC) sample was prepared by mixing equal 

volumes (10 μL) of the supernatants of each sample to 

assess the analytical variability. 

 

Untargeted metabolomics LC-MS analysis was 

performed on a Waters 2D UPLC (Waters, Milford, 

MA, USA) coupled to a Q-Exactive mass spectrometer 

(Thermo Fisher Scientific, Waltham, MA, USA) with  

a heated electrospray ionization (HESI) source and 

controlled using the Xcalibur 2.3 software program 

(Thermo Fisher Scientific, Waltham, MA, USA). Data 

were collected in both the positive- and negative- 

ion modes to improve metabolite coverage. In positive-

ion mode, metabolites in the sample are converted  

to charged ions by electrospray ionization (ESI) or 

atmospheric pressure chemical ionization (APCI) 

plasma sources and then detected by mass spectrometry 

(MS). This mode is mainly used to detect metabolites 

with a strong polarity because these metabolites are 

prone to ion formation during electrospray ionization or 

atmospheric pressure chemical ionization. In negative-

ion mode, electrospray ionization (ESI) or atmospheric 

pressure chemical ionization (APCI) plasma sources are 

also used, but the metabolites in the sample lose an 

electron to form negative ions before being detected by 

mass spectrometry. This mode is mainly used to detect 

metabolites with weak polarity or no polarity, because 

the negative ions formed by these metabolites after 

losing electrons are more stable. A Waters ACQUITY 

UPLC BEH C18 column (1.7 μm, 2.1 mm × 100  

mm, Waters, USA) and a mobile phase consisting  

of 0.1% formic acid (A) and acetonitrile (B) in the 

positive mode and 10 mM ammonium formate (A)  

and acetonitrile (B) in the negative mode were used for 

chromatographic separation. The column was maintained 

at 45°C and the gradient conditions were as follows: 0–

1 min, 2% B; 1–9 min, 2%–98% B; 9–12 min, 98% B; 

12–12.1 min, 98 % B to 2 % B; and 12.1–15 min, 2% B. 

The flow rate was 0.35 mL/min and the injection 

volume was 5 μL. The mass spectrometric settings for 

the positive/negative ionization modes were as follows: 

spray voltage, 3.8/−3.2 kV; sheath gas flow rate, 40 

arbitrary units; aux gas flow rate, 10 arbitrary units;  
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aux gas heater temperature, 350°C; and capillary 

temperature, 320°C. The full scan range was 70–1050  

m/z with a resolution of 70000, and the automatic  

gain control (AGC) target for MS acquisitions was set 

to 3e6 with a maximum ion injection time of 100 ms. 

The top three precursors were selected for subsequent 

MS fragmentation with a maximum ion injection time 

of 50 ms and a resolution of 17500, the AGC was 1e5. 

The stepped normalized collision energies were set to 

20 eV, 40 eV, and 60 eV. 

 

16S rDNA microbiome analysis of stool samples 

 

16S rDNA sequencing 

DNA was extracted from all fecal samples using the 

MagPure Stool DNA KF kit B (Magen, Guangzhou, 

China) following the manufacturer’s instructions. 16S 

rDNA was PCR-amplified and sequenced using the 

MiSeq system (Illumina, San Diego, CA, USA). The 

primer sequences used were F: 5′-GTGCCAGCMG 

CCGCGGTAA-3′ and R: 5′-GGACTACHVGGGTWT 

CTAAT-3′. 

 

Operational taxonomic unit (OTU) clustering 

The sequence reads with a similarity greater  

than 97% were identified and clustered into an OTU 

using the UPARSE software [3]. The representative 

OUT sequences were taxonomically classified using  

the Ribosomal Database Project (RDP) Classifier,  

and the community composition was analyzed for  

each taxonomic rank: domain, kingdom, phylum, class, 

order, family, genus, and species. 

 

Rarefaction curve  

A rarefaction curve was generated using the MOTHUR 

package (v1.31.2) [4] for the analysis of richness. 

 

Diversity analysis 

Alpha diversity analysis was performed to identify the 

complexity of the species diversity for each sample 

(group). To assess the diversity of samples (groups)  

for species complexity, beta diversity calculations were 

performed. Alpha and beta diversities were estimated 

using MOTHUR (v1.31.2) and QIIME (v1.8.0) [5] at 

the OTU level, respectively. The sample clustering was 

performed using QIIME (v1.8.0) based on UPGMA. 

 

Statistical analysis 

Statistical analysis was performed using the R  

(v3.4.1) software. Continuous variables are presented  

as medians (interquartile ranges), while categorical  

data are expressed as numbers and percentages (%). 

Significant differences in species and functions were 

evaluated using a Wilcox-test or Kruskal-Test. Linear 

discriminant analysis (LDA) coupled with effect size 

(LEfSe) was utilized to evaluate differentially abundant 

taxa. 
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Supplementary Figure 
 

 
 

Supplementary Figure 1. Correlation analysis of the HGS value and differential metabolites in stool samples. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1 and 3. 

 

Supplementary Table 1. Between-group metabolite differences in serum samples when comparing with low 
handgrip strength group. 
 

Supplementary Table 2. Significantly enriched pathways of differential metabolites in serum samples between 
normal and low handgrip strength groups. 

Metabolism pathway Differential metabolites 

Protein digestion and absorption Indole; P-cresol; L-proline 

Phenylalanine, tyrosine and tryptophan biosynthesis Indole 

Biosynthesis of unsaturated fatty acids 
8z,11z,14z-eicosatrienoic acid; 11(z),14(z)-eicosadienoic acid; 
Linoleic acid 

ABC transporters D-ribose; D-(-)-mannitol; L-proline 

Linoleic acid metabolism 8z,11z,14z-eicosatrienoic acid; Linoleic acid 

Mineral absorption L-proline 

Pentose phosphate pathway D-ribose 

Central carbon metabolism in cancer L-proline 

Aminoacyl-tRNA biosynthesis L-proline 

Fructose and mannose metabolism D-(-)-mannitol 

 

Supplementary Table 3. Between-group metabolite differences in fecal samples when comparing with low 
handgrip strength group. 
 

Supplementary Table 4. Significantly enriched pathways of differential metabolites in fecal samples between 
normal and low handgrip strength groups. 

Metabolism pathway Differential metabolites 

Cholesterol metabolism Glycocholic acid; Glycochenodeoxycholate; Glycocholate 

Primary bile acid biosynthesis Glycocholic acid; Glycochenodeoxycholate 

Purine metabolism Hypoxanthine; Inosine 

Bile secretion Glycocholic acid; Glycochenodeoxycholate 

Pantothenate and CoA biosynthesis Panthenol 

Tryptophan metabolism L-3-hydroxykynurenine; 3-(indol-3-yl)-2-oxobutyric acid 

One carbon pool by folate Folinic acid 

 


