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INTRODUCTION 
 
Among all intracranial malignant neoplasms, gliomas 
are the most common and aggressive forms of primary 

brain tumors [1, 2]. The poor survival outcome of glioma 
patients is related to the limited efficacy of current 
treatment options, including surgery, radiotherapy,  
and chemotherapy [3]. Multiple genetic anomalies are 
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ABSTRACT 
 
The telomerase reverse transcriptase promoter (TERTp) is frequently mutated in gliomas. This study sought to 
identify immune biomarkers of gliomas with TERTp mutations. Data from TCGA were used to identify and 
validate survival-associated gene signatures, and immune and stromal scores were calculated using the 
ESTIMATE algorithm. High stromal or immune scores in patients with TERTp-mutant gliomas correlated with 
shorter overall survival compared to cases with low stromal or immune scores. Among TERTp-mutant gliomas 
with both high immune and high stromal scores, 213 commonly shared DEGs were identified. Among 71 
interacting DEGs representing candidate hub genes in a PPI network, HOXC6, WT1, CD70, and OTP showed 
significant ability in establishing subgroups of high- and low-risk patients. A risk model based on these 4 genes 
showed strong prognostic potential for gliomas with mutated TERTp, but was inapplicable for TERTp-wild-type 
gliomas. TERTp-mutant gliomas with high-risk scores displayed a greater percentage of naïve B cells, plasma 
cells, naïve CD4 T cells, and activated mast cells than low-risk score gliomas. TIDE analysis indicated that 
immune checkpoint blockade (ICB) therapy may benefit glioma patients with TERTp mutations. The present risk 
model can help predict prognosis of glioma patients with TERTp mutations and aid ICB treatment options. 
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commonly present in gliomas, including IDH mutations 
[4], 1p/19q co-deletion [5], and TElomerase Reverse 
Transcriptase promoter (TERTp) mutations [6]. TERTp 
mutations are among the most common somatic non-
coding mutations in human cancers, driving cancer cell 
immortalization and tumor progression by reactivating 
telomerase activity [7, 8]. Indeed, TERTp mutations 
occur in more than half of all glioma grades, and in  
over 80% of WHO grade IV gliomas (i.e., glioblastoma, 
GBM), the most lethal glioma type [9]. While the 
prognostic significance of TERTp mutations is still 
equivocal and may depend on concurrent mutations [10], 
there is an urgent interest in developing therapeutic 
strategies to inhibit TERT activity in cancer cells [11]. 
TERTp mutations are associated with poor survival in 
patients with gliomas [12], and thus different treatment 
strategies may be needed for patients with wild-type  
and mutant TERTp. Therefore, the identification of 
biomarkers associated with TERTp mutations may be 
helpful to guide glioma treatment. 
 
In the current study, the TCGA database was searched 
to identify biomarkers associated with TERTp mutations 
in patients with gliomas. After analysis of immune and 
stromal cell distributions in TERTp-mutant gliomas, 
bioinformatics methods and COX regression techniques 
were applied to identify differentially regulated genes 
associated with survival. From these data, a risk model 
based on 4 immune-related genes was developed and 
applied to differentiate low-risk from high-risk patients 
and to construct a nomogram to predict overall survival. 
The present risk model will hopefully serve to guide  
the treatment of gliomas containing mutations in the 
TERT promoter. 
 
RESULTS 
 
High stromal/immune scores predict lower overall 
survival in glioma patients with TERTp mutations 
 
After retrieving gene expression profiles from glioma 
patients with TERTp mutations in TCGA, we evaluated 
the association between immune and stromal scores, 
obtained with the ESTIMATE algorithm, and overall 
survival (OS). A lower OS rate was detected after 
Kaplan-Meier survival analysis for gliomas with high 
immune (Figure 1A) and stromal (Figure 1B) scores. 
We next conducted comparative gene expression analysis 
between the high and low immune/stromal groups. A 
total of 245 genes were upregulated, whereas 120 genes 
were downregulated, in TERTp-mutated glioma tissues 
from the high, compared to the low, immune group 
(Figure 1C, 1D). In turn, 181 upregulated genes and  
38 downregulated genes were detected in glioma tissues 
in the high, compared to the low, stromal group (Figure 
1E, 1F). Upon comparative analysis of TERTp-mutant 

glioma tissues with high stromal and high immune 
scores, a total of 213 DEGs (175 co-upregulated and  
38 co-downregulated ones; Figure 1G, 1H) were found 
to be shared among the two groups (Supplementary 
Table 1). 
 
After constructing a PPI network, we identified 71 
genes involved in gene-to-gene interactions (Figure 
1I). Genes related to stromal and immune scoring in 
TERTp-mutant gliomas were identified as candidate 
hub genes. KEGG enrichment analysis revealed that 
these candidate hub genes interact with cytokines and 
cytokine receptors, showing enrichment in ‘cytokine-
cytokine receptor interaction’, ‘T cell receptor 
signaling pathway’, ‘allograft rejection’, ‘primary 
immunodeficiency’, ‘transcriptional misregulation in 
cancer’, ‘systemic lupus erythematosus’, ‘chemokine 
signaling pathway’, and ‘Th17 cell differentiation’ 
(Figure 1J). Gene Ontology (GO)-BP enrichment 
analysis based on cell adhesion molecule ontology 
revealed that these candidate hub genes are enriched  
in pattern specification processes, regionalization, and 
anterior/posterior pattern specification (Figure 1K). 
GO-CC enrichment analysis showed enrichment on  
the external surface of plasma membrane for these 
candidate hub genes (Figure 1L). Based on GO-MF 
enrichment analysis, candidate hub genes are enriched 
in DNA-binding transcription activator activity, 
enhancer sequence-specific DNA binding, enhancer 
binding, receptor ligand activity, and cytokine activity 
(Figure 1M). 
 
Construction of an immune signature for glioma 
patients with TERTp mutations 
 
Next, we assessed the association between high 
immune/high stromal score-related DEGs identified  
in TCGA-glioma patients with TERTp mutations and 
survival data. Based on univariate Cox regression, 73 of 
213 DEGs were associated with survival (Supplementary 
Table 2). Upon further analysis using LASSO and Cox 
regression analyses, seven additional DEGs, including 
HOXC6, HOXA10, EOMES, WT1, HOXC10, CD70, 
OTP retained significant associations with overall 
survival (Figure 2A, 2B). Based on the above analysis, a 
risk model associated with mutant TERTp in glioma was 
constructed using gene expression data for HOXC6, 
WT1, CD70, and OTP, as well as survival data from the 
TCGA. For each patient, the risk score was calculated 
as: HOXC6 × 0.211 + WT1 × 0.312 + CD70 × 0.511 + 
OTP × 0.299 (Figure 2C). 
 
Risk model validation 
 
To validate the applicability of the risk model described 
above, glioma patients with TERTp mutations were 
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divided into high-risk and low-risk groups in a training 
cohort (Figure 3A). In the latter, high-risk scores  
were associated with lower OS rates (Figure 3B). After 
ROC analysis, the AUCs for predicting survival one 
year, three years, and five years after diagnosis were 
0.867, 0.845, and 0.85, respectively (Figure 3C–3E). 

Further analysis indicated a higher mortality risk for 
patients with high-risk scores (Figure 3F). As shown  
in Figure 3G, HOXC6, WT1, CD70, and OTP were 
highly expressed in high-risk vs. low-risk glioma 
samples. A prognostic risk model and a moderate risk 
score constructed in the TCGA test cohort were used to

 

 
 
Figure 1. Effect of stromal and immune scores on survival of patients with TERTp-mutant gliomas. (A) Kaplan-Meier survival 
analysis of patients in the high and low immune score groups. (B) Kaplan-Meier survival analysis of patients in the high and low stromal 
score groups. (C) Volcano plot showing differential gene expression for the high and low immune groups. (D) Heat map depicting 
differential gene expression between TERTp-mutant gliomas in the high and low immune groups. (E) Volcano plot showing differential gene 
expression for TERTp-mutant gliomas in the high and low immune groups. (F) Heat map showing DEGs between TERTp-mutant gliomas in 
the high and low stromal groups. (G) Venn diagram of upregulated genes in the high stromal and immune groups. (H) Venn diagram of 
downregulated genes in the high stromal and immune groups. (I) PPI network constructed using 71 overlapping DEGs while removing 
isolated genes. Genes in the PPI network was set as candidate hub genes. (J) Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of 
candidate hub genes. (K) GO-Biological process (BP) analysis of candidate hub genes. (L) GO-Cellular component (CC) analysis of candidate 
hub genes. (M) GO-Molecular function (MF) analysis of candidate hub genes. 
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categorize glioma cases as high-risk or low-risk (Figure 
3H). In this test cohort, the OS rate of glioma patients 
with high-risk scores was also shorter (Figure 3I). 
According to ROC curves, AUCs of 0.884, 0.986, and 
0.99 were respectively obtained for 1-year, 3-year, and 
5-year OS (Figure 3J–3L). It was also observed in  
the test cohort that patients with high-risk scores died 
more frequently (Figure 3M). As shown in Figure  
3N, HOXC6, WT1, CD70, and OTP expression was 
upregulated in glioma tissues from patients with high-
risk scores. This evidence suggests that the proposed 
risk model is useful for predicting the prognosis of 
glioma patients with TERTp mutations. 

Applicability of the risk model in TCGA-glioma 
patients with wild-type TERTp  
 
In the TCGA-glioma cohort, high-risk and low-risk 
TERTp-wild-type gliomas were classified based on 
median risk scores (Figure 4A). Survival analysis 
indicated that patients with high-risk scores lived 
shorter than those with low-risk scores (Figure 4B).  
On ROC analysis, AUCs of 0.818, 0.619, and 0.636, 
predictive, respectively, of 1-year, 3-year, and 5-year 
survival, were recorded for glioma patients with wild-
type TERTp (Figure 4C–4E). There was no significant 
difference in mortality between high-risk patients and 

 

 
 
Figure 2. Hub genes selected to construct the risk model. (A, B) LASSO analysis for hub genes associated with the survival rate of 
glioma patients with TERTp mutations. (C) Multivariate Cox regression analysis of HOXC6, WT1, CD70, and OTP. These four genes were used 
to construct the risk model. 
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those at low risk (Figure 4F). HOXC6, WT1, CD70, 
and OTP expression was elevated in glioma tissues 
from high-risk score patients carrying wild-type TERTp 
(Figure 4G). However, in patients with wild-type 
TERTp-wild-type gliomas, the HOXC6-WT1-CD70-
OTP risk models did not predict survival, and may thus 
be specific to glioma cases with TERTp mutations. 

A nomogram based on a 4-gene immune signature 
has prognostic ability in glioma patients with 
TERTp mutations 
 
Based on multivariate Cox regression analysis, the 
immune signature created using HOXC6, WT1, CD70, 
and OTP represented an independent prognostic factor

 

 
 
Figure 3. Validation of the applicability of the risk model in patients with TERTp-mutant gliomas. (A) Patients with TERTp-
mutant gliomas in the training cohort were divided into high-risk and low-risk groups based on the median risk score. (B) Survival 
differences between patients in the high- and low-risk scoring groups in the training cohort. (C–E) Diagnostic value of risk models for 1-year, 
3-year, and 5-year survival in the training cohort. (F) Survival time as a function of risk score for patients in the training cohort. Green dots 
represent live cases, and red dots represent dead cases. (G) Heatmap depicting expression levels of HOXC6, WT1, CD70, and OTP in glioma 
samples in the high-risk and low-risk score groups in the training cohort. (H) Patients with TERTp-mutant gliomas in the test cohort were 
divided into high-risk and low-risk groups based on the median risk score. (I) Survival differences between patients in the high- and low-risk 
score groups in the test cohort. (J–L) Diagnostic value of risk models for 1-year, 3-year, and 5-year survival for patients in the test cohort. 
(M) Survival time as a function of risk score for patients in the high-risk and low-risk scoring groups in the test cohort. Green dots represent 
living cases, and red dots represent dead cases. (N) Heatmap depicting expression levels of HOXC6, WT1, CD70, and OTP in glioma patients 
in the high-risk and low-risk scoring groups of the test cohort. 
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for glioma patients with TERTp mutations. This is 
evidenced in a column line plot based on signature  
risk scores and clinical features (Figure 5A), which 
showed excellent prognostic value for 1-, 3-, and 5-year 
survival (Figure 5B). 
 
Analysis of tumor-infiltrating immune cell types and 
predicted response to immune checkpoint blockade 
therapy in glioma patients with TERTp mutations 
 
Research has demonstrated that immune cells 
infiltrating TERTp-mutant gliomas play a significant 

role in disease progression. Thus, CIBERSORT was 
used to analyze the distribution of 22 infiltrating 
immune cell types in high-risk and low-risk glioma 
patients with TERTp mutations (Figure 6A, 6B). 
Compared to low-risk gliomas, high-risk gliomas 
showed higher proportions of naïve B-cells, plasma 
cells, naïve CD4 T-cells, and activated mast cells, and 
lower proportions of memory B cells, resting memory 
CD4 T cells, regulatory T cells, resting NK cells, M0 
and M2 macrophages, dendritic cells, and neutrophils 
(Figure 6C). In addition, TIDE analysis indicated that 
immune checkpoint blockade (ICB) may be an effective

 

 
 
Figure 4. Validation of the applicability of the risk model in TCGA-glioma patients with wild-type TERTp. (A) Patients with 
TERTp-wild-type glioma in the TCGA database were divided into high-risk and low-risk groups based on the median risk score. (B) Survival 
differences between patients in the high-risk and low-risk groups. (C–E) Diagnostic value of risk models for 1-year, 3-year, and 5-year 
survival rates. (F) Survival time as a function of risk score for glioma patients with wild-type TERTp in the high-risk and low-risk groups. 
Green dots represent living cases, and red dots represent dead cases. (G) Heatmap depicting expression levels of HOXC6, WT1, CD70, and 
OTP in gliomas from patients with wild-type TERTp in the high-risk and low-risk groups. 
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Figure 5. Construction of a nomogram based on a 4-gene signature risk score and clinical characteristics. (A) Proposed 
nomogram, incorporating age, gender, glioma grade, and risk score. (B) Efficiency of the nomogram in predicting 1-year, 3-year, and 5-year 
survival for patients with TERTp-mutant gliomas. 
 
 

 
 
Figure 6. Immunological characteristics of TERTp-mutant gliomas in TCGA. (A, B) Expression matrices showing proportions and 
expression patterns of 22 tumor-infiltrating immune cell types in TCGA-glioma tissues from patients with TERTp mutations in the high- and 
low-risk groups. (C) Profiling of tumor-infiltrating immune cells in TERTp-mutations-type glioma tissues in the high- and low-risk groups in 
TCGA. (D) Predicted proportions of ICB responders and non-responders among glioma patients with TERTp mutations in the high-risk and 
low-risk groups. 
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treatment option for glioma patients with TERTp 
mutations in the high-risk group (Figure 6D). Hence, we 
propose that glioma patients with TERTp mutations 
may benefit from the present risk model to guide their 
clinical treatment.  
 
Validation of HOXC6, WT1, CD70, and OTP 
expression trends in glioma tissues with TERTp 
mutations 
 
We next analyzed 54 glioma samples with TERTp 
mutations obtained in our institution, divided  
into long-term and short-term survival groups. 
Immunohistochemistry revealed higher expression 

levels of HOXC6, WT1, CD70, and OTP in the  
long-term vs. the short-term survival group (Figure 
7A, 7B). ROC analysis was subsequently applied to 
determine the significance of HOXC6, WT1, CD70, 
and OTP expression levels on patient survival. Results 
indicated a significant prognostic value for the four 
genes (AUC = 0.78, 0.09, 0.81, and 0.81, respectively) 
(Figure 7C–7F). 
 
5-fluorouracil and gemcitabine may benefit high-
risk glioma patients with TERTp mutations 
 
In order to determine which oncology drugs might  
be appropriate for high-risk TERTp-mutant glioma 

 

 
 
Figure 7. Expression of HOXC6, WT1, CD70, and OTP in 54 glioma cases with TERTp mutations. TERTp-mutant glioma samples 
from 54 glioma patients admitted to our hospital were divided into long- and short-term survival groups based on a survival cut-off of 15 
months. (A) IHC scores for HOXC6, WT1, CD70, and OTP expression in glioma samples from patients in the long- and short-term survival 
groups. (B) Representative IHC images showing the expression of HOXC6, WT1, CD70, and OTP in glioma samples from patients in the long- 
and short-term survival groups. (C–F) Diagnostic value of HOXC6, WT1, CD70, and OTP for distinguishing long- and short-term survivors 
among glioma patients with TERTp mutations. 
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patients, we integrated the corresponding gene 
expression profiles into a drug sensitivity matrix using 
the OncoPredict algorithm. Among 198 candidate drugs, 
higher sensitivity was predicted for 5-fluorouracil  
and gemcitabine for this subgroup of patients (Figure 
8A–8C). 
 
DISCUSSION 
 
There is an urgent need for reliable prognostic  
models for patients with glioblastoma (GBM), the 
most common and aggressive primary brain tumor. 
Dysregulation of the immune microenvironment 
contributes to the progression of gliomas with TERTp 
mutations [13, 14]. In this work, our analysis of  
the TCGA-glioma patient cohort exhibiting TERTp 
mutations showed that patients with high stromal/ 
immune scores had lower survival rates than those 
with low stromal/immune scores. Upon identification 
of DEGs between high and low stromal/immune score 

groups, 73 out of 213 DEGs shared between the  
high stromal and high immune score groups were 
obviously correlated with prognosis. In turn, PPI 
network analysis revealed significant interactions (and 
prominent enrichment in cytokine signaling pathways) 
for 71 out of the 213 common DEGs. After LASSO 
and Cox regression analysis, immune profiles were 
established based on HOXC6, WT1, CD70, and OTP 
expression levels. Focusing on the TERTp-mutant 
glioma subtype, we developed an immune-related gene 
signature including HOXC6, WT1, CD70, and OTP 
that showed significant prognostic value for TERTp-
mutant gliomas, but not for TERTp wild-type gliomas, 
in two TCGA cohorts. We thus suggest that TERTp-
mutant gliomas may be appropriately assessed based 
on the present risk model. 
 
Homeobox genes, mainly represented by the HOX gene 
family, act as critical developmental regulators by 
influencing cell proliferation, migration, differentiation, 

 

 
 
Figure 8. Drug sensitivity analysis for high-risk TERTp-mutant gliomas. (A–C) OncoPredict analysis of drug sensitivity of TERTp-
mutant gliomas. Results suggest higher sensitivity to 5-fluorouracil and gemcitabine therapies for glioma patients in the high- vs. the low-
risk group. ***P < 0.001. 
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and death during axial patterning [15, 16]. HOXC6  
was found to be overexpressed in clinical glioma 
samples, and its knockdown stimulated the WIF-1/Wnt 
signaling pathway and induced cell cycle arrest and 
apoptosis in U87 glioma cells [17]. HOXC6 was also 
found to regulate EMT signaling, and was proposed  
as a new immunotherapeutic target for gliomas [18,  
19]. The orthopedia homeobox (OTP) gene, a member 
of the homeodomain (HD) family, plays an essential 
role in development and cell-fate specification of the 
hypothalamic neuroendocrine system in vertebrates [20]. 
OTP was identified as a reliable prognostic indicator in 
lung carcinomas, including neuroendocrine ones [21, 
22]. CD70 is a costimulatory molecule involved in  
T-cell-mediated immunity that critically contributes to 
recurrent GBM aggressiveness and maintenance [23, 
24]. Jin et al. reported that CD70-specific CAR T cells 
recognize primary CD70+ GBM tumors in vitro and 
mediate the regression of established GBM in xenograft 
and syngeneic rodent models [25]. Initially identified as 
a tumor suppressor, the Wilms’ tumor 1 (WT1) gene has 
been shown to display significant increases in expression 
across a range of human cancers, including lung and 
pancreatic cancer [26, 27]. In turn, high levels of WT1 
mRNA have been reported in gliomas at advanced 
clinical stages and with poor prognoses [28, 29]. 
 
The tumor microenvironment (TME) consists of 
different types of cells, including cancer cells, immune/ 
inflammatory cells, vascular cells, and cancer-associated 
fibroblasts [30]. The progression of gliomas is influenced 
by immune cells that infiltrate the TME [31]. Glioma-
associated macrophages predominantly exhibit the  
M2 phenotype, which induces angiogenesis and thus 
enhances tumor aggressiveness. We found that higher 
levels of naïve B cells, plasma cells, naïve CD4 T cells, 
and activated mast cells were characteristic of TERTp-
mutant glioma patients with high-risk scores in both 
TCGA cohorts, in association with a lower survival rate. 
This evidence would suggest an immunosuppressive 
TME in TERTp-mutant glioma patients with high-risk 
scores. 
 
Some patients with diverse cancer types, including 
bladder and lung cancer, have experienced significant 
benefits from ICB therapies [32, 33]. In these 
approaches, cancer cells can be killed by blocking 
immune checkpoints to reactivate deactivated immune 
cells [34]. There is, however, limited evidence that  
ICB is effective in gliomas with TERTp mutations. Our 
TIDE analysis indicated that ICB may improve the 
prognosis of TERTp-mutant glioma patients in the high-
risk score group. Through further OncoPredict analysis, 
four candidate drugs, among them 5-fluorouracil and 
gemcitabine, were identified as potentially effective  
in this group. This evidence may contribute to guiding 

chemotherapy and targeted therapies for high-risk 
glioma patients with TERTp mutations. 
 
In conclusion, an immune signature based on HOXC6, 
WT1, CD70, and OTP expression was shown to serve 
as an independent and specific prognostic indicator  
for patients with TERTp- mutant gliomas. Interestingly, 
the high-risk population classified by this signature  
was predicted to benefit from ICB. This novel 4-gene, 
immune-related signature might thus be valuable to 
guide the treatment of gliomas with TERTp mutations. 
 
MATERIALS AND METHODS 
 
Gene expression profiling and estimation of immune 
and stromal scores 
 
The TCGA genome database was accessed to obtain  
gene expression profiles from glioma patients. Several 
probe names were annotated as gene names, and raw gene 
expression profiles were normalized and centralized. Cases 
with mutations in the TERTp and those without survival 
data were excluded from the analysis. In the TCGA cohort, 
155 patients had TERTp mutations and 166 patients  
were TERTp-wild-type. The ESTIMATE R tool was used 
to calculate immune and stromal scores in glioma tissues 
harboring TERTp mutations. 
 
Analysis of differentially expressed genes 
 
A significance threshold of P < 0.05 and |logFold-
Change | <1 was set to analyze differentially expressed 
genes (DEGs). Volcano plots were created to visualize 
and analyze gene expression changes in the high and 
low immune and stromal score groups, while heat maps 
were used to visualize DEGs. 
 
Enrichment analysis 
 
The Database for Annotation, Visualization and 
Integrated Discovery (DAVID) was used to analyze 
enriched KEGG and GO terms for hub genes. GO 
analysis was based on the three root categories: 
biological process (BP), cellular component (CC), and 
molecular function (MF). According to the significance 
threshold of P < 0.05, bubble plots were generated  
to display the top five terms. 
 
Construction and verification of immune signatures 
 
Immune signatures were first constructed by analyzing 
through univariate Cox regression those genes 
significantly related to survival in patients with TERTp 
mutations. By adding a penalty function (lambda), 
LASSO was used to eliminate redundant genes.  
Using the Akaike information criterion, multivariate 
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Cox regression analysis was performed to develop a 
model for prognostic risk scoring. Risk scores were 
limited to 10 points. Kaplan-Meier survival analysis  
and ROC analysis were used to assess the prognostic 
accuracy of the risk model for glioma patients with 
mutant and wild-type TERTp. 
 
Immune cell analysis 
 
The R package CIBERSORT was used to investigate 
the presence of 22 tumor-infiltrating immune cell types 
in TCGA-glioma cases with TERTp mutations. An 
unpaired t-test with significance set at P < 0.05 was 
used to compare immune cell distribution between high-
risk and low-risk groups. 
 
Immunohistochemistry 
 
From Guizhou Medical University Affiliated  
Hospital, 54 TERTp-mutant glioma tissues were 
collected prior to radiotherapy or chemotherapy, with 
approval from the Human Ethics Committee of  
Guizhou Medical University. All participants provided 
informed consent. The Human Research Ethics Review 
Committee of Guizhou Medical University approved 
the analysis of these clinical samples, which was carried 
out on basis of the tenets expressed in the Declaration  
of Helsinki. For immunohistochemistry (IHC), the 
sections were probed with the following antibodies: 
HOXC6 (1:200, ab41587, Abcam, Cambridge, UK), 
WT1 (1:100; 12609-1-AP, Proteintech, Wuhan, China), 
CD70 (1:500; 67749-1-Ig; Proteintech, Wuhan, China), 
and OTP (1:4000; ab254267; Abcam, Cambridge, UK). 
 
Immunotherapy response prediction and drug 
sensitivity analysis 
 
The online tool TIDE (Tumor Immune Dysfunction and 
Exclusion) was used to predict potential ICB responses 
[35]. In vivo drug responses were predicted using 
OncoPredict, an algorithm developed by Maeser et al. 
[36]. In order to calculate the sensitivity to drugs of 
gliomas, OncoPredict scripts were used to match the gene 
expression matrix of each glioma sample to the antitumor 
effects of drugs in cancer cells recorded in the Cancer 
Cell Line Encyclopedia (Broad Institute, Cambridge, 
MA, USA). Patients with gliomas with high drug scores 
are less sensitive to anticancer drugs. The limma package 
was used to analyze differences in drug scores between 
patients at high and low risk, while |logFC| ≥1, and 
adjusted P < 0.05 were set as cut-offs for significance. 
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SUPPLEMENTARY MATERIALS 
 
Supplementary Tables 
 
Please browse Full Text version to see the data of Supplementary Table 1. 
 
Supplementary Table 1. List of co-upregulated and co-downregulated genes in TERTp-mutated gliomas in the 
high immune and high stromal groups. 
 
Supplementary Table 2. The hazard rate of genes for glioma patients with TERT promoter-mutated. 

ID HR HR.95L HR.95H p-value 
IL10 1.401296707 1.16820136 1.680902392 2.78E-04 
CD80 1.680121477 1.31873489 2.140542577 2.68E-05 
CXCR3 1.673062748 1.311257916 2.134697472 3.48E-05 
HOXA5 1.311948358 1.193513819 1.44213537 1.85892E-08 
CD40LG 1.683021846 1.324759093 2.1381718 2.02E-05 
IL2RA 1.263449436 1.085284275 1.470862993 2.57E-03 
FCGR2A 1.570908668 1.242643354 1.985890831 1.59E-04 
CD3D 1.416891407 1.188753932 1.688811456 0.000100121 
HOXC6 1.339777582 1.191359826 1.506684992 1.05E-06 
HAND2 1.308185324 1.170750093 1.46175418 2.10E-06 
HOXA7 1.264175956 1.166146986 1.370445464 1.25E-08 
HOXA10 1.263760788 1.165656311 1.370121977 1.36E-08 
HOXB4 1.256479211 1.137275368 1.388177438 7.15E-06 
KLRB1 1.317327982 1.082842817 1.602589947 5.86E-03 
HOXA11 1.263335609 1.149044264 1.388995106 1.35E-06 
HOXA4 1.253359993 1.154319813 1.36089778 7.57E-08 
HOXA6 1.374021361 1.217284587 1.550939461 2.72E-07 
HOXB5 1.402434859 1.199381587 1.639864707 2.25E-05 
PTPN22 1.612489649 1.336986502 1.944763739 5.79E-07 
CCL20 1.322543716 1.153477064 1.51639069 6.18E-05 
CCR2 1.440138364 1.193514248 1.73772413 1.41E-04 
EOMES 2.162706032 1.564438559 2.989760993 3.03E-06 
HOXA3 1.300062396 1.187452601 1.423351325 1.37E-08 
ICOS 1.8048284 1.412505119 2.306119469 2.34E-06 
SHOX2 1.223249578 1.110456152 1.347499879 4.45E-05 
AFP 1.562430931 1.248837288 1.954770599 9.46E-05 
CD3G 1.891114604 1.449651399 2.467016861 2.63E-06 
GATA4 1.307196099 1.145094066 1.492245652 7.32E-05 
HLA-DQB2 1.333241464 1.123164091 1.582611851 1.01E-03 
HOXA2 1.283245686 1.17444172 1.402129592 3.45E-08 
HOXB6 1.278199257 1.080801373 1.511649949 4.13E-03 
SLAMF1 1.817295749 1.404517107 2.351387407 5.52E-06 
TREM1 1.262565437 1.127167166 1.414228103 5.62E-05 
CLEC12A 1.341744641 1.140699448 1.578223506 3.86E-04 
HOXA9 1.225208849 1.121304557 1.338741302 7.05E-06 
HOXB2 1.297325529 1.169681194 1.438899367 8.40E-07 
HOXD10 1.36713449 1.215792098 1.537316057 1.75E-07 
NKX2-5 1.244500417 1.122792335 1.379401373 3.10E-05 
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WT1 1.300897745 1.158758861 1.460472062 8.35E-06 
CD300LB 1.520548159 1.199903031 1.926877959 0.000524043 
EMR1 1.426187179 1.192978147 1.704985021 9.74366E-05 
GZMK 1.482573876 1.213433795 1.811409329 0.000116823 
HOXC10 1.2943038 1.176692782 1.423670097 1.11153E-07 
HOXC13 1.376912665 1.231280801 1.539769389 2.04992E-08 
HOXC8 1.220296021 1.104497377 1.348235324 9.08623E-05 
HOXC9 1.381213083 1.212463096 1.573449606 1.18776E-06 
HOXD11 1.358327605 1.210728902 1.523919913 1.80763E-07 
HOXD13 1.311717864 1.188299062 1.447955158 7.3699E-08 
HOXB3 1.274676411 1.160273371 1.400359599 4.22954E-07 
HOXB8 1.247854698 1.098546631 1.417455849 0.000660481 
HOXC11 1.375777433 1.222296182 1.548531014 1.2504E-07 
HOXD9 1.358154675 1.201031583 1.535833153 1.05995E-06 
TRAT1 2.167431523 1.633716898 2.875503958 8.17295E-08 
UBASH3A 1.817028631 1.388515496 2.377786246 1.35017E-05 
CD70 1.642563121 1.332438182 2.024869628 3.3466E-06 
CXCL6 1.257642315 1.101595506 1.435793976 0.000695177 
FOXD3 1.208852224 1.014229337 1.440821761 0.034198992 
IDO1 1.305190356 1.105804698 1.540526883 0.001638069 
KRT7 1.320853258 1.135029896 1.537099011 0.000321571 
PAX3 1.326831526 1.174648712 1.498730539 5.37224E-06 
ZNF683 1.578651355 1.175757019 2.119604697 0.002389883 
AREG 1.338353008 1.097220392 1.632478568 0.004036102 
CEACAM4 1.341915123 1.027226522 1.753007889 0.031007269 
CLEC5A 1.251684284 1.114414278 1.405862773 0.000152001 
HOXA1 1.351151142 1.197873039 1.52404249 9.6411E-07 
HOXA13 1.198591954 1.070500298 1.34201053 0.001681566 
MMP7 1.198670225 1.054127433 1.363032839 0.005710016 
OTP 1.552617782 1.345994136 1.790960238 1.56122E-09 
POSTN 1.206300498 1.118697781 1.300763187 1.0832E-06 
SAA1 1.190234398 1.100321451 1.287494596 1.38972E-05 
SPAG17 1.370532233 1.187884542 1.581263613 1.56473E-05 
TNFSF14 1.951613296 1.536187074 2.47938192 4.36635E-08 
TREML2 1.556284703 1.200625914 2.017299517 0.000834258 
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