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INTRODUCTION 
 

Osteoporosis (OP), a common clinical metabolic bone 

disease, is characterized by decreased bone mineral 

density and degeneration of bone microstructure, 

resulting in bone fragility [1]. There are more than  

200 million OP patients worldwide, with an incidence  

of more than 25%, ranking sixth in common and 

frequently-occurring diseases [2]. Osteoporosis is 

divided into primary and secondary osteoporosis, and 

primary osteoporosis is divided into postmenopausal 

osteoporosis (type I), senile osteoporosis (type II) and 

idiopathic osteoporosis (including adolescent type) [3]. 

The absolute probability of hip fracture in patients with 
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ABSTRACT 
 

Background: Osteoporosis is a common endocrine metabolic bone disease, which may lead to severe 
consequences. However, the unknown molecular mechanism of osteoporosis, the observable side effects of 
present treatments and the inability to fundamentally improve bone metabolism seriously restrict the impact 
of prevention and treatment. The study aims to identify potential biomarkers from osteoclast progenitors, 
specifically peripheral blood monocytes on predicting the osteoporotic phenotype. 
Methods: Datasets were obtained from Gene Expression Omnibus (GEO). Based on the differentially expressed 
genes (DEGs) and GSEA results, GO and KEGG analyses were performed using the DAVID database and 
Metascape database. PPI network, TF network, drug-gene interaction network, and ceRNA network were 
established to determine the hub genes. Its osteogenesis, migration, and proliferation abilities in bone marrow 
mesenchymal stem cells (BMSCs) were validated through RT-qPCR, WB, ALP staining, VK staining, wound 
healing assay, transwell assay, and CCK-8 assay. 
Results: A total of 63 significant DEGs were screened. Functional and pathway enrichment analysis discovered 
that the functions of the significant DEGs (SDEGs) are mainly related to immunity and metal ions. A 
comprehensive evaluation of all the network analyses, PMAIP1 was defined as osteoporosis’s core gene. This 
conclusion was further confirmed in clinical cohort data. A series of experiments demonstrated that the 
PMAIP1 gene can promote the osteogenesis, migration and proliferation of BMSC cells. 
Conclusions: All of these outcomes showed a new theoretical basis for further research in the treatment of 
osteoporosis, and PMAIP1 was identified as a potential biomarker for osteoporosis diagnosis and treatment. 
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postmenopausal osteoporosis was less than 1% within 

five years and did not increase exponentially until the 

age of 70-79 [4]; senile osteoporosis generally refers to 

osteoporosis in the elderly after 70 years of age, while 

idiopathic osteoporosis mainly occurs in adolescents, and 

the etiology is still unknown [5]. 

 

Bone mineral density (BMD) is the gold standard for the 

diagnosis of OP [6–8], which shows the result of 

dynamic balance of bone formation and bone resorption. 

Exploring enhanced bone resorption and decreased bone 

formation is the focus and difficulty of osteoporosis 

research, while peripheral blood mononuclear cells 

(PBMC) can differentiate into osteoclasts and attach and 

absorb bone on the bone surface [9]. The present study 

focuses on type I osteoporosis, mainly caused by the 

deficiency of gonadal function (estrogen and 

testosterone). Estrogen and testosterone deficiency at 

any age will accelerate bone mass loss [10–12]. The 

exact mechanism of bone mass loss is not completely 

clear, and there are many reasons, mainly the increase of 

recruitment and sensitivity of pre-osteoclast cells, and 

the speed of bone resorption is faster than that of bone 

formation [13, 14]. 

 

Estrogen deficiency increases the sensitivity of bone to 

parathyroid hormone (PTH), resulting in increased 

calcium loss from bone, decreased renal calcium 

excretion, and increased production of 25-(OH)2D3 

(1,25-dihydroxyvitamin D3) [15–17]. The increase in 

1,25-(OH)2D3 promotes calcium absorption in the 

intestine and kidney and promotes bone resorption by 

increasing the activity and number of osteoclasts [18, 19]. 

The secretion of PTH decreases through a negative 

feedback mechanism, causing the opposite effect [20]. 

In addition, osteoclasts are also affected by cytokines, 

such as TNF- α, IL-1 and IL-6, produced by monocytes 

and increased in the absence of sex hormones [21–24]. 

 

Phorbol-12-Myristate-13-Acetate-Induced Protein 1 

(PMAIP1) is a pro-apoptotic gene encoding protein of 

103 amino acids [25]. This protein, a member of Bcl-2 

homology 3 (BH3)–only subtypes from the Bcl-2 

family, contains mitochondrial targeting domain (MTD) 

and BH3 amphipathic helix [26]. The BH3 domain 

binds the hydrophobic groove of other BCL-2 family 

members to mediate their interaction [27, 28]. Through 

this combination, PMAIP1 can neutralise pro-survival 

proteins Mcl-1 and Bcl2A1 to promote apoptosis [29–31]. 

Idrus et al. had demonstrated the critical effect of 

PMAIP1 on osteoclast apoptosis [32]. Due to reduced 

osteoclast apoptosis, PMAIP1-deficient mice showed an 

osteoporotic phenotype, such as reduced bone volume 
fraction and increased osteoclast number. Similarly, 

chondrocytes lacking the Merlot gene expressed lower 

levels of pro-apoptotic factors, including PMAIP1, 

resulting in reduced apoptosis and prolonged lifespan of 

osteoclasts as well [33]. 

 

In the present study, based on GEO datasets, protein 

and protein interaction network analysis, transcription 

factors analysis, drug-gene interaction analysis,  

and ceRNA network analysis were used to screen  

the potential hub genes PMAIP1 in osteoporosis. 

Furthermore, we determined they were reliable as a 

diagnosis of osteoporosis and may be used as a 

potential therapeutic target for the treatment of 

osteoporosis. 

 

MATERIALS AND METHODS 
 

Patient sets download and processing 

 

In this study, we mainly analyzed mRNA, lncRNA, and 

miRNA of OP-related PBM. All experimental samples 

should be extracted from the same tissue to utilize 

public data for multi-data integration analysis.  

After searching in Gene Expression Omnibus (GEO; 

http://www.ncbi.nlm.nih.gov/geo) database, a free 

public gene expression data repository containing 

microarray and high-throughput sequencing data, we 

finally got the appropriate data sets of OP-related PBM 

for bioinformatics analysis: GSE7158 (mRNA); 

GSE56815 (mRNA); GSE63446 (miRNA); GSE100609 

(lncRNA and mRNA). The original files of CEL  

format (GSE7158, GSE56815 and GSE63446), offered 

from GEO databases, were read by affy package 

(http://www.bioconductor.org/packages/release/bioc/ht

ml/affy.html) in R software (3.6.3 version, 

http://www.R-project.org/) [34]. The read-out micro-

array data were pretreated and standardized by RMA 

method. Standardized expression files were re-

annotated according to the corresponding annotation 

platform files, and these re-annotated gene expression 

matrices of gene symbols were used for further analysis. 

To analyze the dataset (GSE100609) without the 

original file from the GEO database, we re-annotated 

the expression matrix according to the annotation file 

provided in GEO and obtained the expression matrices 

of lncRNA and mRNA, respectively. After testing the 

data dimensions, we utilised log2(exp+1) to standardise 

the expression matrix to eliminate the data dimensions 

for subsequent analysis. After that, three mRNA 

expression matrices, one miRNA expression matrix and 

one lncRNA expression matrix were obtained for 

further research. 

 

The Second Affiliated Hospital of Nanchang University 

provided 48 blood samples of patients with osteoporosis 
and 48 control specimens from January 2022 to 

February 2022 as an external validation cohort. All 

samples were stored at -80° C. 
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Differential expression analyses of mRNA, miRNA, 

lncRNA 

 

The mRNA differential expression analyses were carried 

out in GSE7158, GSE56815, GSE100609 expression 

matrices. After the PCA dimensionality reduction 

analysis, the limma package (http://bioconductor.riken.jp/ 

packages/3.0/bioc/html/limma.html) in R was applied to 

obtain further the differential expression genes (DEGs) 

between low-BMD (OP) and high-BMD (Control)) on 

the preprocessed expression matrices (Selection criteria:  

P < 0.05) [35]. The miRNA differential expression 

analyses were carried out in GSE63446. Differential 

expression miRNAs (DEMs) were acquired with limma 

package and selection criteria was set at P < 0.05. The 

lncRNA differential expression analyses were performed 

with |logFC| > 0.585 and p < 0.05 to control the number 

of lncRNAs selected. For DEGs, based on the differential 

expression analyses of the three mRNA expression 

matrices, the veen tool was used to screen these common 

DEGs. These outcomes contained together in more or 

equal two mRNA expression matrix were identified as 

significant DEGs (SDEGs). 

 

Functional enrichment analysis of SDEGs 

 

Gene Ontology (GO: https://geneontology.org/) and 

Kyoto Encyclopedia of Genes and Genomes (KEGG; 

https://www.genome.jp/kegg/) were included in 

functional enrichment analyses. In this research, 

DAVID online tool (https://david.ncifcrf.gov/) and 

Metascape (https://metascape.org) [36, 37] online tool 

were used to enrichment analysis for SDEGs. 

 

Gene set enrichment analysis (GESA) of DEGs 

 

Based on DEGs of GSE56815, which involved  

the most significant number of samples, Gene  

set enrichment analysis (GSEA; https://www.gsea-

msigdb.org/gsea/index.jsp) was used to clarify the 

substantial difference in function and pathway between 

low/high BMD groups [38]. The selected reference 

gene sets were c2.cp.kegg.v7.3.symbols.gmt (KEGG) 

and c5.go.v7.3.symbols.gmt (GO), Metric for ranking 

genes selected t test, other parameters as the software 

default. 

 

GSEA of DEMs 

 

For miRNAs, most of their functional predictions are 

evaluated by the genes they affect. In this study, miEAA 

(https://ccb-compute2.cs.uni-saarland.de/mieaa2/) was 

used for GSEA of DEMs [39]. The DEMs are sorted 
according to logFC. Next, miRNA matures were obtained 

by ID conversion using miEAA according to the miRNA 

precursors. Furthermore, GSEA of miRNA was also 

performed through miEAA. The enrichment analysis of 

differential miRNA by miEAA was performed towards 

GO and KEGG. 

 

Protein-protein interaction (PPI) network 

construction and analysis 

 

GeneMANIA (http://genemania.org/searc) [40], a tool 

that can be used to identify related genes, including 

protein-protein, protein-DNA and genetic interactions, 

pathways, physiological and biochemical reactions, 

gene and protein expression, protein domains and 

phenotypic screening, and the data are updated 

regularly, was used to construct and analyse the  

PPI network of SDEGs. SDEGs were uploaded  

to GeneMANIA to get the interactions between  

SDEGs and more potentially associated proteins and 

visualised using Cytoscape software (version 3.7.2, 

https://cytoscape.org/) [41]. 

 

MCODE is a plug-in of Cytoscape software, which uses 

the Vertex-Weighting scheme to find the locally high-

density area in the graph. According to the default 

parameters MCODE was used to determine the crucial 

gene clusters in the PPI network. The sub-network 

obtained by MCODE were identified as hub genes, which 

could be used as molecular targets for further experiment. 

 

Transcription factors network construction 

 

IRegulon [42], a plug-in to Cytoscape, was used to 

predict the transcription factors in regulating gene sets 

through motif enrichment analysis in the present study. 

Multiple position weight matrices (PWM) were used to 

rank each motif in motif enrichment analysis, and then 

the preferred motif was used to determine the 

transcription factors further. The plug-in integrates the 

transcription factors of target gene predicted by motif in 

multiple transcription factor databases, such as 

TRANSFAC, JASPAR, ENCODE, SwissRegulon, 

HomeRanD, etc. It can also predict the TF-target gene 

network and TF-miRNA network. The predictable 

species are humans, mice and flies. In addition, 

“iRegulon” can also provide a query for human TF 

target genes from MSigDB, GeneSigDB, and Ganesh 

Clusters. Default parameters were chosen to predict and 

analyze the transcriptional factors from SDEGs. In 

addition, the prediction results were visualized by 

Cytoscape software. 

 

Drug target network construction of SDEGs 

 

DGIdb database (Drug-Gene Interaction database) is a 
database of drug-gene interactions which provides 

information about the association between genes and 

their known or potential drugs [43]. The genes are 
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mainly oncogenes but also include some genes related 

to other diseases (such as Alzheimer’s, heart disease, 

diabetes, etc.). DGIdb has more than 14,000 drug-gene 

interactions, involving 2,600 genes and 6,300 drugs that 

target these genes, as well as 6,700 other genes, which 

are likely to become future drug targets. After uploaded 

SDEGs on DGIdb, FDA approved as Preset Filters, the 

drug-gene interaction analysis was determined, and these 

results were visualized to a network using Cytoscape 

software. 

 

Competing endogenous RNA (ceRNA) network 

construction 

 

MiRWalk 2.0 (http://zmf.umm.uni-heidelberg.de/apps/ 

zmf/mirwalk2/) not only records the miRNA binding 

sites on the full-length sequence of genes [35] but also 

associates them with the predicting binding information 

sets of 12 existing miRNA target prediction programs 

(DIANA-microTv4.0, DIANA-microT-CDS, miRanda-

rel2010, mirBridge, miRDB 4.0, miRmap, miRNAMap, 

doRiNA, PicTar 2, PITA RNA22 v2, RNAhybrid 2.1 

and Targetscan 6.2), aiming at establishing a brand-new 

alignment platform, including promoter (four prediction 

databases), CDS region (five prediction databases), 5’-

UTR region (five prediction databases) and 3’-UTR 

region. 

 

DEMs were uploaded on miRWalk to predict their target 

mRNAs. Among the 12 databases, at least more than six 

databases can predict miRNA-targeted mRNA, which 

can be regarded as a reliable miRNA-mRNA interaction. 

Then, we extracted the regulatory miRNA-mRNA 

corresponding to SDEGs from all the reliable prediction 

results and determined the miRNA-mRNA regulatory 

network used to construct the ceRNA network. 

Afterwards, we performed lncRNA-related prediction 

analysis on differential miRNAs by five related 

databases/methods (miRWalk, miRanda, PITA, 

RNAhybrid, Targetscan), and other parameters are 

default. Results supported by at least more than two 

databases/methods in all the prediction results were 

taken as reliable lncRNA-miRNA prediction results 

obtained in this analysis. Then, we extracted the 

regulatory miRNA corresponding to DELs from all the 

reliable prediction results and got the lncRNA-miRNA 

regulatory network used to establish the ceRNA network 

further. Based on Cytoscape software, the reliable 

miRNA-mRNA and miRNA-lncRNA interactions were 

visualized as an OP-PBM-related ceRNA network. 

 

Cell culture and cell transfection 

 
BMSC were cultured in a complete medium, including 

10% fetal bovine serum (Gibco, USA), 1% penicillin-

streptomycin solution (NCM Biotech, China) and 89% 

DMEM incomplete medium (Gibco, USA). Small 

interfering RNAs (siRNAs) for PMAIP1 and their 

negative control (NC) were obtained from RiboBio 

(Guangzhou, China). Cell transfection was performed 

when the cell density reached 50%-60%. 

 

RT-qPCR 

 

PBMC were isolated from heparinized venous blood 

using Ficoll sodium diatrizoate gradient centrifugation 

(Sigma-Aldrich, St. Louis, MO) and were lysed in 

TRIzol® reagent (Thermo Fisher Scientific, Inc.). Using 

the RNA Extraction (G3013, Servicebio), the total RNA 

was extracted and stored at −80° C. Expression levels 

were detected using Servicebio®RT First Strand cDNA 

Synthesis Kit (G3330, Servicebio) and SYBR Green 

qPCR Master Mix (G3320, Sevicebio). The temperature 

protocol for reverse transcription was 25° C for 5 min, 

42° C for 30 min and 85° C for 5 sec. And cDNA was 

subjected to initial denaturation at 95° C for 10 min, 

followed by 40 cycles at 95° C for 15 sec and 60° C for 

30 sec, followed by extension from 65° C to 95° C and 

the fluorescence signal was collected once every 0.5° C 

temperature rise, using the specific primers. All the 

primers were purchased by Servicebio, China. All 

experiments were repeated three times. Primer sequences 

were presented in Supplementary Table 1. The 2-ΔΔCq 

method was used for relative quantification. 

 

Western blotting analysis 

 

Total proteins were extracted from BMSC cells using 

RIPA buffer, and then 6X loading buffer was added. 

Protein concentration was measured using the BCA 

method and adjusted to the same concentration. SDS-

PAGE was performed on the 10% polyacrylamide gel, 

and the protein samples were transferred onto PVDF 

nitrocellulose membranes (Millipore, Bedford, MA). 

The PVDF membranes were blocked with 5% non-fat 

milk for 90 minutes, washed twice with PBS, and then 

incubated overnight at 4° C with primary antibodies, 

including GAPDH, OPN, OCN, and RUNX2 

(Proteintech, China). After washing twice with PBS, the 

PVDF membranes were incubated with secondary 

antibodies at room temperature for 2 hours. Finally, the 

proteins were analyzed using a fluorescent imaging 

analyser. The experiments were repeated three times, 

and the data were analyzed using ImageJ software. 

 

Alkaline phosphatase (ALP) staining 

 

Alkaline phosphatase staining was determined using the 

alkaline phosphatase assay kit according to the manufac-
turer’s protocol (Servicebio, China). The results were 

imaged under a microscope (Olympus). The ALP staining 

intensity was quantified using the ImageJ software. 
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Von kossa(VK) staining 

 

Von kossa staining was determined using the von kossa 

assay kit according the manufacturer’s protocol 

(Servicebio, China). BMSCs were added with von kossa 

staining solution, irradiated with ultraviolet light for 4 

hours, washed with ultra-pure water, and re-dyed with 

hematoxylin eosin. The results were imaged under a 

microscope (Olympus). The von kossa staining intensity 

was quantified using the ImageJ software. 

 

Transwell assay of migration 

 

Transwell chambers that have been washed with alcohol 

and air-dried were placed in a 24-well plate. 2x10^5 

cells in 100 uL of serum-free DMEM were seeded in 

the top compartment, while 0.6 mL of DMEM 

containing 10% fetal bovine serum was added to the 

bottom compartment. The 24-well plate was incubated 

at 37° C for 24 hours. Then, the transwell chambers 

were removed, washed twice with PBS, and fixed with 

paraformaldehyde. The cells were stained with crystal 

violet and counted under a microscope. 

 

Wound healing assay 

 

BMSC cells were seeded into a 6-well plate and 

allowed to grow to a density of approximately 90%. A 

sterile pipette tip (200μl) created a scratch in the 

adherent cells. The cells that detached during the 

scratch were washed away with PBS solution, and a 

fresh complete medium was replaced. The degree of 

wound healing was calculated by taking microscopic 

images of the scratch at 0 and 24 hours. 

 

CCK-8 assay 

 

To determine the cell proliferation ability, we 

performed a CCK-8 assay. The treated NC blank  

group and Si-PMAIP1 group cells were separately 

seeded into a 96-well plate, with 100 μL of cell 

suspension added to each well. Five replicate wells 

were set for each group. After incubating for 24 hours 

until the cells adhered to the plate, we added ten μL of 

CCK-8 reagent and incubated for 3 hours. Then, we 

measured the OD value at 450 nm and analyzed the 

results statistically. 

 

Statistics analysis 

 

In this research, the diagnostic accuracy of PMAIP1 

areas under curve (AUC) of receiver operating 

characteristic (ROC) analysis using pROC package 
(1.17.0.1 version) and visualized by ggplot2 package 

(3.3.5 version) in R. R statistical software (3.6.3 

Version) and Excel (Microsoft office 2019) were used 

to statistical analysis. The Student’s t-test was used to 

test the statistical significance of differences between 

the two groups. *, p-value < 0.05; **, p-value < 0.01; 

***, p-value < 0.001; ****, p-value < 0.0001. 

 

Availability of data and material 

 

The datasets analysed for this research can be found in 

the Gene Expression Omnibus (GEO; GSE7158, 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=G

SE7158; 

GSE56815, 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=G

SE56815; 

GSE63446, 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=G

SE63446; 

GSE100609, 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=G

SE100609). 

 

RESULTS 
 

Screening of DEGs 

 

According to the method section, the limma package in 

R was used to conduct difference analysis on the three 

mRNA expression matrices, respectively, and a P-value 

< 0.05 was set as the screening threshold of DEGs. The 

difference analysis results were shown using PCA 

dimensionality reduction analysis charts, volcano maps, 

and heat maps (Figure 1). 

 

Identifying significant DEGs (SDEGs) and functional 

enrichment analysis 

 

To further identify significant DEGs (SDEGs), the 

jveen tool was used to screen these crucial SDEGs. 

These outcomes revealed that 40 up-regulated and 23 

down-regulated SDEGs were determined (Figure 2A, 

2B). According to DAVID online tool enrichment 

analysis, these results showed that SDEGs enrichment 

terms included “positive regulation of DNA damage 

response signal transduction by p53 class mediator” and 

“zinc ion binding” (Figure 2C). Based on outcomes of 

GeneMANIA, SDEGs were mainly enriched in 

“cellular response to zinc ion”, “response to zinc ion”, 

“response to cadmium ion”, “response to transition 

metal nanoparticle”, “cellular response to metal ion”, 

and “response to metal ion” (Figure 2D). In addition, 

these results of Metascape tool analysis showed that 

SDEGs were enriched in “TP53 Regulates Transcription 

of Cell Death Genes”, “Cytokine Signaling in Immune 

system”, “positive regulation of cell migration”, and 

“positive regulation of lymphocyte differentiation” 

(Figure 2E). 
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PPI network analysis 

 

To further clarify the interaction and regulation between 

SDEGs, the PPI network was constructed based on  

the GeneMANIA database (Figure 3A). Furthermore, 

crucial gene clusters were selected using the MCODE 

clustering algorithm. Based on these outcomes, two key 

gene clusters were determined (Figure 3B, 3C). After 

the non-SDEGs added by GeneMANIA to establish  

the PPI network removed, six up-regulated SDEGs

 

 
 

Figure 1. The difference analysis results of the three datasets. (A–C) PCA dimensionality reduction analysis, difference analysis 

volcano map and bidirectional clustering heat map of differential genes for GSE7158. (D–F) PCA dimensionality reduction analysis, difference 
analysis volcano map and bidirectional clustering heat map of differential genes for GSE56815. (G–I) PCA dimensionality reduction analysis, 
difference analysis volcano map and bidirectional clustering heat map of differential genes for GSE100609. 
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(HIST1H3G, HIST1H2BO, PTP4A1, FAM46A, MT1G 

and TNFSF9) and one down-regulated SDEG (PMAIP1) 

were identified as potential hub genes in the pathogenesis 

of osteoporosis. They may become potential targets for 

the treatment of osteoporosis. 

Transcription factors analysis 

 

According to the method section, we predicted the 

potential mRNA and transcription factors interactions of 

SDEGs. These results were performed as a transcription 

 

 
 

Figure 2. Identification and enrichment analysis of SDEGs. (A) Up-regulated SDEGs in the three datasets. (B) Down-regulated SDEGs in 

the three datasets. (C) Significant functional enrichment analysis results of SDEGs using the DAVID tool. (D) Significant functional enrichment 
analysis results of SDEGs using GeneMANIA database. (E) Significant functional enrichment analysis results of SDEGs using Metascape 
database. 
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factors network and visualized using Cytoscape 

software (Figure 4), including 11 transcription factors 

(Green), 14 down-regulated SDEGs (Blue) and 25 up-

regulated SDEGs (Red). 

Drug targets analysis 

 

Based on the DGIdb database, a drug-mRNA network 

was determined and visualized by Cytoscape software 

 

 
 

Figure 3. PPI network of SDEGs and subnetwork. (A) PPI network construction of differential genes in GeneMANIA database. Red dots: 

significant up-regulate differential genes; Blue dots: significant down-regulate differential genes; Black dots: related genes added by the 
GeneMANIA database for the associate PPI network. Circle size indicated the degree of the corresponding gene in the PPI network. The larger 
the circle is, the greater degree of the corresponding node in the figure, which can explain why this node is more important in the network 
from the point of view of graph theory. (B, C) Utilising the MCODE plug-in to analyse the PPI network, two key subnetworks were obtained 
(Figure 3B: the subnetwork of Score8.5; Figure 3C: the subnetwork of Score6.182.). 
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(Figure 5), including 64 predicted drugs (Yellow), five 

down-regulated SDEGs (Blue) and seven up-regulated 

SDEGs (Red). 

 

DEMs and DELs screened, and GSEA 

 

Similarly, the limma package in R was applied to screen 

DEMs (16 up-regulated and 18 down-regulated) and 

DELs (39 up-regulated and 83 down-regulated). Then, 

these outcomes were plotted in Figure 6A–6F. Moreover, 

GSEA analysis was performed between the DEGs of 

GSE56815, with the largest sample size set and DEMs of 

GSE63446. The GSEA analysis was performed towards 

GO and KEGG. These results revealed that the PPAR 

signaling pathway was obtained from the GSEA KEGG 

enrichment results of these two datasets and suggested 

that the PPAR signaling pathway may exert essential 

roles in the progression of osteoporosis. PPAR signaling 

pathway-related proteins and their interactions were 

shown in Supplementary Figure 1. 

 

CeRNA network analysis 

 

The ceRNA interaction relationship was obtained by the 

above method, and the ceRNA network was constructed 

and visualized using Cytoscape software, including 33 

SDEGs (19 up-regulated and 11 down-regulated), 33 

DELs and 34 DEMs, with a total of 253 edges (Figure 7). 

 

Identification of the key gene 

 

Based on PPI network analysis, TF network analysis, 

drug targets network analysis, and ceRNA network 

analysis, a Venn plot revealed that PMAIP1 may be the 

crucial gene in osteoporosis (Figure 8A), and PMAIP1-

related network was shown in Figure 8B. The 

expression levels of PMAIP1 and PMAIP1-related in 

the ceRNA network (miR-200-3p, miR-624-3p, H1FX-

AS1, AC009501.4, RP11-5P4.2, RP4-607I7.1, RP5-

857K21.4) were evaluated by RT-qPCR and the results 

showed that PMAIP1 demonstrated the most significant 

difference (Figure 8C–8J). Then, the diagnostic ROC 

curves outcomes showed that PMAIP1 can be used as 

the diagnostic biomarker (Figure 8K). 

 

Validation of the influence of PMAIP1 on 

osteogenesis, migration and cell growth of BMSCs 

 

Firstly, PMAIP-1 was successfully knocked down, and 

this result was validated by RT-qPCR (Figure 9A). 

 

 
 

Figure 4. Transcription factors network. The green rectangle in the graph represents transcription factors; red and blue dots indicate up-

regulated and down-regulated significant differential gene, respectively. 
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RT-qPCR results showed that compared to the standard 

control group, osteogenic markers RUNX2, OPN and 

OCN expression levels were significantly reduced in the 

PMAIP1 knockdown group (Figure 9A). This result was 

further confirmed in the Western blot experiment 

(Figure 9B, 9C). The ALP and VK staining showed a 

significant decreased osteogenesis of the BMSC cells in 

the Si-PMAIP1 group. In addition, transwell assay and 

wound healing were performed, and the knockdown of 

PMAIP1 resulted in decreased migration in BMSC cells 

(Figure 9F). Then, the CCK-8 assay was performed, and 

the cell proliferation was inhibited after knocking down 

the gene (Figure 9G). 

 

DISCUSSION 
 

OP is a progressive systemic skeletal disease that causes 

up to 40% risk of lifelong fractures [44–46]. With the 

intensification of the ageing process, the incidence of 

OP is increasing, which puts a substantial economic 

burden on the health system [47]. Thus, advances in the 

molecular mechanism of OP are helpful for us to 

identify diagnostic biomarkers and develop new 

therapeutic targets. In the present study, bioinformatic 

analysis was performed to explore the key genes and 

pathways predict TF-mRNA and drug-mRNA network 

of OP based on four mRNA expression matrices from 

GEO. 63 SDEGs (40 up-regulated and 23 down-

regulated) were screened. Functional and pathway 

enrichment analysis revealed that the SDEGs mainly 

function in immunity and response to metal ions. More 

than 99% of the body’s calcium storage is in the 

skeleton in the form of hydroxyapatite, which provides 

bone strength and acts as a calcium pool to maintain the 

dynamic balance of blood calcium [48, 49]. High 

extracellular Ca2+ concentration can lead to changes in 

the cytoskeleton and function of osteoclasts, thus 

reducing bone resorption [50–52]. Besides, it can also 

promote the proliferation, differentiation and migration 

of osteoblasts [53, 54]. As an essential nutrient element, 

zinc forms many enzymes in the body [55, 56]. Zinc  

has a positive effect on fracture healing [57, 58].  

It stimulates the proliferation and differentiation  

of osteoblasts and inhibits the bone resorption of 

osteoclasts [59–61]. There is a significant increase in 

urinary zinc excretion in postmenopausal patients with 

osteoporosis, which indicates its potential as a marker 

of bone resorption [62]. The related functions of  

SDEGs in immunity and response to metal ions  

further suggest that the changes in these molecular 

functions of monocytes may be closely associated with 

osteoporosis. 

 

 
 

Figure 5. Drug-mRNAs network. The yellow rectangle in the graph represents the drugs predicted by the DGIdb database; red and blue 

dots indicate up-regulated and down-regulated significant differential genes, respectively. 
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Figure 6. Differentially expressed mRNA and lncRNA analysis. (A–C) Differentially expressed miRNA. (D–F) Differentially expressed 

lncRNA. (G, H) Common pathways obtained by GSEA analysis of mRNA and miRNA, respectively. 
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After PPI network analysis, 6 up-regulated SDEGs 

(HIST1H3G, HIST1H2BO, PTP4A1, FAM46A, MT1G 

and TNFSF9) and one down-regulated SDEG (PMAIP1) 

were determined as hub genes. Then, TFs are reserved 

for proteins binding to DNA sequence-specifically 

ornon-DNA-binding accessory proteins, which can 

regulate gene transcription and cellular functions  

[63–67]. In this research, 11 transcription factors (TP53, 

BCLAF1, STAT5A, STAT2, NFATC1, POLR2A, 

NFIC, PML, NFE2L2, TAF7 and NPAT), 14 down-

regulated SDEGs (TNFRSF10C, IGTA6, PMAIP1, 

HELLS, POLH, SPEK1IP1, RMND1, NUDT6, 

POM121, TTF2, ITPKB, ANXA6, CBLL1 and TUBB) 

and 25 up-regulated SDEGs (GAS6, MGRN1, PTP4A1, 

HIC1, FAM46A, SPTLC2, RAB20, PRELP, RNF13, 

XAF1, MYLIP, LGALS3BP, SRGN, PYGM, FGF18, 

DDX21, NR1H3, LIPT1, TNFSF9, NCOA1, CLEC7A, 

HIST1H4G, HIST1H3G, HIST1H2BO and NAPG) 

were included in a TFs-mRNAs network. Plenty of TFs 

act as significant parts of OP pathogenesis [68]. As to 

osteoclast regulation, pleiotropic TF, nuclear factor 

kappa-B (NFκB), is effective in osteoclast formation, 

function, and survival [69]. Yamashita et al. [70] found 

that TFs c-Fos and NFATc1 were activated via NF-κB 

signalling, accelerating osteoclast differentiation. On the 

contrary, the overexpression of Lhx2 in osteoclast 

precursor cells inhibited osteoclast differentiation by 

inhibiting the binding of c-Fos to NFATc1 promoters 

[71]. In osteoporosis, bone marrow stromal cells 

(BMSCs) differentiate less into bone and more into fat 

[72, 73]. In addition, seven up-regulated SDEGs (ITIH4, 

MYLIP, TRPM8, GAS6, NR1H3, NCOA1 and CASP1), 

five down-regulated SDEGs (POLH, TUBB, HP, CD52 

and PMAIP1) and 63 kinds of drugs were included in the 

drug-mRNAs network. These outcomes provided a 

potential basis for elucidating novel mechanisms of 

osteoporosis and finding novel therapeutic targets for 

osteoporosis. 

 

 
 

Figure 7. CeRNA network. Red and blue dots indicated up-regulated and down-regulated significant differential genes, respectively. The 
green hexagon refers to significant differential lncRNA, and the pink arrow is a significant differential miRNA; the size of the shape indicates 
the degree size of the corresponding node in the network, and the larger the shape, the larger the corresponding node in the network, the 
more influential the node is in the ceRNA network. 
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Figure 8. Crucial genes validation and diagnostic model construction of ISS. (A) Venn diagram of intersected genes of hub PPI 
network, TF network, Drug-mRNA network, and ceRNA network. (B) Network analysis of PMAIP1. (C–J) The expression levels of PMAIP1 and 
PMAIP1-related genes. (K) Receiver operating characteristic (ROC) for predictive values of PMAIP1. 
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Figure 9. Validation of the influence of PMAIP1 on osteogenesis, migration, and cell growth of BMSCs. (A) RT-qPCR (B, C) 

Western blotting (D) ALP staining (E) VK staining (F) Transwell assay of migration (G) Wound healing assay (H) CCK-8 assay. 
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In recent studies, many researchers have discovered that 

non-coding RNAs (circRNA, lncRNA, and microRNA) 

are significant in the underlying mechanism and role of 

osteoporosis [74–77]. To further clarify the role of non-

coding RNAs in OP, we determined 34 DEMs (16 up-

regulated and 18 down-regulated) from GSE63446. The 

results of GSEA between DEGs of GSE56815 and 

DEMs of GSE53446 revealed that the common 

enrichment pathway, the PPAR signalling pathway, was 

recognised as an important role in the occurrence and 

development of osteoporosis. PPARs are ligand-

inducible nuclear receptors that control many intra-

cellular metabolic processes [78, 79]. At present, three 

subtypes of PPARs: PPARα, PPARβ/δ, and PPARγ, 

have been identified in mammals [21]. The  

role of PPARs in bone metabolism had received a  

wide range of research. Both osteoblasts and osteoclasts 

can be adjusted by PPARγ. PPARγ regulates C-Fos 

directly to increase osteoblasts, and the lack of PPARγ 

stimulates osteoblasts’ differentiation to increase bone 

mass [80, 81]. In contrast, PPARβ/δ can increase  

the expression of osteoprotegerin by activating the  

Wnt signal pathway, resulting in reduced osteoclast 

formation mediated by osteoblasts [82]. Although  

no studies prove the effect of PPARα on bone  

balance, Kim et al. found that PPARα agonist 

fenofibrate increased PPARα and bone morphogenetic 

protein 2 in dose and time to enhance osteoblast 

differentiation [83]. 

 

Furthermore, 122 DELs (39 up-regulated and 83 down-

regulated) were selected from GSE100609. Then, we 

constructed the ceRNA network, including 34 miRNAs, 

33 lncRNAs and 30 mRNAs (19 up-regulated, 11 

down-regulated). Comprehensive evaluation of the PPI 

network, TFs network, drug targets network, ceRNA 

network analysis results, PMAIP1 were defined as the 

core genes of osteoporosis. PMAIP1, belongs to pro-

apoptotic subfamily within the BCL-2 protein family, 

referred to as the BCL-2 homology domain 3 (BH3)-

only subfamily, which regulates apoptosis and 

proliferation of various tumor cells [84–87]. In terms of 

bone metabolism, PMAIP1 knockout mice showed 

decreased osteoclastogenesis and increased osteoclast 

number [32]. To further investigate the role of PMAIP1 

in osteoporosis, RT-qPCR confirmed that PMAIP1 was 

the most differentially expressed gene. Additionally, the 

ROC curve analysis result was meaningful, 

demonstrating that PMAIP1 can serve as a diagnostic 

molecular marker for osteoporosis diagnosing. 

 

Then, this gene’s biological function was identified 

through experiments in BMSCs. When PMAIP1 was 
knocked down, there was a suppression in osteogenesis, 

cell proliferation, and migration of the cells. This further 

confirmed that PMAIP1 can delay the progression of 

osteoporosis and serves as a critical molecule for its 

treatment and prevention. 

 

CONCLUSIONS 
 

In conclusion, the current research was the first to 

indicate PMAIP1 as a novel biomarker for the diagnosis 

of osteoporosis. In addition, based on bioinformatic 

network analysis and relevant experiments, PMAIP1 

may be a crucial therapeutic target for osteoporosis. 

 

Abbreviation 
 

GEO: Gene Expression Omnibus; PMAIP1: Phorbol-

12-Myristate-13-Acetate-Induced Protein 1; GSEA: 

Gene Set Enrichment Analysis; GO: Gene Ontology; 

KEGG: Kyoto Encyclopedia of Genes and Genomes; 

DEG: Differentially expressed gene; DEM: Differential 

expression miRNA; DEL: Differential expression 

lncRNA; PPI: Protein and protein interaction; BMSC: 

Bone marrow mesenchymal stem cell; OP: 

Osteoporosis; BMD: Bone mineral density; PBMC: 

Peripheral blood mononuclear cells; PTH: Parathyroid 

hormone; MTD: Mitochondrial targeting domain. 
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Supplementary Figure 1. PPAR signaling pathway. 
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Supplementary Table 
 

 

Supplementary Table 1. Primers used in this study. 

Primers for qPCR 

PMAIP1 
F CGGAGCTGGAAGTCGAGTGT 

R TTCCTGAGCAGAAGAGTTTGGATA 

H1FX-AS1 
F TTGCCGCTGATGTTCCCA 

R GTTCCCGCCATCATTTCCC 

AC009501.4 
F AAGGGCTTGTTTCTGGCTATGTT 

R GTGGTTGCGTTTCACTGTAAGGA 

RP11-5P4.2 
F TCAGGAAGTCAGCCATGCTAAAC 

R CTTGCCTGCTCACGATTGTTTC 

RP4-607I7.1 
F CCTACTCATGTGAGGAAACCAGC 

R AGTCCTGGGCATGGGAAGTAG 

RP5-857K21.4006 
F TCAACAGGAGGAGATAAGGAAGCT 

R CAGCTCAGGAAGATGACTCAGGG 

miR-200b-3p 
F ACACTCCAGCTGGGTAATACTGCCTGGTAA 

R TGGTGTCGTGGAGTCG 

miR-624-3p 
F ACACTCCAGCTGGGCACAAGGTATTGGTA 

R TGGTGTCGTGGAGTCG 

OCN 
F CACTCCTCGCCCTATTGGC 

R CCCTCCTGCTTGGACACAAAG  

OPN 
F CTCCATTGACTCGAACGACTC 

R CAGGTCTGCGAAACTTCTTAGAT 

RUNX2 
F TGGTTACTGTCATGGCGGGTA 

R TCTCAGATCGTTGAACCTTGCTA 

GAPDH 
F GGAAGCTTGTCATCAATGGAAATC 

R TGATGACCCTTTTGGCTCCC 

U6 
F CTCGCTTCGGCAGCACA 

R AACGCTTCACGAATTTGCGT 
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