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INTRODUCTION 
 
Heart Failure (HF) is a serious heart disease, and  
its treatment has always been a major challenge in  
the field of medicine [1]. Conventional treatment 
options encompass prescription drugs, revascularization 
procedures, implantation of ventricular assistance 
devices, and heart transplantation, though these methods 
are subject to certain limitations [2]. At present, various 

types of stem cells can be used for transplantation to 
treat various diseases, including induced pluripotent 
stem cells (iPSC) and their differentiated products [3], 
mesenchymal stem cells (MSC) [4], embryonic stem 
cells (ESC), and their differentiated products [5]. MSCs 
were the earliest stem cell type implemented in clinical 
research due to their relative abundance as they are 
obtainable from various human tissues, including bone 
marrow, umbilical cords, fat and so on [6–8]. 
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ABSTRACT 
 
Heart failure (HF) is a serious global health issue that demands innovative treatment approaches. In this study, 
we collected samples from 4 HF patients before and after MSC therapy and performed scRNA-seq. After the 
MSC therapy, the proportion of CD14+ monocytes decreased significantly in both the treatment response and 
non-response groups, with a more pronounced decrease in the treatment response group. The therapy-
response and non-response group were clearly separated in the UMAP plot, while the CD14+ monocytes in the 
therapy-response group before and after MSC therapy were very similar, but there were significant differences 
in the non-response group. By further performing NMF analysis, we identified 11 subsets of CD14+ monocytes. 
More importantly, we identified a therapy-related CD14+ monocyte subpopulation. The predictive model based 
on CD14+ monocytes constructed by machine learning algorithms showed good performance. Moreover, genes 
such as FOS were highly enriched in the therapy-related CD14+ monocytes. The SCENIC analysis revealed 
potential regulatory factors for this treatment-responsive CD14+ monocytes, and FOS/JUN were identified as 
potential core indicators/regulators. Finally, HF patients were divided into three groups by NMF analysis, and 
the therapy-responsive CD14+ monocyte characteristics were differentially activated among the three groups. 
Together, this study identifies treatment-responsive CD14+ monocytes as a crucial biomarker for assessing the 
suitability of MSC therapy and determining which HF patients could benefit from it. This provides new clues for 
further investigating the therapeutic mechanisms of MSC therapy, offering beneficial insights for personalized 
treatment and improving prognosis in HF patients. 
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In recent years, mesenchymal stem cells (MSCs) have 
become a popular type of cells for clinical translation 
due to their convenient sourcing, abundant intracellular 
content in source material, low immunogenicity, 
ethically uncontroversial acquisition, and strong 
proliferation capacity [9]. MSCs exhibit extremely  
low immunogenicity in allogeneic transplantation and 
have gradually been employed for treating various 
diseases, particularly in the realm of cardiovascular 
disorders, notably for addressing congestive heart 
failure [10–12]. Traditional research shows that the 
mechanisms underlying stem cell therapy for HF 
include direct differentiation into cardiomyocytes to 
replace damaged myocardium, or differentiation into 
vascular endothelial cells to improve microcirculation, 
as well as promoting endogenous repair of myocardial 
cells through mechanical stimulation [13]. Nevertheless, 
investigators have found that stem cells, particularly 
MSCs, exert a more substantial paracrine function.  
For instance, hUC-MSCs exert diverse functions by 
secreting extracellular vesicles in damaged regions 
such as myocardium, neurons, skin, and liver, including 
anti-apoptotic effects, promotion of neovascularization, 
and inhibition of fibrosis progression [14]. These 
findings indicated that MSCs aid in improving the 
local immune microenvironment of patients, facilitating 
tissue functional recovery, delaying the progression of 
chronic diseases, and accomplishing the therapeutic 
objective of tissue regeneration. 
 
Stem cell therapy employing MSCs has exhibited 
favorable efficacy in treating diverse diseases [15]. 
However, due to heterogeneity among patients, this 
therapeutic effect is quietly different. Thus, identifying, 
before or during the treatment, patients who are likely 
or unlikely to respond to stem cell therapy early on  
is critical in attaining the best therapeutic effects. With  
the emergence of high-throughput technologies, PBMC 
is now suitable for deeper immune analysis and serving 
as crucial biomarkers. 
 
The widespread implementation of single-cell RNA 
sequencing (scRNA-seq) technology enables researchers 
to gain a more comprehensive comprehension of the 
dynamic alterations in peripheral blood mononuclear 
cells (PBMCs) of heart failure (HF) patients following 
the administration of stem cell therapy [16]. This study 
aims to investigate the changes in PBMCs of HF patients 
with the MSC therapy and determine whether these 
changes are associated with treatment response. The 
study comprised 4 HF patients, in which scRNA-seq 
analysis was performed on 8 PBMC samples before and 
after cell transplantation. We discovered a significant 
decrease in the proportion of CD14+ monocytes after 
MSC treatment, suggesting that CD14+ monocytes may 
be the cell type most affected during therapy. Further 

analysis unveiled subgroups of the therapy-related 
CD14+ monocytes, providing clues to understanding the 
mechanisms of treatment response and give insights for 
finding patients suitable for MSC therapies. 
 
MATERIALS AND METHODS 
 
Sample collection and RNA-sequencing 
 
This study recruited patients at Shanghai East Hospital 
(Shanghai, China). The research was conducted in 
accordance with the ethical principles of the Helsinki 
Declaration [17] and obtained ethical approval from 
the Ethics Committee of Shanghai East Hospital. Prior 
to collection of specimens and clinical information, 
informed consent was obtained from all registered 
patients. All patients approved the release of personally 
identifiable information, received verbal and written 
project information, and signed a written consent form. 
 
Human umbilical cord mesenchymal stem cells  
(hUC-MSCs) were administered via intravenous 
injection at a dose of 1×106 cells/kg for heart failure 
patients [10]. Clinical assessments and evaluations 
were conducted on patients one week before cell 
implantation and at 1 month and 6 months after 
transplantation. These assessments included routine 
physical examinations, vital sign monitoring, adverse 
event evaluation, laboratory tests, and functional 
measurements (Supplementary Tables 1, 2). The above 
clinical monitoring showed improvement in patients 
after stem cell therapy. To further investigate the 
reasons behind the differences in treatment efficacy 
among patients, single-cell RNA-sequencing was 
performed on peripheral blood mononuclear cells 
(PBMCs) collected from four patients at both pre-
treatment and one-month post-treatment, resulting in  
a total of 8 PBMC samples. 
 
Public data collection 
 
The GSE59867 used in present work, including PBMC 
samples from heart failure patients [18], were collected 
from the Gene Expression Omnibus (GEO) database 
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE59867). PBMC samples from patients (n=111) with 
ST-segment elevation myocardial infarction (STEMI) 
and the control group comprised patients (n=46) with  
a stable coronary artery disease (CAD) and without a 
history of myocardial infarction. 
 
scRNA sequencing for PBMCs from heart failure 
patients with MSC therapy 
 
The scRNA-seq library was generated using the 
Chromium Single Cell assay (10× Genomics). The 
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library was sequenced using the NovaSeq 6000 
Illumina platform and the raw data were aligned  
to the human genome (hg38). Quality control and 
normalization of the scRNA-seq data were performed 
using the Seurat R package (v4.1.1). The gene 
expression matrix was normalized to the total UMI 
counts per cell derived from the filtered cells. We  
used the FindVariableFeatures function to identify the 
top 3000 highly variable genes. The FindAllMarkers 
function in Seurat was executed with default parameters 
to identify genes exhibiting cluster-specific expression. 
The cell types of PBMC were annotated based on the 
WNN algorithm [19]. To determine the composition  
of samples based on cell types, the cell count for  
each cell type was calculated from each sample. The 
aforementioned identical functions were utilized to 
obtain subclusters of CD14+ monocytes for clustering 
and grouping. 
 
Metacell analysis of scRNA-seq data 
 
Single-cell transcriptomic data are characterized by 
high background noise, low gene detection rate, and 
sparse expression matrix. Currently, it is known that 
functionally similar genes tend to cluster together, 
thus algorithmically obtaining metacells often better 
reflect the true expression profile of cells [20, 21]. 
Therefore, metacell analysis was conducted on single-
cell RNA sequencing data of PBMCs before and  
after MSC therapy for heart failure, thus providing 
dependable cellular data for subsequent machine 
learning modeling. 
 
Construction of a machine learning model for 
therapy-response CD14+ monocytes 
 
Employing machine learning and leveraging single-
cell RNA sequencing to identify crucial regulatory 
genes may potentially assist in screening for subgroups 
more suitable for stem cell therapy. The Least Absolute 
Shrinkage and Selection Operator (LASSO) analysis 
was utilized to obtain the core genes, and seven 
machine learning algorithms were employed, resulting 
in appropriate algorithms and feature genes to better 
characterize the state of therapy-response CD14+ 
monocytes. The machine learning algorithms were 
conducted using the mlr3verse package (version 0.2.7) 
(https://CRAN.R-project.org/package=mlr3verse). 
 
Gene set enrichment analysis (GSEA) and function 
enrichment analyses 
 
Gene set enrichment analysis (GSEA) can score  
sorted gene lists (usually based on fold-change)  
and calculate if a certain gene set is significantly 
enriched by permutation test [22]. We used GSEA to 

investigate the potential role of response-related 
monocytes in the process of MSCs treating heart 
failure. In parallel, the Gene Ontology and KEGG 
enrichment analyses were also performed using 
clusterProfiler package [23]. 
 
Trajectory analysis for CD14+ monocytes 
 
The Monocle 2 algorithm can elucidate the changing 
trends of gene expression as cellular states transition, 
even revealing hidden patterns of variation [24].  
We employed pseudo-time analysis to investigate the 
process of patient response to MSC treatment before 
and after, and depicted the expression profiles of 7  
key genes that change over time. 
 
Single-cell metabolism analysis 
 
The scMetabolism package was used to calculate the 
single-cell metabolic activity of cell subpopulations.  
In particular, the VISION algorithm was adopted  
and the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) metabolic gene set was employed for analysis  
[25]. The DotPlot.metabolism function is used for 
visualization. 
 
SCENIC analysis for CD14+ monocytes 
 
Single-cell regulatory network inference and clustering 
(SCENIC) is a GRN (gene regulatory network) algorithm 
specifically developed for single-cell data [26]. Its 
innovation stems from the incorporation of a gene  
co-expression network, deduced through transcription 
factor motif sequence validation statistical methods, 
which are capable of identifying highly reliable, TF-
driven GRNs. Using SCENIC analysis, we further 
emphasized the importance of FOS. 
 
Statistical analysis 
 
Statistically significant difference is calculated in R.  
P-values of less than 0.05, 0.01 and 0.001 were 
considered statistically significant. 
 
Data and code availability 
 
The data supporting the research findings can be found 
in the main text and supplementary manuscript. Other 
data could be obtained by contacting the corresponding 
author. 
 
Consent for publication 
 
The authors agree with the terms of conditions for 
publication. 
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RESULTS 
 
Characteristics of PBMCs before and after MSC 
therapy for HF patients 
 
To better understand the circulating system changes  
of heart failure patients before and after stem cell 
therapy, we conducted scRNA-seq for bettering 
depicting the expression pattern of peripheral blood 
mononuclear cells (PBMCs) of HF patients. As 
showed in Figure 1A and Supplementary Tables 1, 2, 
we collected four patients who have received MSC 
therapy (Supplementary Tables 1, 2). As a result, there 
were 81226 single cells obtained after stringent criteria 
(Supplementary Figures 1, 2). As shown in Figure 1A, 
1B, the detected single cells were annotated into 
different cell types using “Weighted nearest neighbor” 
analysis and the referenced UMAP plot from the 
multimodal PBMC reference was adopted for better 
visualizing the scRNA-seq data [19]. Furthermore,  
we tried to explore the expression characteristics  
of different cell types, especially changes of cell 
proportion and cell count. Intriguingly, the proportion 
of CD14+ monocytes was down-regulated after MSC 
therapy, no matter in the response group or non-
response group (Figure 1C, 1D). Moreover, the total 
cell number of CD14+ monocytes (17048 cells) was 
more than other cell types (Figure 1E). Then, the 
metabolism analysis of CD14+ monocytes was 
performed and results showed that many metabolism 
pathways varied among four groups (Supplementary 
Figure 3), In brief, CD14+ monocytes might be 
affected most with MSCs therapy. 
 
Nonnegative matrix factorization (NMF) analysis 
showed the heterogeneity of response and non-
response CD14+ monocytes 
 
To compare the different of CD14+ monocytes before 
and after MSC therapy, we utilized three methods to 
obtain conserved markers of CD14+ monocytes in 
different groups: (i) method 1: the “findallmarker” 
function in Seurat package [19] was used, which 
would compare the interested cell cluster to other all 
cells using Wilcox algorithm; (ii) method 2: the 
“findmarker” function Seurat package was adopted, 
and then we compared the interested cell cluster  
one by one using Wilcox algorithm. At last, the 
intersected marker genes were considered specific to 
the interested cell cluster; (iii) method 3: Metacell 
algorithm was applied and we obtained the “de-
noised” metacells [20, 21] and thereafter we could use 
the DESeq2 package [27] for differential expression 
analysis. With these three methods, we could obtain 
the highly conserved markers for the four group of 
CD14+ monocytes. 

Subsequently, with the highly conserved markers, we run 
the NMF analysis for understanding the heterogeneity 
and potential functions of CD14+ monocytes (Figure  
2B, 2C). Of interest, the response and non-response 
groups were obviously separated using the UMAP  
plot (Figure 2B), indicating the difference of CD14+ 
monocytes in response and non-response group. 
However, the CD14+ monocytes before and after MSC 
therapies in the response group were quite similar while 
relatively distinct in the non-response group (Figure 
2C), demonstrating that CD14+ monocytes might be 
capable of serving as important indicators of whether 
and which HF patients might be suitable for MSC 
therapy or could be benefit from MSC therapy. 
 
For better investigating the characteristics of CD14+ 
monocytes in the “before_response” group, we utilized 
the subcluster analysis based on the NMF dimension 
reduction. As a result, 11 subclusters of CD14+ 
monocytes were obtained (Figure 2D–2F). Then, we used 
GO (Supplementary Figure 4), KEGG and Reactome 
(Supplementary Figure 5) databases for function 
enrichment analyses. Interestingly, we confirmed the 
various function of different subclusters. For instance, the 
cluster 0 was enriched in “IL−17 signaling pathway”, 
“Neutrophil degranulation” and “cellular response to 
chemical stress”, while cluster 1 was enriched in  
“Viral myocarditis”, “Interferon Signaling” and “positive 
regulation of leukocyte cell− cell adhesion”. Then, we 
also found that cluster 0 (2786 cells) was predominantly 
enriched in the “before_response” group and would  
be down-regulated after MSC treatment (Figure 2F). 
Thus, we identified cluster 0 as “therapy-response CD14+ 
monocytes”. Further, we leveraged the GSEA analysis 
for running the enrichment analysis of HALLMARK 
datasets (downloaded from http://www.gsea-msigdb.org). 
Of interest, the potential function of response CD14+ 
monocytes were mainly related to “COMPLEMENT”, 
“INFLAMMATORY RESPONSE”, “INTERFERON_ 
GAMMA_RESPONSE” and so on, which were highly 
related to the therapeutic mechanism of MSCs  
(Figure 2G). 
 
Machine learning algorithms were leveraged to 
construct the predictive model for therapy-response 
CD14+ monocytes and identified potential indicators 
 
To identify the therapy-response CD14+ monocytes  
in single cell levels, we used the metacell algorithm  
[20, 21] and divided CD14+ monocytes into training 
cohort and test cohort. Using LASSO algorithm, we had 
filtered the 77 conserved markers and only 20 features 
were left (Figure 3A, 3B), including IFI6, PTAFR, 
S100A12, FOXN2, MAP3K1, CAST, F13A1, HLA-
DPB1, AKIRIN2, ANXA1, DUSP6, EPSTI1, FOS, 
SOCS3, RFX2, TPM4, ZFP36, PPDPF, MX2 and 
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Figure 1. scRNA-seq reveals the different cell types and distribution among patients with or without MSCs treatment.  
(A) Cell annotation using the azimuth package (https://app.azimuth.hubmapconsortium.org/app/human-pbmc). And the referenced UMAP 
was leveraged to better visualized the results. (B) Cell distribution for all four groups. (C) Cell proportion of all cell types in four groups.  
(D) Bar plot shows the cell proportion of all cell types in four groups. (E) Cell distribution analysis indicates the largest cell proportion of CD14+ 
monocytes. 
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RPL39. Then, we used the “Bootstrap” algorithm for 
internal validation for 1000 times and the performance 
was reliable (Figure 3C). To avoid the bias effect  
of different algorithms, we further used another seven 
machine algorithms for constructing the classifier  
for therapy-response CD14+ monocytes (Figure 3D). 

Intriguingly, the performance of all seven machine 
algorithms was quite robust, especially SVM algorithm 
(Figure 3E). Then, we used the test cohort for  
further validation, similar result was obtained that the 
performance of the constructed classifier was good 
(AUC: 0.98) (Figure 3F). 

 

 
 

Figure 2. Subcluster analysis of the CD14+ monocytes. (A) Identification of highly-conserved DEGs/markers for CD14+ monocytes in the 
four groups, respectively. Three approaches for exploring DEGs were adopted. DEGs: differentially expressed genes. (B) NMF analysis for the 
reduction analysis of CD14+ monocytes based on all highly-conserved DEGs/markers. NMF: Nonnegative Matrix Factorization. (C) Distribution 
of all CD14+ monocytes from four groups. (D) Cell proportion of CD14+ monocytes was visualized, comprising 11 subclusters. (E) Cell 
distribution of all 11 identified subclusters. (F) Cell distribution of all 11 identified subclusters in the four groups. The CD14+ monocytes from 
response and non-response patients were quite different. (G) GSEA pipeline for showing the enriched terms for CD14+ monocytes from the 
“before response” group. 
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Figure 3. Machine learning algorithms were leveraged to construct a predictive model for therapy-response CD14+ 
monocytes and explored potential indicators. (A) LASSO algorithm was adopted for filtering optimal feature genes. Only the 21 highly-
conserved makers/DEGs for therapy-response CD14+ monocytes were adopted. (B) Coefficients of identified feature genes from LASSO 
algorithm was shown. (C) ROC analysis for the LASSO model. LASSO: Least absolute shrinkage and selection operator. (D) Machine learning 
algorithm for constructing a predictive model for therapy-response CD14+ monocytes. (E) ROC analysis for the machine learning model.  
(F) ROC analysis for the machine learning model in test cohort. The AUC value was 0.98. AUC: area under curve. (G) Intersection of genes 
identified by the LASSO algorithm with the highly conserved markers of the therapy-response CD14+ monocytes. Seven overlapped genes 
were delineated. (H) Protein-protein interaction network for identified genes. The network prediction was based upon an online web-server: 
GeneMANIA (http://www.genemania.org). 
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Then we also intersected the machine learning-identified 
feature genes and the conserved up-regulated genes in  
the “before_response” group (Figure 3G). Result showed 
that PTAFR, FOXN2, AKIRIN2, ANXA1, DUSP6, FOS 
and RFX2 were obtained (Figure 3G and Supplementary 
Figure 6). Then, we used the GeneMANIA for 
constructing real-time multiple association network 
integration [28] (Figure 3H). Of note, the FOS/JUN-
related transcription factors were enriched. 
 
Trajectory analysis of therapy-response CD14+ 
monocytes 
 
Then, we used the “addmodule” function in Seurat 
package for calculating the signature score of the  
seven therapy-response-specific and up-regulated genes 
(Figure 4A–4C). Of note, the signature score was higher 
in CD14+ monocytes from the “before_response” group 
(Figure 4A) and was also higher in cluster 0 (therapy-
response CD14+ monocytes) (Figure 4B, 4C). Then, we 
performed the pseudotime analysis using monocle2 
algorithm [24]. Intriguingly, we could find that the 
cluster 0 was mainly distributed in the early and middle 
timepoint of the pseudotime plot (Figure 4D, 4E). Then, 
we detected the expression pattern of the seven genes, 
most of which were consistent with the pseudotime 
distribution (Figure 4F). Considering that the middle 
stage character and potential FOS/JUN-related function 
of therapy-response CD14+ Monocytes, which indicated 
that the therapy-response CD14+ Monocytes might be 
much more flexible and its state would be shifted, it 
triggered us to understand whether its status might be 
similar to the published monocyte signature (MS) 
reported by Reyes et al. [29], whose research has found 
four monocyte signatures in the PBMC of sepsis 
patients and considered MS1 as a unique disease-related 
CD14+ monocytes state that is expanded in sepsis 
patients and has validated its power in distinguishing 
sepsis patients from healthy controls [29]. Interestingly, 
we found that the therapy-response CD14+ monocytes 
also had higher MS1 score than other CD14+ monocytes 
(Figure 4G) as well as positively correlated with the 
MS1 score (Figure 4H). In summary, the state of 
therapy-response CD14+ monocytes might also be 
different from other CD14+ monocytes, and might be an 
indicator of those HF patients with could potentially 
benefit from MSC therapy. 
 
SCENIC analysis revealed potential regulators for 
therapy-response CD14+ monocytes 
 
Then, we tried to explore the transcriptional regulatory 
network of CD14+ monocytes. As a result, the activities 
of several TFs were different between therapy-response 
CD14+ monocytes and other CD14+ monocytes (Figure 
5A). The top TFs were showed in Figure 5B, 5C. Data 

showed that therapy-response CD14+ monocytes were 
mainly regulated by JUN, FOS, CEBPD while other 
CD14+ monocytes were predominantly controlled by 
IRF7, STAT1 and BCL3 (Figure 5C). More than this, 
therapy-response CD14+ monocytes could be aggregated 
in the UMAP plot based on regulon activity scores 
calculated by SCENIC (Figure 5D). Noteworthily, the 
FOS regulons (FOS_extend_(37g) and FOS_(12g))  
and FOS mRNA expression level were all highly  
up-regulated in therapy-response CD14+ monocytes 
(Figure 5E, 5F), underpinning the crucial roles of  
FOS in regulating the functions of therapy-response 
CD14+ monocyte signature. Taking it a step further,  
we downloaded published sequencing data (GSE59867) 
of PBMC related to post-MI HF patients and result 
showed significant correlations between detected TFs 
and the seven genes (Figure 5G). To further understand 
the role of FOS, we also predicted the potential drugs 
for both capable of activating FOS and also treating 
heart diseases (Supplementary Table 3). Patients who 
have adopted these drugs for HF therapy might be much 
suitable for MSC therapy. 
 
NMF subtype analyses reveals monocyte signatures 
were capable of classifying post-MI HF patients into 
three groups 
 
Considering the pivotal roles of monocytes in post-MI 
heart failure, we tried to further discover whether the 
conserved markers we identified were powerful enough 
to distinguish HF patients from healthy patients. Herein, 
we also used the GSE59867 data, which contained 
PBMC samples from stable coronary diseases to heart 
failure. Using NMF analysis [30] (Supplementary 
Figure 7), we had classified stable CAD patients and 
post-MI patients into three subgroups based on the  
77 conserved markers of CD14+ monocytes (Figure  
6A, 6B). Interestingly, FOS was highly expressed in 
subgroup 3 (Figure 6B). Then, we used CIBERSOFT 
algorithm in IOBR packages [31] to deconvolute the 
bulk sequencing data for understanding the immune 
filtration characters (Figure 6C) response CD14+ 
monocyte signature and the signature score was higher 
in HF patients compared to stable CAD patients (Figure 
6D). Correlation analysis reveals that CIBERSOFT-
inferred monocytes were positively correlated with  
all seven therapy-response-related genes (Figure 6E) 
and monocytes were also highly expressed in subgroup 
3 (Figure 6C, 6F) compared to subgroup 1 and 2. 
Consistently, the therapy-response CD14+ monocyte 
signature was also highly expressed in subgroup 3 
(Figure 6G). Finally, the distribution of patients was 
showed (Figure 6H). In brief, CD14+ monocyte 
participated in the development of post-MI HF patients 
and the therapy-response CD14+ monocyte signature 
might be considered as typical changes of subgroup 3. 
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DISCUSSION 
 
Heart failure represents a significant global health 
burden, with increasing prevalence and mortality rates 

worldwide. Despite significant advancements in medical 
therapies, the prognosis for HF patients remains poor, 
with limited options for complete cardiac functional 
restoration [32]. In recent years, MSC-based therapies 

 

 
 

Figure 4. Trajectory analysis of CD14+ monocytes and the pseudotime changes of the feature genes identified by machine 
learning algorithms. (A) Violin plot displays the response-related CD14+ monocyte signature in pseudo-bulk levels of CD14+ monocytes.  
(B) Violin plot displays the response-related CD14+ monocyte signature across all identified subclusters of CD14+ monocytes. “AddModule” 
function in Seurat package was leveraged to estimate the signature score. (C) Signature score of response-related CD14+ monocytes was 
mainly activated in cluster 0. (D) Trajectory analysis of CD14+ monocytes. Monocle2 package was adopted. (E) Pseudotime distribution of 
other and response-related CD14+ monocytes. (F) Expression changes of the feature genes following pseudotime. (G) Violin plot shows the 
monocyte signature scores. MS: monocyte signature. (H) Correlation analysis between the response signature and the other four published 
MS phenotypes. 

5659



www.aging-us.com 10 AGING 

have emerged as promising approaches for the treatment 
of HF [4]. Preclinical studies in animal models and 
initial clinical trials have provided encouraging results, 
demonstrating the safety, feasibility, and potential 
efficacy of stem cell therapy in HF [10–12]. Stem cells 
have been shown to promote angiogenesis, reduce  
scar formation, and improve cardiac function through 
paracrine effects, direct differentiation, and integration 
into the damaged myocardium [9]. However, MSC 
therapies are expensive and it is still lacking of enough 
biomarkers for identifying the suitable HF patients  
for accepting MSC therapies and therefore enlarging  

the application and benefits of MSC therapies. 
Understanding the changes of PBMCs of HF patients 
responded or not responded to MSC therapies might 
pave the way for accurate approaches and ultimately 
improve patient outcomes. 
 
Monocytes exhibit dual effects in acute heart failure,  
and their relative contributions may vary at different 
disease stages. In the early stage of acute heart failure, 
monocytes can migrate to myocardial tissue and serve 
multiple functions, such as removing inflammatory 
substances in the heart tissue, reducing apoptosis, 

 

 
 

Figure 5. Transcription factor analysis for CD14+ monocytes. (A) SCENIC pipeline for identifying potential regulatory TFs for therapy-
response CD14+ monocytes and heat map was used for visualization. SCENIC: Single-Cell rEgulatory Network Inference and Clustering; TF: 
Transcription factor. (B) Violin plot for showing the identified TFs between other and therapy-response CD14+ monocytes. (C) Ranking of the 
potential TFs for other and therapy-response CD14+ monocytes. (D) Cell distribution based on the identified regulons/TFs. (E) Activities of FOS 
regulons in UMAP plots. Two regulons of FOS were considered significant. (F) Expression levels of FOS shown by UMAP plot. (G) Correlation 
analyses among identified TFs and hub feature genes. 
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pyroptosis, and necrosis of cardiomyocytes, supporting 
damaged cardiomyocyte repair, promoting angiogenesis, 
and providing immune protection. However, with  
the deterioration of heart failure, monocyte-mediated 
inflammatory response may lead to adverse myocardial 
remodeling and interstitial fibrosis, resulting in impaired 
cardiac contractile function. The findings of this study 

indicate that the proportion of CD14+ monocytes in the 
blood of patients is significantly reduced after MSC 
therapies, which might be related to post-treatment 
inflammation or immune reactions [33–36]. Stem cell 
therapy may elicit an inflammation-mediated response, 
activate CD14+ monocytes, induce their migration  
to inflammatory sites, and subsequently reduce their 

 

 
 

Figure 6. NMF subtype analyses uncovers that therapy-response monocyte signatures were capable of partitioning post-MI 
HF patients into three groups. (A) Consensus clustering for the GSE59867 data based on the hub genes, which contained PBMC samples 
from stable coronary diseases to heart failure. (B) Heatmap shows the differences among the three patient groups. (C) Heat map displays the 
infiltration levels of immune cells among the three patient groups. CIBERSOFT algorithm in IOBR packages was adopted. (D) Boxplot shows 
the signature score of therapy-response monocytes in bulk RNA-seq levels between control and heart failure groups. (E) Correlation analysis 
of the hub genes and monocytes in bulk RNA-seq levels. The monocytes were highlighted. (F) Infiltration levels of deconvoluted immune cells 
in the NMF groups. (G) Box plot reveals the signature score of therapy-response monocytes among the three patient groups. (H) Distribution 
of different clinical information in the NMF groups. NMF: Nonnegative Matrix Factorization. 
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presence in peripheral blood. Secondly, MSC therapies 
may also promote the repair of cardiac tissue, which 
could also lead to the migration of CD14+ monocytes to 
damaged tissue to support the repair process. Thirdly, 
stem cell therapy may possess immunosuppressive 
effects that alleviate inflammation and thereby decrease 
the number of CD14+ monocytes in peripheral blood.  
Of course, CD14+ monocytes may be involved in the 
inflammatory or repair process and eventually undergo 
apoptosis or necrosis, further leading to their decrease  
in peripheral blood [33–36]. Recently, a study also 
reported that the CCL2+DPP4+ MSCs can response  
to CCL20+CD14+ monocytes and IL-6, and thereby  
lead to the formation of creeping fat [37], indicating  
the existence of the crosstalk between MSCs and  
CD14+ monocytes. Taken together, the decrease of 
CD14+ monocytes may be a part of the complex 
biological response after stem cell therapy. This study 
did not conduct further experimental researches on  
the mechanisms for the reduction of CD14+ monocytes 
in peripheral blood, but we found that heterogeneous 
information on CD14+ monocytes may serve as a crucial 
indicator/biomarker to evaluate whether HF patients are 
suitable for MSC treatment because different subgroups 
of CD14+ monocytes exhibit functional enrichment in 
different physiological processes, and some functional 
enrichment pathways are closely related to the 
mechanisms of MSC treatment, which helps explain  
the effectiveness of MSC therapies. 
 
Using machine learning algorithms, we developed a 
precise prediction model for therapy-related CD14+ 
monocytes and identified seven highly expressed  
genes that play a crucial role in therapy-related  
CD14+ monocytes. Among these genes, we found  
those related to the AP-1 family, including JUN and 
FOS. On the other hand, SCENIC analysis revealed  
the potential regulatory mechanisms of therapy-related 
CD14+ monocytes, in which transcription factors such 
as JUN and FOS might play key roles. The AP-1 
(Activator Protein-1) family is typically composed of 
members from the FOS and JUN protein families. AP-1 
is a transcription factor that binds to DNA and regulates 
the expression of multiple genes. The AP-1 complex 
regulates the expression of many genes by binding to 
specific regions of DNA [38]. These genes encompass 
various biological processes, such as cell proliferation, 
growth, inflammatory response, apoptosis, and cell 
differentiation [39, 40]. Furthermore, we attempted to 
classify HF patients from public databases into different 
subgroups and found that PBMCs of heart failure 
patients had heterogeneity and could be further divided 
into three groups. The expression of therapy-related 
CD14+ monocytes in these groups was significantly 
different, which suggests that the activation of AP-1 
family and the therapy-related CD14+ monocytes may 

help identify and screen heart failure patients suitable 
for the MSCs therapy. 
 
The present study has certain limitations. Firstly, the 
scRNA-seq data included only 4 HF patients and were 
divided into two groups based on treatment efficacy, thus 
the sample size was relatively small. Furthermore, this 
study mainly focused on the changes and therapeutic 
responses of CD14+ monocytes, while stem cell therapy 
for heart failure involves complex cell interactions.  
In addition, the construction of the machine learning 
model was a highlight of this study but requires further 
validation. The stability and reliability of the model 
need to be validated in larger independent sample sets 
to determine its effectiveness in clinical applications. 
More importantly, this study chose the time point  
of 1 week after MSC treatment, but HF patients  
might benefit over a longer time range after the MSC 
therapy. Further research could consider samples from 
different time points to better understand the evolution 
of treatment effects and screen for more effective 
evaluation biomarkers. 
 
CONCLUSIONS 
 
Through single-cell RNA sequencing, we identified  
a subpopulation of treatment-associated CD14+ 
monocytes. In addition, SCENIC analysis revealed  
the potential regulatory mechanisms of treatment-
responsive CD14+ monocytes, highlighting the critical 
role of transcription factors of the AP-1 family,  
such as JUN and FOS. The machine learning model 
based on CD14+ monocytes can effectively predict 
CD14+ monocytes. Seven genes highly expressed in 
treatment-responsive CD14+ monocytes can be used 
for subtyping analysis of heart failure patients. 
 
Abbreviations 
 
HF: heart failure; hUC-MSCs: human umbilical cord-
derived mesenchymal stem/stromal cells; MI: myocardial 
infarction; ISCT: the International Society for Cellular 
Therapy; PBMC: peripheral blood mononuclear cell; 
scRNA-seq: single-cell RNA sequencing; SCENIC: 
single-cell regulatory network inference and clustering; 
KEGG: Kyoto Encyclopedia of Genes and Genomes; 
GSEA: gene set enrichment analysis; LASSO: Least 
Absolute Shrinkage and Selection Operator; GEO: Gene 
Expression Omnibus. 
 
AUTHOR CONTRIBUTIONS 
 
Conceptualization: BG; writing—original draft 
preparation, review and editing: HY, PFZ, YFX and 
ZML; funding acquisition: BG. All authors have read 
and agreed to the published version of the manuscript. 

5662



www.aging-us.com 13 AGING 

CONFLICTS OF INTEREST 
 
The authors declare that they have no conflicts of 
interest. 
 
ETHICAL STATEMENT AND CONSENT 
 
All experiments were approved by the Ethics 
Committee of Shanghai East Hospital (Approval 
number: DFEC2015-001). The research was conducted 
in accordance with the ethical principles of the Helsinki 
Declaration. Prior to collection of specimens and clinical 
information, informed consent was obtained from all 
registered patients. All patients approved the release  
of personally identifiable information, received verbal 
and written project information, and signed a written 
consent form. 
 
FUNDING 
 
This work was supported by The Stem Cell  
and Translational Research Project of the  
National Key Research and Development Program 
(grant number: 2017YFA0105600; issue number: 
2017YFA0105604); The National Key R&D Program 
of China (2017YFA0105600; 2017YFA0105604)  
and Shanghai Artificial Heart and Heart Failure 
Medical Engineering Technology Research Center 
(grant number: 19DZ2251000), Shanghai Engineering 
Research Center of Artificial Heart and Heart Failure 
Medicine (No. 19DZ2251000). 
 
REFERENCES 
 
1. Snipelisky D, Chaudhry SP, Stewart GC. The Many 

Faces of Heart Failure. Card Electrophysiol Clin. 2019; 
11:11–20. 

 https://doi.org/10.1016/j.ccep.2018.11.001 
PMID:30717842 

2. Crespo-Leiro MG, Costanzo MR, Gustafsson F, Khush 
KK, Macdonald PS, Potena L, Stehlik J, Zuckermann A, 
Mehra MR. Heart transplantation: focus on donor 
recovery strategies, left ventricular assist devices, and 
novel therapies. Eur Heart J. 2022; 43:2237–46. 

 https://doi.org/10.1093/eurheartj/ehac204 
PMID:35441654 

3. Yamanaka S. Induced pluripotent stem cells: past, 
present, and future. Cell Stem Cell. 2012; 10:678–84. 

 https://doi.org/10.1016/j.stem.2012.05.005 
PMID:22704507 

4. Nombela-Arrieta C, Ritz J, Silberstein LE. The elusive 
nature and function of mesenchymal stem cells. Nat 
Rev Mol Cell Biol. 2011; 12:126–31. 

 https://doi.org/10.1038/nrm3049 PMID:21253000 

5. De Coppi P, Bartsch G Jr, Siddiqui MM, Xu T, Santos CC, 
Perin L, Mostoslavsky G, Serre AC, Snyder EY, Yoo JJ, 
Furth ME, Soker S, Atala A. Isolation of amniotic stem 
cell lines with potential for therapy. Nat Biotechnol. 
2007; 25:100–6. 

 https://doi.org/10.1038/nbt1274 PMID:17206138 

6. Halvorsen YC, Wilkison WO, Gimble JM. Adipose-
derived stromal cells--their utility and potential in bone 
formation. Int J Obes Relat Metab Disord. 2000; 24 
Suppl 4:S41–4. 

 https://doi.org/10.1038/sj.ijo.0801503 
PMID:11126240 

7. Haynesworth SE, Goshima J, Goldberg VM, Caplan AI. 
Characterization of cells with osteogenic potential 
from human marrow. Bone. 1992; 13:81–8. 

 https://doi.org/10.1016/8756-3282(92)90364-3 
PMID:1581112 

8. Romanov YA, Svintsitskaya VA, Smirnov VN. Searching 
for alternative sources of postnatal human 
mesenchymal stem cells: candidate MSC-like cells from 
umbilical cord. Stem Cells. 2003; 21:105–10. 

 https://doi.org/10.1634/stemcells.21-1-105 
PMID:12529557 

9. Mishra VK, Shih HH, Parveen F, Lenzen D, Ito E, Chan 
TF, Ke LY. Identifying the Therapeutic Significance of 
Mesenchymal Stem Cells. Cells. 2020; 9:1145. 

 https://doi.org/10.3390/cells9051145  
PMID:32384763 

10. Bartolucci J, Verdugo FJ, González PL, Larrea RE, 
Abarzua E, Goset C, Rojo P, Palma I, Lamich R, 
Pedreros PA, Valdivia G, Lopez VM, Nazzal C, et al. 
Safety and Efficacy of the Intravenous Infusion of 
Umbilical Cord Mesenchymal Stem Cells in Patients 
With Heart Failure: A Phase 1/2 Randomized 
Controlled Trial (RIMECARD Trial [Randomized Clinical 
Trial of Intravenous Infusion Umbilical Cord 
Mesenchymal Stem Cells on Cardiopathy]). Circ Res. 
2017; 121:1192–204. 

 https://doi.org/10.1161/CIRCRESAHA.117.310712 
PMID:28974553 

11. Gubert F, da Silva JS, Vasques JF, de Jesus Gonçalves 
RG, Martins RS, de Sá MP, Mendez-Otero R, Zapata-
Sudo G. Mesenchymal Stem Cells Therapies on Fibrotic 
Heart Diseases. Int J Mol Sci. 2021; 22:7447. 

 https://doi.org/10.3390/ijms22147447 
PMID:34299066 

12. Park YS, Park BW, Choi H, Lee SH, Kim M, Park HJ, Kim 
IB. Chorion-derived perinatal mesenchymal stem cells 
improve cardiac function and vascular regeneration: 
Preferential treatment for ischemic heart disease. 
Hellenic J Cardiol. 2022; 66:52–8. 

 https://doi.org/10.1016/j.hjc.2022.05.010 
PMID:35649476 

5663

https://doi.org/10.1016/j.ccep.2018.11.001
https://pubmed.ncbi.nlm.nih.gov/30717842
https://doi.org/10.1093/eurheartj/ehac204
https://pubmed.ncbi.nlm.nih.gov/35441654
https://doi.org/10.1016/j.stem.2012.05.005
https://pubmed.ncbi.nlm.nih.gov/22704507
https://doi.org/10.1038/nrm3049
https://pubmed.ncbi.nlm.nih.gov/21253000
https://doi.org/10.1038/nbt1274
https://pubmed.ncbi.nlm.nih.gov/17206138
https://doi.org/10.1038/sj.ijo.0801503
https://pubmed.ncbi.nlm.nih.gov/11126240
https://doi.org/10.1016/8756-3282(92)90364-3
https://pubmed.ncbi.nlm.nih.gov/1581112
https://doi.org/10.1634/stemcells.21-1-105
https://pubmed.ncbi.nlm.nih.gov/12529557
https://doi.org/10.3390/cells9051145
https://pubmed.ncbi.nlm.nih.gov/32384763
https://doi.org/10.1161/CIRCRESAHA.117.310712
https://pubmed.ncbi.nlm.nih.gov/28974553
https://doi.org/10.3390/ijms22147447
https://pubmed.ncbi.nlm.nih.gov/34299066
https://doi.org/10.1016/j.hjc.2022.05.010
https://pubmed.ncbi.nlm.nih.gov/35649476


www.aging-us.com 14 AGING 

13. Sarikhani M, Garbern JC, Ma S, Sereda R,  
Conde J, Krähenbühl G, Escalante GO, Ahmed A, 
Buenrostro JD, Lee RT. Sustained Activation of AMPK 
Enhances Differentiation of Human iPSC-Derived 
Cardiomyocytes via Sirtuin Activation. Stem Cell 
Reports. 2020; 15:498–514. 

 https://doi.org/10.1016/j.stemcr.2020.06.012 
PMID:32649901 

14. Zhou JF, Wang YG, Cheng L, Wu Z, Sun XD, Peng J. 
Preparation of polypyrrole-embedded electrospun 
poly(lactic acid) nanofibrous scaffolds for nerve tissue 
engineering. Neural Regen Res. 2016; 11:1644–52. 

 https://doi.org/10.4103/1673-5374.193245 
PMID:27904497 

15. Picinich SC, Mishra PJ, Mishra PJ, Glod J, Banerjee D. 
The therapeutic potential of mesenchymal stem cells. 
Cell- and tissue-based therapy. Expert Opin Biol Ther. 
2007; 7:965–73. 

 https://doi.org/10.1517/14712598.7.7.965 
PMID:17665987 

16. Kan XL, Pan XH, Zhao J, He J, Cai XM, Pang RQ, Zhu XQ, 
Cao XB, Ruan GP. Effect and mechanism of human 
umbilical cord mesenchymal stem cells in treating 
allergic rhinitis in mice. Sci Rep. 2020; 10:19295. 

 https://doi.org/10.1038/s41598-020-76343-4 
PMID:33168885 

17. Halonen JI, Erhola M, Furman E, Haahtela T, Jousilahti 
P, Barouki R, Bergman Å, Billo NE, Fuller R, Haines A, 
Kogevinas M, Kolossa-Gehring M, Krauze K, et al. The 
Helsinki Declaration 2020: Europe that protects. Lancet 
Planet Health. 2020; 4:e503–5. 

 https://doi.org/10.1016/S2542-5196(20)30242-4 
PMID:33159874 

18. Maciejak A, Kiliszek M, Michalak M, Tulacz D, Opolski 
G, Matlak K, Dobrzycki S, Segiet A, Gora M, Burzynska 
B. Gene expression profiling reveals potential 
prognostic biomarkers associated with the progression 
of heart failure. Genome Med. 2015; 7:26. 

 https://doi.org/10.1186/s13073-015-0149-z 
PMID:25984239 

19. Hao Y, Hao S, Andersen-Nissen E, Mauck WM 3rd, 
Zheng S, Butler A, Lee MJ, Wilk AJ, Darby C, Zager M, 
Hoffman P, Stoeckius M, Papalexi E, et al. Integrated 
analysis of multimodal single-cell data. Cell. 2021; 
184:3573–87.e29. 

 https://doi.org/10.1016/j.cell.2021.04.048 
PMID:34062119 

20. Baran Y, Bercovich A, Sebe-Pedros A, Lubling Y, 
Giladi A, Chomsky E, Meir Z, Hoichman M, Lifshitz A, 
Tanay A. MetaCell: analysis of single-cell RNA-seq 
data using K-nn graph partitions. Genome Biol. 
2019; 20:206. 

 https://doi.org/10.1186/s13059-019-1812-2 

PMID:31604482 

21. Li H, van der Leun AM, Yofe I, Lubling Y, Gelbard-
Solodkin D, van Akkooi AC, van den Braber M, 
Rozeman EA, Haanen JB, Blank CU, Horlings HM, David 
E, Baran Y, et al. Dysfunctional CD8 T Cells Form a 
Proliferative, Dynamically Regulated Compartment 
within Human Melanoma. Cell. 2019; 176:775–89.e18. 

 https://doi.org/10.1016/j.cell.2018.11.043 
PMID:30595452 

22. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, 
Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub 
TR, Lander ES, Mesirov JP. Gene set enrichment 
analysis: a knowledge-based approach for interpreting 
genome-wide expression profiles. Proc Natl Acad Sci 
USA. 2005; 102:15545–50. 

 https://doi.org/10.1073/pnas.0506580102 
PMID:16199517 

23. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R 
package for comparing biological themes among gene 
clusters. OMICS. 2012; 16:284–7. 

 https://doi.org/10.1089/omi.2011.0118 
PMID:22455463 

24. Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, 
Morse M, Lennon NJ, Livak KJ, Mikkelsen TS, Rinn JL. 
The dynamics and regulators of cell fate decisions are 
revealed by pseudotemporal ordering of single cells. 
Nat Biotechnol. 2014; 32:381–6. 

 https://doi.org/10.1038/nbt.2859 PMID:24658644 

25. Wu Y, Yang S, Ma J, Chen Z, Song G, Rao D, Cheng Y, 
Huang S, Liu Y, Jiang S, Liu J, Huang X, Wang X, et al. 
Spatiotemporal Immune Landscape of Colorectal 
Cancer Liver Metastasis at Single-Cell Level. Cancer 
Discov. 2022; 12:134–53. 

 https://doi.org/10.1158/2159-8290.CD-21-0316 
PMID:34417225 

26. Aibar S, González-Blas CB, Moerman T, Huynh-Thu 
VA, Imrichova H, Hulselmans G, Rambow F, Marine 
JC, Geurts P, Aerts J, van den Oord J, Atak ZK, 
Wouters J, Aerts S. SCENIC: single-cell regulatory 
network inference and clustering. Nat Methods. 
2017; 14:1083–6. 

 https://doi.org/10.1038/nmeth.4463 PMID:28991892 

27. Love MI, Huber W, Anders S. Moderated estimation of 
fold change and dispersion for RNA-seq data with 
DESeq2. Genome Biol. 2014; 15:550. 

 https://doi.org/10.1186/s13059-014-0550-8 
PMID:25516281 

28. Mostafavi S, Ray D, Warde-Farley D, Grouios C, Morris 
Q. GeneMANIA: a real-time multiple association 
network integration algorithm for predicting gene 
function. Genome Biol. 2008 (Suppl 1); 9:S4. 

 https://doi.org/10.1186/gb-2008-9-s1-s4 
PMID:18613948 

5664

https://doi.org/10.1016/j.stemcr.2020.06.012
https://pubmed.ncbi.nlm.nih.gov/32649901
https://doi.org/10.4103/1673-5374.193245
https://pubmed.ncbi.nlm.nih.gov/27904497
https://doi.org/10.1517/14712598.7.7.965
https://pubmed.ncbi.nlm.nih.gov/17665987
https://doi.org/10.1038/s41598-020-76343-4
https://pubmed.ncbi.nlm.nih.gov/33168885
https://doi.org/10.1016/S2542-5196(20)30242-4
https://pubmed.ncbi.nlm.nih.gov/33159874
https://doi.org/10.1186/s13073-015-0149-z
https://pubmed.ncbi.nlm.nih.gov/25984239
https://doi.org/10.1016/j.cell.2021.04.048
https://pubmed.ncbi.nlm.nih.gov/34062119
https://doi.org/10.1186/s13059-019-1812-2
https://pubmed.ncbi.nlm.nih.gov/31604482
https://doi.org/10.1016/j.cell.2018.11.043
https://pubmed.ncbi.nlm.nih.gov/30595452
https://doi.org/10.1073/pnas.0506580102
https://pubmed.ncbi.nlm.nih.gov/16199517
https://doi.org/10.1089/omi.2011.0118
https://pubmed.ncbi.nlm.nih.gov/22455463
https://doi.org/10.1038/nbt.2859
https://pubmed.ncbi.nlm.nih.gov/24658644
https://doi.org/10.1158/2159-8290.CD-21-0316
https://pubmed.ncbi.nlm.nih.gov/34417225
https://doi.org/10.1038/nmeth.4463
https://pubmed.ncbi.nlm.nih.gov/28991892
https://doi.org/10.1186/s13059-014-0550-8
https://pubmed.ncbi.nlm.nih.gov/25516281
https://doi.org/10.1186/gb-2008-9-s1-s4
https://pubmed.ncbi.nlm.nih.gov/18613948


www.aging-us.com 15 AGING 

29. Reyes M, Filbin MR, Bhattacharyya RP, Billman K, 
Eisenhaure T, Hung DT, Levy BD, Baron RM, Blainey PC, 
Goldberg MB, Hacohen N. An immune-cell signature of 
bacterial sepsis. Nat Med. 2020; 26:333–40. 

 https://doi.org/10.1038/s41591-020-0752-4 
PMID:32066974 

30. Gaujoux R, Seoighe C. A flexible R package for 
nonnegative matrix factorization. BMC Bioinformatics. 
2010; 11:367. 

 https://doi.org/10.1186/1471-2105-11-367 
PMID:20598126 

31. Zeng D, Ye Z, Shen R, Yu G, Wu J, Xiong Y, Zhou R, Qiu 
W, Huang N, Sun L, Li X, Bin J, Liao Y, et al. IOBR: Multi-
Omics Immuno-Oncology Biological Research to 
Decode Tumor Microenvironment and Signatures. 
Front Immunol. 2021; 12:687975. 

 https://doi.org/10.3389/fimmu.2021.687975 
PMID:34276676 

32. Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, 
Callaway CW, Carson AP, Chamberlain AM, Chang AR, 
Cheng S, Delling FN, Djousse L, Elkind MS, Ferguson JF, 
et al, and American Heart Association Council on 
Epidemiology and Prevention Statistics Committee and 
Stroke Statistics Subcommittee. Heart Disease and 
Stroke Statistics-2020 Update: A Report From the 
American Heart Association. Circulation. 2020; 
141:e139–596. 

 https://doi.org/10.1161/CIR.0000000000000757 
PMID:31992061 

33. Conraads VM, Bosmans JM, Schuerwegh AJ, Goovaerts 
I, De Clerck LS, Stevens WJ, Bridts CH, Vrints CJ. 
Intracellular monocyte cytokine production and CD 14 
expression are up-regulated in severe vs mild chronic 
heart failure. J Heart Lung Transplant. 2005; 24:854–9. 

 https://doi.org/10.1016/j.healun.2004.04.017 
PMID:15982613 

34. Ng TM, Toews ML. Impaired norepinephrine regulation 
of monocyte inflammatory cytokine balance in heart 
failure. World J Cardiol. 2016; 8:584–9. 

 https://doi.org/10.4330/wjc.v8.i10.584 
PMID:27847559 

35. Wrigley BJ, Shantsila E, Tapp LD, Lip GY. Increased 
expression of cell adhesion molecule receptors on 
monocyte subsets in ischaemic heart failure. Thromb 
Haemost. 2013; 110:92–100. 

 https://doi.org/10.1160/TH13-02-0088 
PMID:23740177 

36. Yu HW, Dong YY, Dang YH. [The regulatory activity of 
interleukin-35 on CD14+monocytes in patients with 
chronic heart failure]. Zhonghua Yi Xue Za Zhi. 2021; 
101:1518–22. Chinese. 

 https://doi.org/10.3760/cma.j.cn112137-20200901-
02522 PMID:34044520 

37. Wu F, Wu F, Zhou Q, Liu X, Fei J, Zhang D, Wang W, Tao 
Y, Lin Y, Lin Q, Pan X, Sun K, Xie F, Bai L. A 
CCL2+DPP4+ subset of mesenchymal stem cells 
expedites aberrant formation of creeping fat in 
humans. Nat Commun. 2023; 14:5830. 

 https://doi.org/10.1038/s41467-023-41418-z 
PMID:37730641 

38. Jonkman S, Kenny PJ. Promoting FOS to an enhanced 
position. Nat Neurosci. 2014; 17:1291–3. 

 https://doi.org/10.1038/nn.3819  
PMID:25254975 

39. Almada AE, Horwitz N, Price FD, Gonzalez AE, Ko M, 
Bolukbasi OV, Messemer KA, Chen S, Sinha M, Rubin 
LL, Wagers AJ. FOS licenses early events in stem cell 
activation driving skeletal muscle regeneration. Cell 
Rep. 2021; 34:108656. 

 https://doi.org/10.1016/j.celrep.2020.108656 
PMID:33503437 

40. Zhou Y, Chen X, Kang B, She S, Zhang X, Chen C, Li W, 
Chen W, Dan S, Pan X, Liu X, He J, Zhao Q, et al. 
Endogenous authentic OCT4A proteins directly 
regulate FOS/AP-1 transcription in somatic cancer cells. 
Cell Death Dis. 2018; 9:585. 

 https://doi.org/10.1038/s41419-018-0606-x 
PMID:29789579 

  

5665

https://doi.org/10.1038/s41591-020-0752-4
https://pubmed.ncbi.nlm.nih.gov/32066974
https://doi.org/10.1186/1471-2105-11-367
https://pubmed.ncbi.nlm.nih.gov/20598126
https://doi.org/10.3389/fimmu.2021.687975
https://pubmed.ncbi.nlm.nih.gov/34276676
https://doi.org/10.1161/CIR.0000000000000757
https://pubmed.ncbi.nlm.nih.gov/31992061
https://doi.org/10.1016/j.healun.2004.04.017
https://pubmed.ncbi.nlm.nih.gov/15982613
https://doi.org/10.4330/wjc.v8.i10.584
https://pubmed.ncbi.nlm.nih.gov/27847559
https://doi.org/10.1160/TH13-02-0088
https://pubmed.ncbi.nlm.nih.gov/23740177
https://doi.org/10.3760/cma.j.cn112137-20200901-02522
https://doi.org/10.3760/cma.j.cn112137-20200901-02522
https://pubmed.ncbi.nlm.nih.gov/34044520/
https://doi.org/10.1038/s41467-023-41418-z
https://pubmed.ncbi.nlm.nih.gov/37730641/
https://doi.org/10.1038/nn.3819
https://pubmed.ncbi.nlm.nih.gov/25254975
https://doi.org/10.1016/j.celrep.2020.108656
https://pubmed.ncbi.nlm.nih.gov/33503437
https://doi.org/10.1038/s41419-018-0606-x
https://pubmed.ncbi.nlm.nih.gov/29789579


www.aging-us.com 16 AGING 

SUPPLEMENTARY MATERIALS 
 
Supplementary Figures 

 
 

 
 

 
 

Supplementary Figure 1. Quality of the single-cell RNA-seq data of heart failure patients. Scatter plot shows the relationships 
between nCount_RNA and nFeature_RNA. Color changes represent the changes of pMT (A), pHB (B), and pRP (C). Scatter plot shows the 
relationships between nCount_RNA and pMT (D), pHB (E) and pRP (F). Color changes represent the changes of nFeature_RNA. Scatter plot 
displays the relationships between nFeature_RNA and pMT (G), pHB (H) and pRP (I). Color changes represent the changes of nFeature_RNA. 
Scatter plot shows the relationships between pRP and pMT. Color changes represent the changes of nCount_RNA (J) and nFeature_RNA (K). 
(L) Violin plot displays the values of total RNA read count (nCount_RNA), total gene count (nFeature_RNA), pHB (expression percentage of 
hemoglobin genes), pMT (expression percentage of mitochondria genes) and pRP (expression percentage of ribosome protein genes). 
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Supplementary Figure 2. Quality control of the single-cell RNA-seq data of heart failure patients with stringent criteria. 
Scatter plot shows the relationships between nCount_RNA and nFeature_RNA. Color changes represent the changes of pMT (A), pHB (B), and 
pRP (C). Scatter plot shows the relationships between nCount_RNA and pMT (D), pHB (E) and pRP (F). Color changes represent the changes of 
nFeature_RNA. Scatter plot displays the relationships between nFeature_RNA and pMT (G), pHB (H) and pRP (I). Color changes represent the 
changes of nFeature_RNA. Scatter plot shows the relationships between pRP and pMT. Color changes represent the changes of nCount_RNA 
(J) and nFeature_RNA (K). (L) Violin plot displays the values of total RNA read count (nCount_RNA), total gene count (nFeature_RNA), pHB 
(expression percentage of hemoglobin genes), pMT (expression percentage of mitochondria genes) and pRP (expression percentage of 
ribosome protein genes). 
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Supplementary Figure 3. Single-cell metabolism analysis for CD14+ monocytes in the four groups. (A) Dot plot shows all 
metabolism terms among response or non-response groups. (B) Top 10 metabolism terms were shown using box plots. 
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Supplementary Figure 4. GO enrichment analysis for all 11 subclusters of CD14+ monocytes. Dot plots were used. 
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Supplementary Figure 5. KEGG enrichment analysis for all 11 subclusters of CD14+ monocytes. Dot plots were used. 
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Supplementary Figure 6. Expression levels of the seven identified genes between other and response-related CD14+ 
monocytes. 
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Supplementary Figure 7. The process of NMF analysis for HF patients. 
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Supplementary Tables 
 
 
Supplementary Table 1. Analysis of changes of patients with the MSC therapy. 

 
Patients 

Total Test (p-value) Response (N=2) Non-response (N=2) 
Patient 1 Patient 2 Patient 3 Patient 4 

LVEDV 3.6 (5.8) 0.1 (4.5) 1.9 (5.3) 0.2679 (Two Sample t-test) 
LVESV 12.4 (2.9) 4.7 (4.9) 8.5 (5.5) 0.0078 (Two Sample t-test) 
APTT 1.8 (6.5) -7.9 (14.4) -3.0 (11.8) 0.1611 (Two Sample t-test) 
NT-proBNP 15.6 [5.0;26.8] -21.4 [-60.5;4.1] 3.6 [-18.0;14.7] 0.0707 (Welch Two Sample t-test) 
CK-MB 22.1 (13.1) -11.0 (32.7) 5.5 (29.4) 0.0439 (Two Sample t-test) 
D2 60.3 [49.4;90.4] 40.3 [36.4;51.8] 50.5 [37.4;59.6] 0.1269 (Wilcoxon rank sum test) 
HSTNT 8.2 (14.4) 23.4 (17.3) 15.8 (17.1) 0.1292 (Two Sample t-test) 
6WORLKJULI0M 18.2 [13.6;18.2] 2.4 [0.4;4.0] 8.4 [2.8;18.2] 0.0038 (Wilcoxon rank sum test) 
LVEF 34.3 (17.9) 20.8 (7.5) 27.5 (14.9) 0.1185 (Two Sample t-test) 

For normally distributed data, it is described using the mean and standard deviation. 
For non-normally distributed data, it is described using the median and quartiles. 
R1: Increase and decrease rates of examination and test values one month after patient cell transplantation compared to 
baseline. 
R3: Increase and decrease rates of examination and test values three months after patient cell transplantation compared to 
baseline. 
R6: Increase and decrease rates of examination and test values six months after patient cell transplantation compared to 
baseline. 
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Supplementary Table 2. Patient demographics. 

 
Overall Response Non-response 

p-value 
N = 4 N = 2 N = 2 

Age at Diagnosis 62.25 (5.91) 60.5 (7.78) 64 (5.66) 0.658 
Male 4 2 2  
Body mass index, kg/m2 25.14 (1.2) 24.25 (1.07) 26.03 (0.06) 0.142 
Alcohol use 3 2 1  
Tobacco use 1 (25%) 0 (0%) 1 (50%)  
Years since heart failure diagnosis 5.75 5 6.5 0.423 
Previous myocardial infarction 1 (25%) 0 (0%) 1 (50%)  
Any type of defibrillator (AICD or CRT-D) 1 (25%) 0 (0%) 1 (50%)  
NHYA functional class 2.75 (0.5) 3 (0) 2.5 (0.71) 0.609 
History of hypertension 3 (75%) 1 (50%) 2 (100%)  
History of diabetes 1 (25%) 0 (0%) 1 (50%)  
History of atrial fibrillation 1 (25%) 0 (0%) 1 (50%)  
Ventricular premature beats and ventricular tachycardia 3 (75%) 1 (50%) 2 (100%)  
HbA1c 5.98 (0.73) 5.5 (0.28) 6.45 (0.78) 0.246 
Diagnosis     
CDM 3 (75%) 2 (100%) 1 (50%)  
CHD 1 (25%) 0 (0%) 1 (50%)  
Mitral regurgitation 4 (100%) 2 (100%) 2 (100%)  
Tricuspid valve regurgitation 1 (25%) 0 (0%) 1 (50%)  
Medications     
ARBs 4 (100%) 2 (100%) 2 (100%)  
Diuretic agents 1 (25%) 0 (0%) 1 (50%)  
Beta-blockers 4 (100%) 2 (100%) 2 (100%)  
Digitalis 1 (25%) 0 (0%) 1 (50%)  
Oral anticoagulants 1 (25%) 0 (0%) 1 (50%)  
Anti-platelet agents 4 (100%) 2 (100%) 2 (100%)  
SGLT-2 inhibitors 1 (25%) 0 (0%) 1 (50%)  
Statins 4 (100%) 2 (100%) 2 (100%)  
ECG     
HR 71.75 (9.25) 65 (7.07) 78.5(4.95) 0.157 
QRSD (ms) 94.75(11.18) 97(15.56) 92.5(10.61) 0.768 
QTJQ (ms) 395.25(37.02) 408(25.46) 382.5(53.03) 0.602 
Rv5/Sv1 1.77(1.58) 3(1.18) 0.55(0.33) 0.106 

For normally distributed data, it is described using the mean and standard deviation. 
For non-normally distributed data, it is described using the median and quartiles. 
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Supplementary Table 3. Potential drugs for targeting FOS. 

Chemical name Chemical ID CAS RN Interaction Interaction actions 
Reference 

count 
Organism 

count 

Cocaine D003042 50-36-2 Cocaine results in increased expression of FOS protein increases^expression 31 4 
Haloperidol D006220 52-86-8 Haloperidol results in increased expression of FOS protein increases^expression 17 3 
Cadmium D002104 7440-43-9 Cadmium results in increased expression of FOS mRNA increases^expression 11 4 
Haloperidol D006220 52-86-8 Haloperidol results in increased expression of FOS mRNA increases^expression 10 1 

Tetrachlorodibenzodioxin D013749 1746-01-6 
Tetrachlorodibenzodioxin results in increased expression 

of FOS mRNA 
increases^expression 10 3 

Ethinyl Estradiol D004997 57-63-6 
Ethinyl Estradiol results in increased expression of FOS 

mRNA 
increases^expression 9 5 

Cyclophosphamide D003520 50-18-0 
Cyclophosphamide results in increased expression of FOS 

protein 
increases^expression 8 1 

Nitroglycerin D005996 55-63-0 
Nitroglycerin results in increased expression of FOS 

protein 
increases^expression 8 2 

Cisplatin D002945 15663-27-1 Cisplatin results in increased expression of FOS mRNA increases^expression 7 3 
Clozapine D003024 5786-21-0 Clozapine results in increased expression of FOS protein increases^expression 7 3 
Clozapine D003024 5786-21-0 Clozapine results in increased expression of FOS mRNA increases^expression 6 1 
Cocaine D003042 50-36-2 Cocaine affects the expression of FOS mRNA affects^expression 6 2 

Diethylstilbestrol D004054 56-53-1 
Diethylstilbestrol results in increased expression of FOS 

mRNA 
increases^expression 6 2 

Tetrachlorodibenzodioxin D013749 1746-01-6 
Tetrachlorodibenzodioxin results in decreased expression 

of FOS mRNA 
decreases^expression 6 4 

Cocaine D003042 50-36-2 Cocaine affects the expression of FOS protein affects^expression 5 2 

Lipopolysaccharides D008070  Lipopolysaccharides results in increased expression of 
FOS mRNA 

increases^expression 5 1 

Lipopolysaccharides D008070  Lipopolysaccharides results in increased expression of 
FOS protein increases^expression 5 2 

Particulate Matter D052638  Particulate Matter results in increased expression of FOS 
mRNA 

increases^expression 5 3 

Resveratrol D000077185  Resveratrol results in increased expression of FOS mRNA increases^expression 5 1 

Cocaine D003042 50-36-2 
SCH 23390 inhibits the reaction [Cocaine results in 

increased expression of FOS protein] 
decreases^reaction|increas

es^expression 
4 1 

Methamphetamine D008694 537-46-2 
Methamphetamine results in increased expression of FOS 

protein 
increases^expression 4 2 

Carbachol D002217  Carbachol results in increased expression of FOS protein increases^expression 3 1 
Cisplatin D002945 15663-27-1 Cisplatin results in increased expression of FOS protein increases^expression 3 2 
Copper D003300 7440-50-8 Copper results in decreased expression of FOS mRNA decreases^expression 3 2 

Doxorubicin D004317 23214-92-8 Doxorubicin results in increased expression of FOS mRNA increases^expression 3 2 

Isoproterenol D007545 7683-59-2 
Isoproterenol results in increased expression of FOS 

mRNA 
increases^expression 3 2 

Lipopolysaccharides D008070  Lipopolysaccharides affects the localization of FOS protein affects^localization 3 2 

Lipopolysaccharides D008070  Lipopolysaccharides results in decreased expression of 
FOS mRNA 

decreases^expression 3 2 

Lithium D008094 7439-93-2 Lithium results in increased expression of FOS protein increases^expression 3 1 
Nitroprusside D009599 15078-28-1 Nitroprusside affects the expression of FOS protein affects^expression 3 1 

Nitroprusside D009599 15078-28-1 
Nitroprusside results in increased expression of FOS 

protein 
increases^expression 3 2 

Ozone D010126 10028-15-6 Ozone results in increased expression of FOS mRNA increases^expression 3 1 

Pentobarbital D010424 76-74-4 
Pentobarbital results in decreased expression of FOS 

protein decreases^expression 3 1 

Pentobarbital D010424 76-74-4 
Pentobarbital results in increased expression of FOS 

protein 
increases^expression 3 1 

Resveratrol D000077185  Resveratrol results in increased expression of FOS protein increases^expression 3 1 
Tamoxifen D013629 10540-29-1 Tamoxifen results in increased expression of FOS mRNA increases^expression 3 3 
Tretinoin D014212 302-79-4 Tretinoin results in decreased expression of FOS mRNA decreases^expression 3 3 

 

5675


