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ABSTRACT 
 

Background: Multiple myeloma (MM) is an incurable B-cell malignancy, but with the emergence of 
immunotherapy, a potential cure is hopeful. The individualized interaction between the tumor and bone marrow 
(BM) microenvironment determines the response to immunotherapy. Angiogenesis is a constant hallmark of the 
BM microenvironment in MM. However, little is known about the potency ability of angiogenesis-associated 
genes (AAGs) to regulate the immune microenvironment of MM patients. 
Methods: We comprehensively dissected the associations between angiogenesis and genomic landscapes, 
prognosis, and the immune microenvironment by integrating 36 AAGs. Immunohistochemistry was performed 
to verify the correlation between angiogenic factor expression and patient prognosis. Single-sample gene set 
enrichment analysis was applied to quantify the relative abundance of 28 infiltrating cells. The AAG score was 
constructed using the least absolute shrinkage and selection operator Cox regression model. 
Results: Angiogenesis was closely correlated with MM patient prognosis, and the mutation intensity of the 
AAGs was low. Immunohistochemistry confirmed that high microvessel density predicted poor prognosis. Three 
AAG clusters and two gene clusters with distinct clinical outcomes and immune characteristics were identified. 
The established AAG_score model performed well in predicting patient prognosis and active immunotherapy 
response. The high-AAG_score subgroup was characterized by reduced immune cell infiltration, poor prognosis, 
and inactive immunotherapy response. Multivariate analyses indicated that the AAG_score was strongly robust 
and independent among the prognostic variables. 
Conclusion: This study revealed that angiogenesis is significantly related to MM patient prognosis and immune 
phenotype. Evaluating the AAG signature was conducive to predicting patient response to immunotherapy and 
guiding more efficacious immunotherapy strategies. 
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INTRODUCTION 
 

Multiple myeloma (MM) is a B-cell malignancy 

characterized by the proliferation of clonal plasma cells 

in the bone marrow (BM) and is largely incurable [1]. 

Over the past 20 years, the incidence of MM has 

increased by 126% worldwide [2]. The increasing 

prevalence and high recurrence rate of MM make it a 

major and urgent health challenge. Neovascularization in 

the BM fuels the progression of MM, and a marked 

correlation was observed between the BM microvascular 

density and progression-free survival (PFS) and overall 

survival (OS) in MM patients [3]. Additionally, a 

notable decrease in BM microvascular density is evident 

in patients who successfully achieve remission, in 

contrast to patients who exhibit no response to therapy 

[4]. Although antiangiogenic drugs have demonstrated 

significant efficacy in animal models, their efficacy in 

humans has been less satisfactory. These treatments lead 

to a moderate extension of PFS followed by tumor 

relapse [5]. Additional research is crucial to refine 

treatment regimens and deepen our understanding of 

tumor angiogenesis and the mechanisms driving 

resistance development. 

 

The efficacy limitations and treatment resistance of 

antiangiogenic therapies may be mediated by increased 

hypoxia and acidosis, potentially due to excessive 

pruning of tumor vessels by anti-VEGF therapy in a 

time- and dose-dependent manner [6, 7]. In addition to 

affecting cancer cells and the delivery and efficacy of 

anticancer drugs, hypoxia and acidosis also severely 

impair the function of immune effector cells, such as by 

compromising APC functionality and stimulating T-cell 

responses [8]. Furthermore, hypoxia increases the 

expression of SDF1-α and CCL28, inducing an 

immunosuppressive tumor microenvironment by 

recruiting Tregs, MDSCs, and M2-type TAMs, 

consequently initiating a tolerant state [9–12]. Given the 

recent success of immunotherapies, combinations of 

antiangiogenic agents with immunotherapies have 

become an attractive strategy [13–15]. However, 

implementing such combinations requires a better 

understanding of their interactions and exploring 

methods for selecting patients likely to respond to this 

therapy. Therefore, a comprehensive analysis of the 

relationship between angiogenesis and the immune 

microenvironment is crucial. Because the majority of 

studies have focused on one or two angiogenic genes 

and individual immune cells, our understanding of the 

overall infiltration characteristics of the BM immune 

microenvironment mediated by multiple angiogenic 

molecules in MM is limited. 

 

In the present study, we systematically investigated the 

expression of angiogenesis-associated genes (AAGs) 

and their effects on the clinical features, immune 

landscape, and therapeutic response of MM patients. We 

identified three distinct AAG subtypes of MM via the 

Gene Expression Omnibus (GEO) database. Different 

immune characteristics and biological functions were 

observed among these subgroups. Furthermore, for the 

first time, we propose an AAG_score model for MM 

that integrates the AAG subtype and immune features. 

The model has great robustness and independence in 

helping us predict the clinical prognosis and 

immunotherapeutic response of MM patients. 

 

MATERIALS AND METHODS 
 

Data preprocessing 

 

Gene expression profiles, somatic mutation data, and 

associated clinicopathological data of MM patients were 

retrieved from the Multiple Myeloma Research 

Foundation (MMRF) program (https://research. 

themmrf.org and http://www.themmrf.org). GSE24080 

and GSE5900 from the GEO repository were utilized to 

acquire clinical parameters and normalized gene 

expression data [16, 17]. Patients lacking significant 

clinicopathological or survival information were 

excluded from further analyses. Thirty-six AAGs were 

obtained from the MSigDB Team (Hallmark Gene set) 

(Supplementary Table 1). The maftools R package was 

used to analyze and visualize the masked somatic 

mutation data [18]. 

 

Identification of expression patterns of AAGs 

 

According to the expression of 35 AAGs (for which 

VTN was excluded because it was undetected), an 

unsupervised clustering analysis was carried out to 

identify distinct angiogenesis-related patterns. The 

number and robustness of the clusters were assessed by 

a consensus clustering algorithm [19]. The R package 

ConsensusClusterPlus executed the above steps in 1000 

iterations to ensure the robustness of the classification 

[20]. The gene set variation analysis (GSVA) algorithm 

was applied to the Kyoto Encyclopedia of Genes and 

Genomes (KEGG) gene set (c2.cp.kegg.v7.4) to 

determine the biological functional differences in the 

AAG-related clusters [21]. 

 
Immunohistochemistry (IHC) 

 

After written informed consent was obtained, IHC 

targeting of human CD34 and VEGFA proteins was 

performed on 4-μm-thick bone marrow specimens from 

20 MM patients hospitalized at the Affiliated Hospital 

of Shandong University of Traditional Chinese 

Medicine from July 2020 to July 2022 following 

informed and consent-approved protocols from the 

https://research.themmrf.org/
https://research.themmrf.org/
http://www.themmrf.org/
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ethics committee of the Affiliated Hospital of Shandong 

University of Traditional Chinese Medicine (2020) 

(ethical review No. (010) - KY). After dewaxing and 

rehydration, the sections were incubated with 0.3% 

H2O2 formaldehyde to inhibit endogenous peroxidase 

activity and subjected to microwave antigen retrieval 

and cooled at room temperature. After the cells were 

incubated with 10% goat serum, primary antibodies, 

including mouse anti-human CD34 (1:200; Servicebio, 

China) and mouse anti-human VEGFA (1:200; 

Servicebio, China), were applied. After washing, the 

sections were incubated with a biotinylated anti-mouse 

secondary antibody and labeled with streptavidin-

peroxidase solution (Servicebio). The presence of 

antigen was visualized by staining sections with DAB 

(Servicebio) and counterstaining sections with 

hematoxylin (Servicebio). 

 

Evaluation of VEGFA expression and microvessel 

density (MVD) 

 

The determination of the plasma cell percentage in 

VEGFA-stained bone marrow sections was performed 

manually. The calculation formula for the H score was 

as follows: H score = intensity of staining × % 

positivity. Megakaryocytes strongly express VEGF, so 

they served as internal positive controls [22]. 

 

The degree of angiogenesis was assessed using CD34-

labeled microvessels. The regions with the highest 

number of microvessels were identified at 100× 

magnification and then converted to 400× magnification 

to measure the microvessel numbers in each region. The 

average was obtained as the MVD for each region [23]. 

 

Associations between molecular patterns and the 

clinical characteristics and prognosis of MM patients 

 

To determine the clinical significance of the clusters by 

consensus clustering, we investigated the associations 

between molecular patterns and clinical features and 

between molecular patterns and survival outcomes. The 

clinical variables included age, gender, type, MRI, 

LDH, ALB, and HGB. Moreover, the differences in 

event-free survival (EFS) and overall survival (OS) 

between patients with different patterns were evaluated 

via Kaplan–Meier (K–M) analyses via the survival and 

survminer R packages [24]. 

 

Correlations between molecular patterns and 

immune characteristics 

 

We used single-sample gene set enrichment analysis 
(ssGSEA) to assess the immune microenvironment 

based on the immune gene sets (Supplementary 

Table 2) obtained from the research of Charoentong 

[25], which can provide a better picture of tumor 

conditions than CIBERSORT when tumor cells are 

present in similar proportions. The expression of 

immune checkpoints (ICPs), including PD-L1, CTLA4, 

PD-1, PD-L2, LAG3, and HAVCR2, was subsequently 

compared between the different groups. Additionally, 

the correlations between the AAG_score and the 

differentially expressed ICPs were calculated. 

 

For MM, most related studies have focused on CD138-

positive cells obtained via magnetic cell sorting 

(MACS). Due to the limitations of the sorting methods, 

the remaining nontumor cells were randomly mixed in 

the extracted samples, still characterizing the matrix 

environment of MM in a relatively large sample 

quantity [26]. 

 

Identification of immune-related differentially 

expressed genes (DEGs) and functional annotation 

 

The limma R package was used to determine the DEGs 

between distinct angiogenesis clusters with the cutoff 

criteria |logFC| ≥ 1 and p value < 0.05 [27]. To explore 

the potential biological processes related to the DEGs, 

Gene Ontology (GO) and Kyoto Encyclopedia of Genes 

and Genomes (KEGG) analyses were performed using 

the clusterProfiler R package [28]. The immune-related 

DEGs were determined by the intersection of the 

immune gene set (Supplementary Table 2) and the 

DEGs. 

 

Generation of the angiogenesis-associated prognostic 

AAG_score and nomogram 

 

We performed K–M analysis for immune-related DEGs, 

and 26 genes associated with both OS and EFS were 

selected with the criterion of p < 0.01. Based on the 

combined role of these 26 genes in MM progression, the 

AAG_Score signature was constructed to 

comprehensively assess the role of these molecules in 

patient prognosis, the immune microenvironment, and 

immunotherapy response. Least absolute shrinkage and 

selection operator (LASSO) Cox regression was used to 

reduce the dimensionality, and the 11 most stable 

molecules were selected to construct the AAG_score 

signature with the glmnet R package [29]. The formula is 

as follows: 

 

AAG_score = (0.2874 × expression of IFI16) + 

(−0.1035 × expression of STAP1) + (0.1546 × 

expression of GEMIN6) + (−0.2298 × expression of 

SLC7A7) + (−0.0694 × expression of LST1) + (−0.0011 

× expression of IGHM) + (−0.0710 × expression of 
FUCA1) + (−0.0009 × expression of PD-L2) + (0.1405 

× expression of NUF2) + (−0.1112 × expression of 

CD22) + (−0.0192 × expression of ADAM28). 
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The AAG_score model was validated in the test set and 

the entire cohort. Cox regression analyses were 

subsequently performed to determine the independent 

prognostic factors. The risk prediction model was 

subsequently constructed as a nomogram according to 

the independent prognostic factors. Calibration curve 

analysis and decision curve analysis (DCA) were 

performed to evaluate the performance of the 

constructed nomogram. 

 

Acquisition of immunotherapeutic cohorts 

 

The IMvigor210 immunotherapeutic cohort with RNA-

seq data and complete clinical data was included in our 

study [30]. The IMvigor210 study investigated the 

efficacy of an anti-PD-L1 antibody in advanced or 

metastatic urothelial carcinoma patients. The complete 

transcriptome profile and clinical information were 

downloaded from http://research-pub.gene.com/ 

IMvigor210CoreBiologies/, and the count was 

converted to transcripts per kilobase million (TPM) 

values. The DEseq2 R package was used for 

normalization. 

 

Statistical analysis 

 

Comparisons between two groups were performed using 

the Wilcoxon test. One-way ANOVA and the Kruskal–

Wallis test were used to analyze differences among 

three or more groups. Spearman and distance 

correlation analyses were used for correlation analyses. 

All the statistical analyses were performed using R 

software (version 4.1.0) and its relevant packages. P < 

0.05 was regarded as statistically significant. 
 

RESULTS 
 

Differential expression and genetic mutation 

landscape of AAGs in MM 

 

The detailed flowchart of this work is shown in 

Figure 1. We first evaluated the expression levels of the 

 

 
 

Figure 1. The entire analytical process of the study. 

http://research-pub.gene.com/IMvigor210CoreBiologies/
http://research-pub.gene.com/IMvigor210CoreBiologies/
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35 AAGs in MM samples and normal samples in the 

GSE24080 and GSE5900 datasets. A total of 17 DEGs 

were found (Figure 2A). A protein–protein interaction 

(PPI) network was constructed through Mode to reveal 

the hub genes (Supplementary Figure 1A); among these 

genes, only VEGFA and ITGAV were significantly 

upregulated in MM patients. Immunohistochemistry 

was used to examine the relationship between MVD and 

the expression of VEGFA, a key molecule involved in 

angiogenesis, and survival (Figure 2B). The 

 

 
 

Figure 2. Differential expression of AAGs in MM and generation of angiogenesis subgroups. (A) Differences in the expression of 

AAGs between MM patients and healthy controls (*P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001). (B) Representative images of MM 
patient BM tissues stained with CD34 and VEGFA antibodies (scale bar, 50 µm). Overall survival analyses of the MVD group (C) and VEGFA 
group (D) using Kaplan–Meier curves. (E) Consensus matrix heatmap depicting three gene clusters associated with the AAGs. The colors 
indicate the similarity or dissimilarity among samples at each iteration, with blue indicating higher similarity and white indicating lower 
similarity. (F) PCA based on the AAGs revealed three disjointed populations. Red, cluster A samples; green, cluster B samples; blue, cluster C 
samples. (G) OS analysis of patients in the AAG_clusters using Kaplan–Meier curves. 
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Surv_cutpoint function was used to determine the 

optimal cutoff points for VEGFA (0.7993967) and 

MVD (1.5243902) in the datasets, dividing the patients 

into high- and low-expression groups. K–M analyses 

revealed that patients in the groups with a lower MVD 

and lower expression of VEGFA had better survival 

(Figure 2C, 2D). 

 

Next, we selected bone marrow samples from primary 

MM patients from the MMRF to evaluate the degree of 

variation. The findings revealed that missense 

mutations, SNPs, and C>T mutations were more 

common, with the highest mutation frequency being 

1883 (Supplementary Figure 1B). Furthermore, we 

explored somatic mutations in AAGs in MM. As the 

waterfall diagram depicted (Supplementary Figure 1C), 

only 78 of the 724 (10.77%) MM samples presented 

genetic mutations, and the findings suggested that 

VCAN and COL3A1 are the genes with the highest 

mutation rates among the AAGs. These findings 

indicated the potential role of AAGs, especially the hub 

genes VEGFA and ITGAV, in MM pathogenesis, 

despite the low mutation intensity of these AAGs. 

 

Generation of angiogenesis subgroups in MM 

 

A total of 559 MM patients from the GSE24080 dataset 

were enrolled in this study to determine the relationship 

between angiogenesis and clinical characteristics. To 

explore the relationship between the expression patterns 

of AAGs and MM subtypes, we performed a consensus 

clustering analysis to classify MM patients according to 

the expression levels of these AAGs. The optimal 

number of clusters was determined by evaluating the 

quality of clustering based on consensus values, the 

cumulative distribution function, and the proportion of 

ambiguous clustering. Our findings indicated that the 

optimal clustering variable was 3 (Figure 2E), and MM 

patients in the entire cohort were well dispersed in 

cluster A (n = 171), cluster B (n = 260), and cluster C (n 

= 128). Principal component analysis (PCA) also 

revealed three distinct populations (Figure 2F). The 

clinicopathological variables of these three clusters are 

shown in Supplementary Figure 2A. Furthermore, the 

EFS and OS times of patients in the AAG clusters were 

explored, and a significant difference in EFS was 

observed (Figure 2G); however, the results revealed no 

significant difference in OS. Additionally, GSVA was 

performed, as displayed in Supplementary Figure 2B; 

cluster C was enriched in hematopoiesis-associated 

pathways, metastasis-associated pathways, and immune-

associated pathways, such as hematopoietic cell lineage, 

cell adhesion molecules (CAMs), ECM receptor 
interaction, cytokine receptor interaction, complement 

and coagulation cascade, allograft rejection, and the 

intestinal immune network. Therefore, these three AAG 

clusters exhibited substantial differences in clinical 

characteristics and biological functions. 

 

Characteristics of immunity in different subgroups 

 

To determine the relationship between AAGs and the 

immune characteristics of MM patients, we analyzed the 

associations between the three clusters and 28 immune 

metagenes. As shown in Figure 3A, a significant 

difference was found in the enrichment of the 28 immune 

metagenes among the three clusters, most of which 

exhibited high expression in cluster C cells, especially 

mast cells, myeloid-derived suppressor cells (MDSCs), 

macrophages, regulatory T cells, activated dendritic cells, 

central memory CD8 T cells, neutrophils, activated B 

cells, immature dendritic cells, T follicular helper cells, 

effector memory CD8 T cells, natural killer T cells,  

and eosinophils. Furthermore, we investigated the 

associations between the three clusters and the expression 

of the 6 ICPs. The expression levels of CTLA4 and 

HAVCR2 in cluster C were significantly greater than 

those in the other clusters, while cluster B presented 

lower expression levels of PD-L1 and LAG3 (Figure 3B). 

 

Identification of gene subgroups based on DEGs 

 

To investigate the biological reactions in the three 

angiogenesis subgroups, we obtained DEGs among the 

three AAG clusters with the “limma” package and 

conducted GO and KEGG analyses. GO enrichment 

analysis demonstrated that these genes were enriched 

mainly in immune-associated biological processes 

(Figure 4A). KEGG analysis revealed the enrichment of 

immune- and cancer-associated pathways, indicating that 

angiogenesis is a key factor in regulating immunity and 

tumorigenesis. Then, we separated the immune-related 

genes from the DEGs and utilized K–M analyses to 

screen genes associated with survival. Finally, 26 genes 

associated with both OS and EFS were selected with the 

criterion of p < 0.01. To study the specific regulatory 

mechanisms involved, the patients were divided into  

two different gene clusters according to 26 prognostic 

genes by a consensus clustering method. The clinical 

characteristics of the two groups are shown in Figure 4B. 

K–M analyses revealed that patients with the A subtype 

had shorter OS and EFS than patients with the B subtype 

did (Figure 4C, 4D). Additionally, a boxplot of 

angiogenesis-related genes is presented in Figure 4E; 

only VEGFA, SERPINA5, and MSX1 were expressed at 

higher levels in the A subtype than in the B subtype. 

 

Construction and validation of the prognostic 

AAG_score model 

 

A prognostic model combining angiogenesis and 

immune features was developed based on the 26 
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immune-related DEGs. A total of 559 MM patients 

were randomly assigned to a training set (n = 275) or a 

test set (n = 274). The LASSO Cox regression model 

was used to screen the 11 most representative immune-

related molecules concerning patient prognosis (Figure 

5A, 5B). The results of univariate Cox analysis of the 

selected molecules are shown in Supplementary 

Table 3. With a cutoff value of 0.82 determined by the 

survminer R package (Figure 5C), patients in the 

training set were classified into high- and low-risk 

groups. As the AAG_score increased, patient mortality 

increased notably. A heatmap was constructed to show 

the expression of 11 representative genes in the two 

AAG_score groups (Figure 5D). Additionally, K–M 

analysis indicated that low-risk patients had a survival 

advantage over high-risk patients (Figure 5E), and the 

 

 
 

Figure 3. Characteristics of immunity in different subgroups. (A) Differences in 28 infiltrating immune cells among the three AAG 

clusters (*P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001). (B) Expression of 6 ICPs in the three subtypes. 
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areas under the receiver operating characteristic (ROC) 

curves (AUCs) of 1-, 3-, and 5-year OS were 0.74, 0.75, 

and 0.76, respectively, indicating the perfect 

performance of the AAG_score in the training set 

(Figure 5F). 

We then investigated the distribution of all patients in 

three AAG clusters, two gene clusters, and two AAG 

score groups (Figure 5G). The AAG_score was highest 

in AAG_cluster B and lowest in AAG_cluster C (Figure 

5H). The performance of the gene clusters was similar 

 

 
 

Figure 4. Identification of gene subgroups based on DEGs. (A) GO and KEGG pathway enrichment analyses of DEGs among the three 

AAG clusters. (B) Cluster diagram of clinical characteristics between the two gene clusters. Overall survival (C) and event-free survival (D) 
analyses of patients stratified according to gene cluster analysis using Kaplan–Meier curves. (E) Differences in the expression of AAGs 
between the two gene clusters (*P < 0.05; **P < 0.01; ***P < 0.001). 
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Figure 5. Construction and validation of the prognostic AAG_score model. (A) LASSO coefficient profiles of 26 DEGs related to 

immunity and prognosis. (B) Tenfold cross-validation for tuning parameter selection in the LASSO model. According to log(λ), the partial 
likelihood deviation graph was drawn, where λ is the tuning parameter. Partial likelihood deviation values are displayed, and the error bars 
indicate SEs. Dotted vertical lines are drawn at the optimal values according to the minimum criteria and 1-SE criteria. (C) The optimal 
cutoff point for dichotomizing patients into low and high AAG_score groups were determined by the survminer R package. The optimal 
cutoff value was 0.82. (D) Percentage of deaths in the high- and low-risk groups as the AAG_score increased. Expression patterns of 11 
selected molecules in different risk groups. (E) Overall survival analysis of risk groups using Kaplan–Meier curves. (F) ROC analysis of the 
ability of the AAG_score to predict 1-, 3-, and 5-year OS and its specificity. (G) Alluvial diagram showing the changes in the AAG clusters, 
gene clusters, AAG_scores, and clinical outcomes. (H) Differences in the AAG_scores among the three AAG clusters. (I) Differences in the 
AAG_scores between the two gene subgroups. 
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to that of the AAG clusters (Figure 5I), indicating that 

the higher the AAG_score was, the worse the survival 

was. Based on the above results, we concluded that the 

AAG_score was a good predictor of prognosis in MM 

patients. 

 

The AAG_score was further tested in the test set and the 

entire set depending on the cutoff of the training set, 

and similar results were obtained. K–M survival 

analyses revealed that, compared with patients in the 

high-risk group, patients in the low-risk group had 

superior survival. The AUC still indicated good 

performance (Supplementary Figures 3 and 4). 

 

Correlations between the AAG_score and clinical 

features 

 

Univariate and multivariate Cox analyses, which 

included the clinical factors of age, gender, type, MRI, 

LDH, ALB, and HGB, demonstrated that the AAG_score 

could serve as an independent prognostic factor for 

assessing MM patient outcomes (Supplementary Table 4 

and Figure 6A). To develop a clinically relevant 

quantitative method for predicting the mortality rate of 

MM patients, we constructed a nomogram that 

incorporated the AAG_score and independent clinical 

prognostic factors (Figure 6B). The calibration curves for 

1-, 3-, and 5-year OS for the derived nomogram and the 

ideal model demonstrated that the predictions were 

highly accurate (Figure 6C). Furthermore, the DCA 

curves showing the clinical utility of each model 

indicated that the nomogram had the greatest net benefit 

for survival prediction, followed by the AAG_score, 

while other variables were less effective (Figure 6D–6F). 

 

Associations of the AAG_score with the immune 

microenvironment and the immunotherapeutic 

response 

 

We then investigated the correlation between 28 

immune metagenes and the AAG_score. Activated 

CD4+ T cells, activated CD8+ T cells, memory B cells, 

effector memory CD4+ T cells, and Gramma delta T 

cells exhibited markedly increased infiltration in the 

high-risk groups; CD56 dim natural killer cells and 

central memory CD4+ T cells showed no significant 

difference between the two groups, while the other cell 

types presented the opposite trend (Figure 7A). We also 

analyzed the correlation between the AAG_score and 

each immune cell type. In addition to the correlation 

between the AAG_score and effector memory CD4 T 

cells, there was a significant negative correlation 

between the AAG_score and immune cell abundance 
(Figure 7B). The expression status of 6 ICPs was 

explored, and the majority of the patients in the low-risk 

group were highly expressed (Figure 7C). 

In addition, considering the significant role of the 

AAG_score in immune cell infiltration, we correlated 

11 molecules with the abundance of immune infiltrating 

cells. Spearman correlation analyses revealed that 

LST1, IGHM, PD-L2, CD22, FUCA1, SLC7A7, and 

ADAM28 exhibited prominent positive correlations 

with most of the immune cell infiltrates, while NUF2, 

IFI16, and GEMIN6 presented the opposite trend 

(Figure 7D). We also found that the expression of 11 

key molecules was negatively correlated with that of 

almost all immune checkpoint molecules, and GEMIN6, 

LST1, STAP1, and CD22 showed particularly 

significant correlations (Figure 7E). 

 

Immunotherapy is considered the standard of care for 

the treatment of MM. Using data from the 

IMvigor210 cohort receiving anti-PD-L1 

immunotherapy, we investigated the ability of the 

AAG_score to predict the clinical response of patients 

to immune checkpoint blockade therapy. As depicted 

in Figure 7F, patients in the low-risk subgroup had a 

better prognosis than patients in the high-risk 

subgroup did. Patients with progressive disease 

exhibited a greater risk than did those with a partial 

response (Figure 7G). We also observed an enhanced 

therapeutic response to PD-L1 blockade therapy in 

low-risk patients compared to high-risk patients, 

implying that the low-risk group may be more 

sensitive to immunotherapy (Figure 7H). 

 

DISCUSSION 
 

Angiogenesis is a characteristic of MM progression 

through the transition from monoclonal gammopathies 

of undetermined significance (MGUS) to MM and 

involves either direct production of angiogenic 

molecules by plasma cells or their induction within the 

BM microenvironment [31, 32]. Angiogenic cytokines 

have prognostic potential and are important factors in 

regulating immunity. These factors can directly 

promote the enrichment of MDSCs, tumor-associated 

macrophages (TAMs), and regulatory T cells (Tregs) 

and mediate immune suppression. All of these immune 

populations, in turn, promote angiogenesis [33]. 

Although MM is still incurable, treatment 

breakthroughs may be achieved due to the emergence 

of many new immunotherapies [34]. The combination 

of antiangiogenic therapies with immune checkpoint 

inhibitors has become an attractive strategy, although 

there is still a long way to go, considering immune 

escape, toxicity, side effects, etc., [35, 36]. Therefore, 

joint analysis of angiogenic factors and immune 

molecular subtypes is highly clinically important. 

 

In this study, we determined the transcriptional changes 

and mutation intensities of AAGs according to the GEO 
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and MMRF cohorts. Although the frequency of AAG 

mutations was low, most AAG hub genes were 

upregulated in MM patients. Immunohistochemistry and 

K–M analyses confirmed that a high MVD was 

associated with unfavorable clinical outcomes. The 

correlation between prognosis and VEGFA, which was 

predicted to be one of the most significantly upregulated 

hub genes in MM, was consistent with the correlation 

 

 
 

Figure 6. Correlations between the AAG_score and clinical features. (A) Forest plot showing that the AAG_score was an 

independent prognostic biomarker according to multivariate analyses of the entire cohort. (B) Nomogram for predicting the 1-, 3-, and 5-
year OS of MM patients. (C) The 1-, 3-, and 5-year calibration plots of the nomogram. (D–F) The 1-, 3-, and 5-year decision curve analyses of 
the clinical benefit rate. 
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Figure 7. Association of the AAG_score with the immune microenvironment and immunotherapeutic response. (A) 
Differences in the levels of 28 infiltrating immune cells between the low-risk and high-risk groups (*P < 0.05; **P < 0.01; ***P < 0.001; ****P < 
0.0001). (B) The correlation between the AAG_score and the infiltration of 28 immune cell types. Blue, negative correlation; orange, 
positive correlation. (C) Expression of 6 ICPs in the low-risk and high-risk groups. (D) Correlations between the 11 selected molecules and 28 
infiltrating immune cell types. Red, positive; blue, negative. (E) The correlation between the 11 selected molecules and 6 ICPs. (F) OS 
analyses of the high- and low-AAG_score groups in the anti-PD-L1 immunotherapy cohort using Kaplan–Meier curves. (G) Differences in the 
AAG scores of patients in different anti-PD-L1 clinical response groups. (H) The proportion of patients in the high- and low-AAG_score 
groups who responded to anti-PD-L1 immunotherapy. 
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between prognosis and MVD. We subsequently divided 

the MM patients into three angiogenesis subgroups 

based on 35 AAGs, and these subgroups exhibited 

significant differences in clinical outcome, biological 

functions, immune infiltration, and immune 

checkpoints. These results suggest that AAGs are 

critical for screening immune molecular subtypes and 

evaluating the response to checkpoint immunotherapy. 

Therefore, we established an AAG_score model with 11 

selected immunity- and prognosis-associated DEGs to 

quantify angiogenesis subgroups using LASSO Cox 

regression analysis. There is growing evidence that a 

single key molecule can induce immune tolerance by 

altering the infiltration of immune cells in the tumor 

microenvironment and mediating escape from immune 

surveillance by remodeling the tumor structure [37–39]. 

We thus explored whether these 11 key molecules 

regulate the infiltration of immune cells. We found a 

significant positive correlation between favorable 

prognosis-related molecules (LST1, IGHM, PD-L2, 

CD22, FUCA1, SLC7A7, and ADAM28) and the 

infiltration of most immune cells, while the 

relationships between risk-related molecules (NUF2, 

IFI16, and GEMIN6) and immune cell infiltration were 

the opposite. We also revealed that the expression of 11 

molecules was negatively correlated with that of almost 

all the ICPs, indicating that these key molecules could 

mediate the occurrence of individual infiltration patterns 

of immune cells as well as the response to immune 

checkpoint blockade. 

 

To verify the independence and clinical utility of the 

AAG_score, multiple analyses were performed. The 

AAG_scores among the different AAG_clusters and 

gene clusters were significantly different; AAG_cluster 

C and gene cluster B, which had the best clinical 

outcomes, had the lowest AAG_scores, revealing that 

the AAG_score was positively correlated with 

unfavorable prognosis. ROC curves validated the 

robustness of the model for predicting 1-, 3-, and 5-year 

OS. Univariate and multivariate Cox analyses indicated 

that the AAG_score was an independent prognostic 

biomarker in MM patients. The nomogram based on the 

AAG_score and other independent prognostic factors 

performed well compared to the ideal model, and its net 

benefit for survival prediction was greater than that of 

other factors. 

 

The immune microenvironment and aberrant 

angiogenesis in MM form a permissive ecosystem that 

supports disease progression via angiogenic factors 

released through multiple pathways [40–43]. Thus, we 

evaluated the overall immune profiles of patients in 
different molecular clusters. AAG_cluster C was linked 

to a highly activated immune status in the BM 

microenvironment and exhibited the best prognosis 

among the three AAG_clusters. Similarly, the low-risk 

group exhibited an enhanced immune status. These 

findings suggested that the immune-enriched subtypes 

may correspond to a better prognosis in MM patients, 

which is concordant with the findings of a previous 

report [44]. The development of immune checkpoint 

inhibitors has provided new options for immunotherapy 

in MM, but the limited response to monotherapy and the 

accompanying adverse drug reactions have become the 

main obstacles to clinical application [45]. This may be 

because the levels of ICPs expression in high-risk and 

relapsed MM cells are relatively low [46, 47]. It is 

possible to achieve the effects of reducing side effects 

and improving the efficacy of drugs by altering the 

expression of ICPs [48], combining them with other 

drugs [49, 50], or providing precise treatment for the 

individual differences in the expression of ICPs. Hence, 

we further explored the correlation between different 

subgroups and 6 immune checkpoint molecules (PD-1, 

PD-L1, PD-L2, CTLA4, TIM-3, and LAG3), which are 

highly relevant therapeutic targets. Our results indicated 

that the expression levels of PD-1, PD-L2, CTLA4, 

TIM-3, and LAG3 in the low-risk group were 

significantly greater than those in the high-risk group. 

Consistent with the findings of the ICP cohort, patients 

in the IMvigor210 cohort with a low AAG_score 

exhibited a markedly enhanced clinical response to anti-

PD-L1 immunotherapy and presented a significant 

survival benefit. Therefore, we concluded that 

angiogenesis has a strong influence on the immune 

phenotype and that the AAG_score has the potential to 

help clinicians choose precise immune checkpoint 

blockade treatments, which may contribute to the 

realization of personalized medicine. 

 

Undeniably, this study has several limitations. The first 

one is the insufficiency of elucidating the mechanism of 

these AAGs. How they function in shaping the immune 

microenvironment remains unclear and needs further 

study. Moreover, a larger sample size is needed to 

further validate this model. 

 

CONCLUSION 
 

In conclusion, this study explored the correlation 

between angiogenesis and the clinical features, 

prognosis, immunophenotype, and immunotherapeutic 

response of MM patients. We constructed an 

AAG_score model to predict patient prognosis and 

evaluate the immune microenvironment, and this model 

presented great robustness and independence. 

Comprehensive evaluation of MM patients’ 

AAG_scores could guide physicians in selecting more 

effective immunotherapy strategies and provide a basis 

for individualized treatment and breakthroughs in MM 

treatment. 



www.aging-us.com 2670 AGING 

AUTHOR CONTRIBUTIONS 
 

X.C., Z.C., and M.Y. conceptualized and designed this 

study. M.Y. and J.F. performed the data analysis using 

R. M.Y., H.M., and M.X. performed the in vivo 

experiments. M.Y. performed the in vitro experiments. 

X.C. and Z.C. supervised this project and the 

manuscript. M.Y. drafted the manuscript. X.C. and Z.C. 

critically reviewed and edited the manuscript. 

 

CONFLICTS OF INTEREST 
 

The authors declare no conflicts of interest related to 

this study. 

 

ETHICAL STATEMENT AND CONSENT 
 

This study was approved by the Ethics Committee of the 

Affiliated Hospital of Shandong University of Traditional 

Chinese Medicine (2020) (ethical review No. (010) - KY). 

The written consent was obtained from all participants. 

 

FUNDING 
 

The study was supported by the National Natural Science 

Foundation of China (No. 82074348, No. 82274491), the 

Taishan Scholar Program (No. tsqn201812145), the 

Natural Science Foundation of Shandong Province (No. 

ZR2020MH388), and the Shandong Traditional Chinese 

Medicine Science and Technology Project (M-2022158). 

 

REFERENCES 
 
1. Liu R, Gao Q, Foltz SM, Fowles JS, Yao L, Wang JT, Cao 

S, Sun H, Wendl MC, Sethuraman S, Weerasinghe A, 
Rettig MP, Storrs EP, et al. Co-evolution of tumor and 
immune cells during progression of multiple 
myeloma. Nat Commun. 2021; 12:2559. 
https://doi.org/10.1038/s41467-021-22804-x 
PMID:33963182 

2. Cowan AJ, Allen C, Barac A, Basaleem H, Bensenor I, 
Curado MP, Foreman K, Gupta R, Harvey J, Hosgood 
HD, Jakovljevic M, Khader Y, Linn S, et al. Global 
Burden of Multiple Myeloma: A Systematic Analysis 
for the Global Burden of Disease Study 2016. JAMA 
Oncol. 2018; 4:1221–7. 
https://doi.org/10.1001/jamaoncol.2018.2128 
PMID:29800065 

3. Jakob C, Sterz J, Zavrski I, Heider U, Kleeberg L, 
Fleissner C, Kaiser M, Sezer O. Angiogenesis in 
multiple myeloma. Eur J Cancer. 2006; 42:1581–90. 
https://doi.org/10.1016/j.ejca.2006.02.017 
PMID:16797965 

4. Kumar S, Witzig TE, Timm M, Haug J, Wellik L, 

Kimlinger TK, Greipp PR, Rajkumar SV. Bone marrow 
angiogenic ability and expression of angiogenic 
cytokines in myeloma: evidence favoring loss of 
marrow angiogenesis inhibitory activity with disease 
progression. Blood. 2004; 104:1159–65. 
https://doi.org/10.1182/blood-2003-11-3811 
PMID:15130943 

 5. Ribatti D, Vacca A. New Insights in Anti-Angiogenesis 
in Multiple Myeloma. Int J Mol Sci. 2018; 19:2031. 
https://doi.org/10.3390/ijms19072031 
PMID:30002349 

 6. Erber R, Thurnher A, Katsen AD, Groth G, Kerger H, 
Hammes HP, Menger MD, Ullrich A, Vajkoczy P. 
Combined inhibition of VEGF and PDGF signaling 
enforces tumor vessel regression by interfering with 
pericyte-mediated endothelial cell survival 
mechanisms. FASEB J. 2004; 18:338–40. 
https://doi.org/10.1096/fj.03-0271fje 
PMID:14657001 

 7. Kodack DP, Chung E, Yamashita H, Incio J, 
Duyverman AM, Song Y, Farrar CT, Huang Y, Ager E, 
Kamoun W, Goel S, Snuderl M, Lussiez A, et al. 
Combined targeting of HER2 and VEGFR2 for 
effective treatment of HER2-amplified breast cancer 
brain metastases. Proc Natl Acad Sci U S A. 2012; 
109:E3119–27. 
https://doi.org/10.1073/pnas.1216078109 
PMID:23071298 

 8. Ramjiawan RR, Griffioen AW, Duda DG. Anti-
angiogenesis for cancer revisited: Is there a role for 
combinations with immunotherapy? Angiogenesis. 
2017; 20:185–204. 
https://doi.org/10.1007/s10456-017-9552-y 
PMID:28361267 

 9. Huang Y, Goel S, Duda DG, Fukumura D, Jain RK. 
Vascular normalization as an emerging strategy to 
enhance cancer immunotherapy. Cancer Res. 2013; 
73:2943–8. 
https://doi.org/10.1158/0008-5472.CAN-12-4354 
PMID:23440426 

10. Jain RK. Normalizing tumor microenvironment to 
treat cancer: bench to bedside to biomarkers. J Clin 
Oncol. 2013; 31:2205–18. 
https://doi.org/10.1200/JCO.2012.46.3653 
PMID:23669226 

11. Liu XD, Hoang A, Zhou L, Kalra S, Yetil A, Sun M, Ding 
Z, Zhang X, Bai S, German P, Tamboli P, Rao P, Karam 
JA, et al. Resistance to Antiangiogenic Therapy Is 
Associated with an Immunosuppressive Tumor 
Microenvironment in Metastatic Renal Cell 
Carcinoma. Cancer Immunol Res. 2015; 3:1017–29. 
https://doi.org/10.1158/2326-6066.CIR-14-0244 
PMID:26014097 

https://doi.org/10.1038/s41467-021-22804-x
https://pubmed.ncbi.nlm.nih.gov/33963182
https://doi.org/10.1001/jamaoncol.2018.2128
https://pubmed.ncbi.nlm.nih.gov/29800065
https://doi.org/10.1016/j.ejca.2006.02.017
https://pubmed.ncbi.nlm.nih.gov/16797965
https://doi.org/10.1182/blood-2003-11-3811
https://pubmed.ncbi.nlm.nih.gov/15130943
https://doi.org/10.3390/ijms19072031
https://pubmed.ncbi.nlm.nih.gov/30002349
https://doi.org/10.1096/fj.03-0271fje
https://pubmed.ncbi.nlm.nih.gov/14657001
https://doi.org/10.1073/pnas.1216078109
https://pubmed.ncbi.nlm.nih.gov/23071298
https://doi.org/10.1007/s10456-017-9552-y
https://pubmed.ncbi.nlm.nih.gov/28361267
https://doi.org/10.1158/0008-5472.CAN-12-4354
https://pubmed.ncbi.nlm.nih.gov/23440426
https://doi.org/10.1200/JCO.2012.46.3653
https://pubmed.ncbi.nlm.nih.gov/23669226
https://doi.org/10.1158/2326-6066.CIR-14-0244
https://pubmed.ncbi.nlm.nih.gov/26014097


www.aging-us.com 2671 AGING 

12. Motz GT, Coukos G. The parallel lives of angiogenesis 
and immunosuppression: cancer and other tales. Nat 
Rev Immunol. 2011; 11:702–11. 
https://doi.org/10.1038/nri3064 
PMID:21941296 

13. Jain RK. Antiangiogenesis strategies revisited: from 
starving tumors to alleviating hypoxia. Cancer Cell. 
2014; 26:605–22. 
https://doi.org/10.1016/j.ccell.2014.10.006 
PMID:25517747 

14. Nowak-Sliwinska P, Weiss A, Ding X, Dyson PJ, van 
den Bergh H, Griffioen AW, Ho CM. Optimization of 
drug combinations using Feedback System Control. 
Nat Protoc. 2016; 11:302–15. 
https://doi.org/10.1038/nprot.2016.017 
PMID:26766116 

15. Weiss A, Nowak-Sliwinska P. Current Trends in 
Multidrug Optimization: An Alley of Future Successful 
Treatment of Complex Disorders. SLAS Technol. 2017; 
22:254–75. 
https://doi.org/10.1177/2472630316682338 
PMID:28027446 

16. Zhan F, Barlogie B, Arzoumanian V, Huang Y, Williams 
DR, Hollmig K, Pineda-Roman M, Tricot G, van Rhee F, 
Zangari M, Dhodapkar M, Shaughnessy JD Jr. Gene-
expression signature of benign monoclonal 
gammopathy evident in multiple myeloma is linked to 
good prognosis. Blood. 2007; 109:1692–700. 
https://doi.org/10.1182/blood-2006-07-037077 
PMID:17023574 

17. Mitchell JS, Li N, Weinhold N, Försti A, Ali M, van Duin 
M, Thorleifsson G, Johnson DC, Chen B, Halvarsson 
BM, Gudbjartsson DF, Kuiper R, Stephens OW, et al. 
Genome-wide association study identifies multiple 
susceptibility loci for multiple myeloma. Nat 
Commun. 2016; 7:12050. 
https://doi.org/10.1038/ncomms12050 
PMID:27363682 

18. Mayakonda A, Lin DC, Assenov Y, Plass C, Koeffler HP. 
Maftools: efficient and comprehensive analysis of 
somatic variants in cancer. Genome Res. 2018; 
28:1747–56. 
https://doi.org/10.1101/gr.239244.118 
PMID:30341162 

19. Sabah A, Tiun S, Sani NS, Ayob M, Taha AY. Enhancing 
web search result clustering model based on multiview 
multirepresentation consensus cluster ensemble 
(mmcc) approach. PLoS One. 2021; 16:e0245264. 
https://doi.org/10.1371/journal.pone.0245264 
PMID:33449949 

20. Seiler M, Huang CC, Szalma S, Bhanot G. 
ConsensusCluster: a software tool for unsupervised 

cluster discovery in numerical data. OMICS. 2010; 
14:109–13. 
https://doi.org/10.1089/omi.2009.0083 
PMID:20141333 

21. Hänzelmann S, Castelo R, Guinney J. GSVA: gene set 
variation analysis for microarray and RNA-seq data. 
BMC Bioinformatics. 2013; 14:7. 
https://doi.org/10.1186/1471-2105-14-7 
PMID:23323831 

22. Bellamy WT. Expression of vascular endothelial 
growth factor and its receptors in multiple myeloma 
and other hematopoietic malignancies. Semin Oncol. 
2001; 28:551–9. 
https://doi.org/10.1016/s0093-7754(01)90023-5 
PMID:11740808 

23. Chia PL, Russell P, Asadi K, Thapa B, Gebski V, Murone 
C, Walkiewicz M, Eriksson U, Scott AM, John T. 
Analysis of angiogenic and stromal biomarkers in a 
large malignant mesothelioma cohort. Lung Cancer. 
2020; 150:1–8. 
https://doi.org/10.1016/j.lungcan.2020.09.022 
PMID:33035778 

24. Rich JT, Neely JG, Paniello RC, Voelker CC, 
Nussenbaum B, Wang EW. A practical guide to 
understanding Kaplan-Meier curves. Otolaryngol 
Head Neck Surg. 2010; 143:331–6. 
https://doi.org/10.1016/j.otohns.2010.05.007 
PMID:20723767 

25. Charoentong P, Finotello F, Angelova M, Mayer C, 
Efremova M, Rieder D, Hackl H, Trajanoski Z. Pan-
cancer Immunogenomic Analyses Reveal Genotype-
Immunophenotype Relationships and Predictors of 
Response to Checkpoint Blockade. Cell Rep. 2017; 
18:248–62. 
https://doi.org/10.1016/j.celrep.2016.12.019 
PMID:28052254 

26. Wang Y, Feng W, Liu P. Genotype-immunophenotype 
analysis reveals the immunogenomic subtype and 
prognosis of multiple myeloma. Carcinogenesis. 2020; 
41:1746–54. 
https://doi.org/10.1093/carcin/bgaa037 
PMID:32278317 

27. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, 
Smyth GK. limma powers differential expression 
analyses for RNA-sequencing and microarray studies. 
Nucleic Acids Res. 2015; 43:e47. 
https://doi.org/10.1093/nar/gkv007 
PMID:25605792 

28. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R 
package for comparing biological themes among gene 
clusters. OMICS. 2012; 16:284–7. 
https://doi.org/10.1089/omi.2011.0118 

https://doi.org/10.1038/nri3064
https://pubmed.ncbi.nlm.nih.gov/21941296
https://doi.org/10.1016/j.ccell.2014.10.006
https://pubmed.ncbi.nlm.nih.gov/25517747
https://doi.org/10.1038/nprot.2016.017
https://pubmed.ncbi.nlm.nih.gov/26766116
https://doi.org/10.1177/2472630316682338
https://pubmed.ncbi.nlm.nih.gov/28027446
https://doi.org/10.1182/blood-2006-07-037077
https://pubmed.ncbi.nlm.nih.gov/17023574
https://doi.org/10.1038/ncomms12050
https://pubmed.ncbi.nlm.nih.gov/27363682
https://doi.org/10.1101/gr.239244.118
https://pubmed.ncbi.nlm.nih.gov/30341162
https://doi.org/10.1371/journal.pone.0245264
https://pubmed.ncbi.nlm.nih.gov/33449949
https://doi.org/10.1089/omi.2009.0083
https://pubmed.ncbi.nlm.nih.gov/20141333
https://doi.org/10.1186/1471-2105-14-7
https://pubmed.ncbi.nlm.nih.gov/23323831
https://doi.org/10.1016/s0093-7754(01)90023-5
https://pubmed.ncbi.nlm.nih.gov/11740808
https://doi.org/10.1016/j.lungcan.2020.09.022
https://pubmed.ncbi.nlm.nih.gov/33035778
https://doi.org/10.1016/j.otohns.2010.05.007
https://pubmed.ncbi.nlm.nih.gov/20723767
https://doi.org/10.1016/j.celrep.2016.12.019
https://pubmed.ncbi.nlm.nih.gov/28052254
https://doi.org/10.1093/carcin/bgaa037
https://pubmed.ncbi.nlm.nih.gov/32278317
https://doi.org/10.1093/nar/gkv007
https://pubmed.ncbi.nlm.nih.gov/25605792
https://doi.org/10.1089/omi.2011.0118


www.aging-us.com 2672 AGING 

PMID:22455463 

29. Blanco JL, Porto-Pazos AB, Pazos A, Fernandez-Lozano 
C. Prediction of high anti-angiogenic activity peptides 
in silico using a generalized linear model and feature 
selection. Sci Rep. 2018; 8:15688. 
https://doi.org/10.1038/s41598-018-33911-z 
PMID:30356060 

30. Mariathasan S, Turley SJ, Nickles D, Castiglioni A, 
Yuen K, Wang Y, Kadel EE III, Koeppen H, Astarita JL, 
Cubas R, Jhunjhunwala S, Banchereau R, Yang Y, et al. 
TGFβ attenuates tumour response to PD-L1 blockade 
by contributing to exclusion of T cells. Nature. 2018; 
554:544–8. 
https://doi.org/10.1038/nature25501 
PMID:29443960 

31. Kawano Y, Moschetta M, Manier S, Glavey S, Görgün 
GT, Roccaro AM, Anderson KC, Ghobrial IM. Targeting 
the bone marrow microenvironment in multiple 
myeloma. Immunol Rev. 2015; 263:160–72. 
https://doi.org/10.1111/imr.12233 
PMID:25510276 

32. Vacca A, Ribatti D. Bone marrow angiogenesis in 
multiple myeloma. Leukemia. 2006; 20:193–9. 
https://doi.org/10.1038/sj.leu.2404067 
PMID:16357836 

33. Rahma OE, Hodi FS. The Intersection between Tumor 
Angiogenesis and Immune Suppression. Clin Cancer 
Res. 2019; 25:5449–57. 
https://doi.org/10.1158/1078-0432.CCR-18-1543 
PMID:30944124 

34. Minnie SA, Hill GR. Immunotherapy of multiple 
myeloma. J Clin Invest. 2020; 130:1565–75. 
https://doi.org/10.1172/JCI129205 
PMID:32149732 

35. Görgün G, Samur MK, Cowens KB, Paula S, Bianchi G, 
Anderson JE, White RE, Singh A, Ohguchi H, Suzuki R, 
Kikuchi S, Harada T, Hideshima T, et al. Lenalidomide 
Enhances Immune Checkpoint Blockade-Induced 
Immune Response in Multiple Myeloma. Clin Cancer 
Res. 2015; 21:4607–18. 
https://doi.org/10.1158/1078-0432.CCR-15-0200 
PMID:25979485 

36. Cohen AD. Myeloma: next generation 
immunotherapy. Hematology Am Soc Hematol Educ 
Program. 2019; 2019:266–72. 
https://doi.org/10.1182/hematology.2019000068 
PMID:31808859 

37. Bao H, Lu P, Li Y, Wang L, Li H, He D, Yang Y, Zhao Y, Yang 
L, Wang M, Yi Q, Cai Z. Triggering of toll-like receptor-4 
in human multiple myeloma cells promotes proliferation 
and alters cell responses to immune and chemotherapy 
drug attack. Cancer Biol Ther. 2011; 11:58–67. 

https://doi.org/10.4161/cbt.11.1.13878 
PMID:21248470 

38. Bruno S, Ghelli Luserna di Rorà A, Napolitano R, 
Soverini S, Martinelli G, Simonetti G. CDC20 in and 
out of mitosis: a prognostic factor and therapeutic 
target in hematological malignancies. J Exp Clin 
Cancer Res. 2022; 41:159. 
https://doi.org/10.1186/s13046-022-02363-9 
PMID:35490245 

39. Tai YT, Acharya C, An G, Moschetta M, Zhong MY, 
Feng X, Cea M, Cagnetta A, Wen K, van Eenennaam H, 
van Elsas A, Qiu L, Richardson P, et al. APRIL and 
BCMA promote human multiple myeloma growth and 
immunosuppression in the bone marrow 
microenvironment. Blood. 2016; 127:3225–36. 
https://doi.org/10.1182/blood-2016-01-691162 
PMID:27127303 

40. Saltarella I, Desantis V, Melaccio A, Solimando AG, 
Lamanuzzi A, Ria R, Storlazzi CT, Mariggiò MA, Vacca 
A, Frassanito MA. Mechanisms of Resistance to Anti-
CD38 Daratumumab in Multiple Myeloma. Cells. 
2020; 9:167. 
https://doi.org/10.3390/cells9010167 
PMID:31936617 

41. Moschetta M, Basile A, Ferrucci A, Frassanito MA, 
Rao L, Ria R, Solimando AG, Giuliani N, Boccarelli A, 
Fumarola F, Coluccia M, Rossini B, Ruggieri S, et al. 
Novel targeting of phospho-cMET overcomes drug 
resistance and induces antitumor activity in multiple 
myeloma. Clin Cancer Res. 2013; 19:4371–82. 

https://doi.org/10.1158/1078-0432.CCR-13-0039 
PMID:23804425 

42. Ferrucci A, Moschetta M, Frassanito MA, Berardi S, 
Catacchio I, Ria R, Racanelli V, Caivano A, Solimando 
AG, Vergara D, Maffia M, Latorre D, Rizzello A, et al. A 
HGF/cMET autocrine loop is operative in multiple 
myeloma bone marrow endothelial cells and may 
represent a novel therapeutic target. Clin Cancer Res. 
2014; 20:5796–807. 

https://doi.org/10.1158/1078-0432.CCR-14-0847 
PMID:25212607 

43. Frassanito MA, Desantis V, Di Marzo L, Craparotta I, 
Beltrame L, Marchini S, Annese T, Visino F, Arciuli M, 
Saltarella I, Lamanuzzi A, Solimando AG, Nico B, et al. 
Bone marrow fibroblasts overexpress miR-27b and 
miR-214 in step with multiple myeloma progression, 
dependent on tumour cell-derived exosomes. 
J Pathol. 2019; 247:241–53. 

https://doi.org/10.1002/path.5187 
PMID:30357841 

44. Gao G, Fang M, Xu P, Chen B. Identification of three 
immune molecular subtypes associated with immune 

https://pubmed.ncbi.nlm.nih.gov/22455463
https://doi.org/10.1038/s41598-018-33911-z
https://pubmed.ncbi.nlm.nih.gov/30356060
https://doi.org/10.1038/nature25501
https://pubmed.ncbi.nlm.nih.gov/29443960
https://doi.org/10.1111/imr.12233
https://pubmed.ncbi.nlm.nih.gov/25510276
https://doi.org/10.1038/sj.leu.2404067
https://pubmed.ncbi.nlm.nih.gov/16357836
https://doi.org/10.1158/1078-0432.CCR-18-1543
https://pubmed.ncbi.nlm.nih.gov/30944124
https://doi.org/10.1172/JCI129205
https://pubmed.ncbi.nlm.nih.gov/32149732
https://doi.org/10.1158/1078-0432.CCR-15-0200
https://pubmed.ncbi.nlm.nih.gov/25979485
https://doi.org/10.1182/hematology.2019000068
https://pubmed.ncbi.nlm.nih.gov/31808859
https://doi.org/10.4161/cbt.11.1.13878
https://pubmed.ncbi.nlm.nih.gov/21248470
https://doi.org/10.1186/s13046-022-02363-9
https://pubmed.ncbi.nlm.nih.gov/35490245
https://doi.org/10.1182/blood-2016-01-691162
https://pubmed.ncbi.nlm.nih.gov/27127303
https://doi.org/10.3390/cells9010167
https://pubmed.ncbi.nlm.nih.gov/31936617
https://doi.org/10.1158/1078-0432.CCR-13-0039
https://pubmed.ncbi.nlm.nih.gov/23804425
https://doi.org/10.1158/1078-0432.CCR-14-0847
https://pubmed.ncbi.nlm.nih.gov/25212607
https://doi.org/10.1002/path.5187
https://pubmed.ncbi.nlm.nih.gov/30357841


www.aging-us.com 2673 AGING 

profiles, immune checkpoints, and clinical outcome in 
multiple myeloma. Cancer Med. 2021; 10:7395–403. 
https://doi.org/10.1002/cam4.4221 
PMID:34418312 

45. Liu Z, Xu X, Liu H, Zhao X, Yang C, Fu R. Immune 
checkpoint inhibitors for multiple myeloma 
immunotherapy. Exp Hematol Oncol. 2023; 12:99. 
https://doi.org/10.1186/s40164-023-00456-5 
PMID:38017516 

46. Lesokhin AM, Ansell SM, Armand P, Scott EC, Halwani 
A, Gutierrez M, Millenson MM, Cohen AD, Schuster 
SJ, Lebovic D, Dhodapkar M, Avigan D, Chapuy B, et 
al. Nivolumab in Patients With Relapsed or Refractory 
Hematologic Malignancy: Preliminary Results of a 
Phase Ib Study. J Clin Oncol. 2016; 34:2698–704. 
https://doi.org/10.1200/JCO.2015.65.9789 
PMID:27269947 

47. Pianko MJ, Funt SA, Page DB, Cattry D, Scott EC, 
Ansell SM, Borrello IM, Gutierrez M, Lendvai N, 
Hassoun H, Landgren CO, Lesokhin AM. Efficacy and 
toxicity of therapy immediately after treatment with 
nivolumab in relapsed multiple myeloma. Leuk 
Lymphoma. 2018; 59:221–4. 
https://doi.org/10.1080/10428194.2017.1320713 
PMID:28554253 

48. Chen H, Li M, Ng N, Yu E, Bujarski S, Yin Z, Wen M, 
Hekmati T, Field D, Wang J, Nassir I, Yu J, Huang J, et 
al. Ruxolitinib reverses checkpoint inhibition by 
reducing programmed cell death ligand-1 (PD-L1) 
expression and increases anti-tumour effects of T 
cells in multiple myeloma. Br J Haematol. 2021; 
192:568–76. 
https://doi.org/10.1111/bjh.17282 
PMID:33341940 

49. Kumar SK, Lee JH, Lahuerta JJ, Morgan G, Richardson 
PG, Crowley J, Haessler J, Feather J, Hoering A, 
Moreau P, LeLeu X, Hulin C, Klein SK, et al, and 
International Myeloma Working Group. Risk of 
progression and survival in multiple myeloma 
relapsing after therapy with IMiDs and bortezomib: a 
multicenter international myeloma working group 
study. Leukemia. 2012; 26:149–57. 
https://doi.org/10.1038/leu.2011.196 
PMID:21799510 

50. Zhou Q, Liang J, Yang T, Liu J, Li B, Li Y, Fan Z, Wang 
W, Chen W, Yuan S, Xu M, Xu Q, Luan Z, et al. 
Carfilzomib modulates tumor microenvironment to 
potentiate immune checkpoint therapy for cancer. 
EMBO Mol Med. 2022; 14:e14502. 
https://doi.org/10.15252/emmm.202114502 
PMID:34898004 

 

 

 

https://doi.org/10.1002/cam4.4221
https://pubmed.ncbi.nlm.nih.gov/34418312
https://doi.org/10.1186/s40164-023-00456-5
https://pubmed.ncbi.nlm.nih.gov/38017516
https://doi.org/10.1200/JCO.2015.65.9789
https://pubmed.ncbi.nlm.nih.gov/27269947
https://doi.org/10.1080/10428194.2017.1320713
https://pubmed.ncbi.nlm.nih.gov/28554253
https://doi.org/10.1111/bjh.17282
https://pubmed.ncbi.nlm.nih.gov/33341940
https://doi.org/10.1038/leu.2011.196
https://pubmed.ncbi.nlm.nih.gov/21799510
https://doi.org/10.15252/emmm.202114502
https://pubmed.ncbi.nlm.nih.gov/34898004


www.aging-us.com 2674 AGING 

SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. PPI network and mutational landscape of AAGs. (A) Construction of PPI network of hub genes using the 

MCODE plugin in Cytoscape. (B) Variant classifications of mutations in MM. (C) Genetic alteration on a query of AAGs. 
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Supplementary Figure 2. Clinical characteristics and GSVA of key pathways among three AAG_clusters. (A) Cluster diagram of 

clinical characteristics among the three AAG_clusters. (B) GSVA of biological activities among three distinct subgroups. 
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Supplementary Figure 3. Validation of AAG_score in the test cohort. (A) Percentage of deaths in high and low-risk groups as 

AAG_score values increased. Expression patterns of 11 selected molecules in different risk groups. (B) Overall survival analysis of risk 
groups using Kaplan-Meier curves. (C) The predictive value of AAG_score for predicting the OS of MM patients. 

 

 
 

Supplementary Figure 4. Validation of AAG_score in the entire cohort. (A) Percentage of deaths in high and low-risk groups as 

AAG_score values increased. Expression patterns of 11 selected molecules in different risk groups. (B) Overall survival analysis of risk 
groups using Kaplan-Meier curves. (C) The predictive value of AAG_score for predicting the OS of MM patients. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Table 2. 

 

Supplementary Table 1. Summary of 36 recognized angiogenesis-associated genes. 

Gene Type 

VCAN Angiogenesis 

POSTN Angiogenesis 

FSTL1 Angiogenesis 

LRPAP1 Angiogenesis 

STC1 Angiogenesis 

LPL Angiogenesis 

VEGFA Angiogenesis 

PF4 Angiogenesis 

THBD Angiogenesis 

FGFR1 Angiogenesis 

TNFRSF21 Angiogenesis 

CCND2 Angiogenesis 

COL5A2 Angiogenesis 

ITGAV Angiogenesis 

SERPINA5 Angiogenesis 

KCNJ8 Angiogenesis 

APP Angiogenesis 

JAG1 Angiogenesis 

COL3A1 Angiogenesis 

SPP1 Angiogenesis 

NRP1 Angiogenesis 

OLR1 Angiogenesis 

PDGFA Angiogenesis 

PTK2 Angiogenesis 

SLCO2A1 Angiogenesis 

PGLYRP1 Angiogenesis 

VAV2 Angiogenesis 

S100A4 Angiogenesis 

MSX1 Angiogenesis 

VTN Angiogenesis 

TIMP1 Angiogenesis 

APOH Angiogenesis 

PRG2 Angiogenesis 

JAG2 Angiogenesis 

LUM Angiogenesis 

CXCL6 Angiogenesis 

 

 

Supplementary Table 2. List of Pancancer immune metagenes. 
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Supplementary Table 3. Prognostic analysis of 11 key molecules with a univariate Cox regression model. 

Genes HR 95% CI p-value 

IFI16 2.1 1.6–2.7 2.10E-08 

STAP1 0.81 0.73–0.9 0.00011 

GEMIN6 1.6 1.3–1.9 4.20E-05 

SLC7A7 0.62 0.52–0.74 2.10E-07 

LST1 0.83 0.75–0.92 0.00048 

IGHM 0.92 0.87–0.97 0.0027 

FUCA1 0.72 0.59–0.88 0.0017 

PDCD1LG2 0.85 0.74–0.98 0.02 

NUF2 1.4 1.2–1.5 7.60E-09 

CD22 0.82 0.7–0.97 0.023 

ADAM28 0.94 0.89–0.99 0.018 

 

 

Supplementary Table 4. Prognostic analysis of clinical features with a univariate Cox regression model. 

Clinical Features 
Overall survival Event-free survival 

HR 95% CI p-value HR 95% CI p-value 

AGE 1.02 1.00–1.04 0.0046 1.014 1–1.027 0.05 

Gender 0.96 0.71–1.31 0.81 0.9988 0.7746–1.288 0.99 

B2M 1.083 1.065–1.102 9.50E-20 1.072 1.055–1.089 1.30E-17 

LDH 1.006 1.005–1.008 1.60E-13 1.005 1.004–1.007 7.20E-11 

ALB 0.58 0.47–0.71 1.90E-07 0.69 0.57–0.83 8.80E-05 

HGB 0.87 0.8–0.94 8.70E-04 0.87 0.82–0.94 1.20E-04 

MRI 1.018 1.009–1.026 8.20E-05 1.011 1.003–1.019 7.50E-03 

AAG_score 2.883 2.256–3.685 2.00E-16 2.536 2.06–3.121 2.00E-16 

FLC Reference Reference 

IgA 1.075 0.6545–1.767 7.74E-01 1.413 0.92447–2.160 1.10E-01 

IgD 8.54E-01 0.1155–6.323 0.878 3.507 1.06999–11.496 3.83E-02 

IgG 1.036 0.6634–1.619 8.75E-01 1.187 0.80446–1.752 3.88E-01 

Nonsecretory 1.12E-07 NULL 9.93E-01 2.82E-01 0.03846–2.065 2.13E-01 

 

 


