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INTRODUCTION 
 

Increasing lifespan and promoting healthy living into old 
age are among top priorities of health care systems all 

over the world. Although lifespan is steadily improving, 

an increasing proportion of the population is affected by 

multiple chronic diseases. Moreover, in recent years, the 

global COVID-19 pandemic poses a heavy burden on 

public health and accounts for substantial mortality and 
morbidity [1, 2]. According to the estimation of World 

Health Organization, around 14.83 million excess deaths 

globally were due to COVID-19 [1].  
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ABSTRACT 
 

Background: COVID-19 pandemic poses a heavy burden on public health and accounts for substantial mortality 
and morbidity. Proteins are building blocks of life, but specific proteins causally related to COVID-19, 
healthspan and lifespan have not been systematically examined. 
Methods: We conducted a Mendelian randomization study to assess the effects of 1,361 plasma proteins on 
COVID-19, healthspan and lifespan, using large GWAS of severe COVID-19 (up to 13,769 cases and 1,072,442 
controls), COVID-19 hospitalization (32,519 cases and 2,062,805 controls) and SARS-COV2 infection (122,616 
cases and 2,475,240 controls), healthspan (n = 300,477) and parental lifespan (~0.8 million of European 
ancestry). 
Results: We identified 35, 43, and 63 proteins for severe COVID, COVID-19 hospitalization, and SARS-COV2 
infection, and 4, 32, and 19 proteins for healthspan, father’s attained age, and mother’s attained age. In 
addition to some proteins reported previously, such as SFTPD related to severe COVID-19, we identified novel 
proteins involved in inflammation and immunity (such as ICAM-2 and ICAM-5 which affect COVID-19 risk, 
CXCL9, HLA-DRA and LILRB4 for healthspan and lifespan), apoptosis (such as FGFR2 and ERBB4 which affect 
COVID-19 risk and FOXO3 which affect lifespan) and metabolism (such as PCSK9 which lowers lifespan). We 
found 2, 2 and 3 proteins shared between COVID-19 and healthspan/lifespan, such as CXADR and LEFTY2, 
shared between severe COVID-19 and healthspan/lifespan. Three proteins affecting COVID-19 and seven 
proteins affecting healthspan/lifespan are targeted by existing drugs. 
Conclusions: Our study provided novel insights into protein targets affecting COVID-19, healthspan and 
lifespan, with implications for developing new treatment and drug repurposing. 
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Proteins are the building blocks of life, important for 

etiology of disease and often used as drug targets for 

treatment. However, the specific proteins involved in 

the complex ageing process and COVID-19 risk are 

largely unclear. The dysregulation in inflammatory and 

immunomodulatory response has been thought to play  

a key role in multiple diseases and disorders [3], as  

well as in COVID-19 [4]. Several proteins related to 

inflammation and immune function, such as CXCL14 

[5] and soluble HLA-G (sHLA-G) [6], have been 

identified by comparing patients with and without 

COVID-19. However, these associations may be 

confounded by some other characteristics, such as 

socioeconomic position. Moreover, proteins in other 

pathways, such as cardiometabolism, may also affect 

COVID-19 and longevity. Therefore, a comprehensive 

examination of proteins using advanced causal 

inference methods robust to confounding is needed.  

 

Mendelian randomization (MR) uses genetic variants 

as instrument variables (IVs) to assess the causal role 

of proteins in COVID-19 and lifespan. As the 

genotypes are determined at conception and randomly 

allocated, MR estimates are thus not subject to residual 

confounding [7]. Using MR, some studies explored  

the associations of proteins with COVID-19 [8, 9] or 

with healthspan [10], but not both. In addition, the 

genetic instruments of these proteins are generally 

based on relatively smaller genome-wide association 

study (GWAS) (~3,301 people) [8–10]. Recently, the 

UK Biobank Pharma Proteomics Project (UKB-PPP), 

a collaboration between the UK Biobank (UKB) and 

thirteen biopharmaceutical companies has measured 

the plasma proteomic profiles in 54,306 UKB 

participants. In this study, we conducted MR analysis 

using genetic instruments from much larger GWAS of 

proteins and applied to large GWAS of COVID-19 

(severe COVID-19, COVID-19 hospitalization and 

SARS-COV2 infection), healthspan and lifespan 

(mother’s and father’s attained age), to identify 

proteins causally related to COVID-19, healthspan and 

lifespan. We included both COVID-19 and healthspan 

and lifespan in the outcome, because COVID-19 

which occurred in recent years reflects a new threat  

to longevity, whilst healthspan and lifespan reflect 

overall morbidity and mortality. 

 

METHODS 
 

Study design 
 

We used proteome-wide MR study to identify  

proteins causally related to COVID-19, healthspan and 
lifespan. To better understand the function of these 

proteins, we checked the function of each selected 

protein. To assess the drug repurposing opportunity, 

we also checked whether these proteins are targeted by 

existing drugs. The flow chart of the study design was 

shown in Figure 1. 

 

Proteomics data from UK Biobank 

 

The proteomic profiling measured 1,472 protein 

analytes and captured 1,463 unique proteins using  

the Olink Explore 1536 platform in 54,306 plasma 

samples in the UK Biobank. The blood samples were 

from a randomised subset of 46,673 UKB participants 

at baseline visit, 6,385 individuals at baseline selected 

by the UKB-PPP consortium and 1,268 individuals 

who participated in the COVID-19 repeat imaging 

study at multiple visits. No batch effects, plate effects 

or abnormalities in protein coefficients of variation 

were observed [11]. We used significant (p < 3.4 × 

10−11) and independent (r2 < 0.01) single nucleotide 

polymorphisms (SNPs) as instruments provided by  

the study of Sun et al. [1]. The details of the samples 

and sample selection in UKB-PPP were shown in 

Supplementary Methods. Up to 1,361 proteins with 

genetic instruments available in at least one of the 

outcome datasets were included in the analysis. The 

genetic instruments for proteins used in the MR 

analysis are provided in Supplementary Table 1. 

 

Genetic associations with COVID-19  

 

We obtained genetic associations of these genetic 

instruments with severe COVID-19 (up to 13,769 

cases and 1,072,442 controls), hospitalization (up to 

32,519 cases and 2,062,805 controls) and SARS-

COV2 infection (up to 122,616 cases and 2,475,240 

controls), from the latest GWAS results provided by 

the COVID-19 host genetics initiative [12]. Severe 

COVID-19 was defined as (1) hospitalization with 

laboratory confirmed SARS-CoV-2 infection based  

on RNA and/or serology and (2) hospitalization with 

COVID19 as the primary reason for admission, and  

(3) followed by death or respiratory support. COVID-

19 hospitalization was defined as hospitalization  

with laboratory confirmed SARS-CoV-2 infection  

due to corona-related symptoms. COVID-19 infection 

was defined as (1) laboratory confirmed SARS-CoV- 

2 infection (RNA and/or serology based), or (2) 

physician diagnosis of COVID-19, or (3) self-report as 

COVID-19 positive. The GWAS was adjusted for age, 

age square, sex and the interaction of age and sex [12]. 

 

Genetic associations with healthspan and lifespan 

(mother’s and father’s attained age) 

 
We obtained summary statistics for healthspan from a 

large GWAS conducted in 300,477 people of British 

ancestry in the UK Biobank. Healthspan was defined 
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as the age of the first incidence of congestive Heart  

Failure (CHF), Myocardial Infarction (MI), Chronic 

Obstructive Pulmonary Disease (COPD), stroke, 

dementia, diabetes, cancer, and death [13]. The GWAS 

used Cox-Gompertz survival models, with adjustment 

for sex, the first genetic principal components variables, 

assessment centre and genotyping batch [13]. 

 

We obtained genetic associations with parental 

survival (attained age) from a GWAS of parental 

longevity in European descent UK Biobank participants 

(n = 415,311 for father’s attained age, n = 412,937  

for mother’s attained age) [14]. The GWAS used  

a Cox proportional hazards model to estimate 

offspring genetic variant effects on parental survival, 

stratified by sex, and adjusted for age and 10 principal 

components of ancestry. As the effect sizes obtained 

using genetic data from offspring are half of the actual 

variant effect size in the parent, they were doubled to 

reflect the expected genetic effects in parents [14]. 

 

In both GWAS, the summary statistics from the  

GWAS were reported as log hazard ratios, for ease  

of understanding, these were converted to years of life 

by inverting the sign and multiplied by 10 [13, 14]. 

 

Statistical analysis 

 

MR estimates were based on the genetic association 

with each type of COVID-19 (severe COVID-19, 

COVID-19 hospitalization or SARS-COV2 infection) 

divided by the genetic association with each protein), 

i.e., the Wald ratio estimates. Similarly, we obtained the 

MR estimates for the association of each protein with 

healthspan and lifespan. The genetic variant specific 

estimates were meta-analysed using inverse variance

 

 
 

Figure 1. Flow chart of the study design. 
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weighting (IVW). Multiplicative random effects model 

was used when three or more genetic variants were used 

as instruments, and fixed effects model was used when 

less than three genetic variants were used as instruments. 

To account for multiple testing, we used Bonferroni 

corrected significance (p-value < 0.05/1,361 = 3.7 × 10−5) 

as the cut-off. Heterogeneity test was also conducted for 

the identified protein-outcome associations. In sensitivity 

analysis, for proteins with three or more genetic variants 

as instruments, we used different MR methods under 

different assumptions from IVW, including weighted 

median, weighted mode and MR-SPI. The weighted 

median method can provide consistent estimates even 

when up to 50% of the information comes from invalid 

genetic variants [15]. The weighted mode is based on the 

assumption that a plurality of genetic variants are valid 

instruments, i.e., no larger subset of invalid instruments 

estimating the same causal parameter than the subset of 

valid instruments exists [16]. Also based on the plurality 

assumption, MR-SPI can automatically select genetic 

variants as valid instruments and provide robust inference 

in finite samples [17]. Given that some proteins lack cis-

SNPs as instruments, we used cis- and trans-SNPs as 

instruments in the main analysis and cis-SNPs in the 

sensitivity analysis.  

 

Identification of drug repurposing opportunities 

 

To have a better understanding of the biological function 

of each identified protein, we also looked into their 

functions in STRING [18], a database with 

comprehensive information on protein network and 

function, and UNIPROT (https://www.uniprot.org/). To 

identify potential drug repurposing opportunity, we 

checked whether the proteins are targeted by currently 

available drugs, by searching in DrugBank, a publicly 

available resource with drug and drug target information 

on over 13,000 drugs (https://www.drugbank.ca/). 

 

All statistical analysis were performed using R 

(Foundation for Statistical Computing, Vienna, 

Austria; Version 4.1.1) and “TwoSampleMR”, 

“MendelianRandomization”, “ggplot2”, “MR.SPI”  

R packages. 

 

Availability of data and materials 

 

All the data used in the study are publicly available. The 

data sources have been specified in the methods. 

 

RESULTS 
 

Proteins causally related to COVID-19 
 

Figure 2 and Supplementary Tables 2–4 showed the 

associations of all proteins with three types of COVID-19, 

healthspan and lifespan (mother’s and father’s attained 

age). Among these proteins, we selected proteins with 

Bonferroni-corrected significance. Figure 3 showed the 

selected proteins affecting the risk of severe COVID-19 

 

 
 

Figure 2. Volcano plot on the associations of proteins with severe COVID-19, COVID-19 hospitalization and SARS-COV2 
infection. 
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(Figure 3A), COIVD-19 hospitalization (Figure 3B) and 

SARS-COV2 infection (Figure 3C). We identified 35 

proteins associated with severe COVID (Figure 3A), 43 

proteins associated with COVID-19 hospitalization 

(Figure 3B), and 63 proteins associated with SARS-

COV2 infection (Figure 3C). There are 24 proteins 

shared by the three traits, including ADGRG2, AMY2B, 

CCL15, CD109, CD209, CD34, CX3CL1, FGF19, 

GOLM2, ICAM5, ISLR2, KLK1, LEFTY2, NRCAM, 

PECAM1, PODXL, PTPRM, REG1A, REG1B, SCG2, 

SEMA4C, SFTPD, TDGF1, and VAMP5. Among them, 

8 proteins increased the risk of severe COVID-19, 

COVID-19 hospitalization and SARS-COV2 infection, 

16 decreased the risk of COVID-19. Supplementary 

Table 5 showed the function of proteins affecting severe 

COVID-19, COVID-19 hospitalization and/or SARS-

COV2 infection. These proteins had functions involved 

in inflammation and immunity, such as SFTPD, ICAM-2, 

ICAM-5, CD209, CD58, CCL15, CCL28, and MNDA; 

apoptosis, such as FGFR2 and ERBB4; and metabolism 

such as AMY2A and AMY2B.  

 

In sensitivity analyses, we found that the estimates were 

generally robust to different MR methods, i.e., weighted 

median, weighted mode and MR-SPI (Supplementary 

Tables 6–11). The associations were also consistent 

when using cis-SNPs as instruments (Supplementary 

Tables 12–14).  

 

Proteins causally related to healthspan and lifespan 

 

Figure 4 and Supplementary Tables 15–17 showed the 

associations of all proteins with healthspan and lifespan 

(mother’s and father’s attained age). Figure 5 showed 

the selected proteins associated with healthspan (Figure 

5A), father’s attained age (Figure 5B) and mother’s 

attained age (Figure 5C). We identified 4 proteins 

related to healthspan (Figure 5A), 32 proteins related to 

father’s attained age (Figure 5B), 19 proteins related to 

mother’s attained age (Figure 5C). Supplementary 

Table 18 showed the function of proteins affecting 

healthspan and/or lifespan. The proteins are also 

involved in inflammation and immunity, such as 

CXCL9, HLA-DRA, LILRB4, IL19 and TNFRSF8, 

apoptosis, such as FOXO3, and involved in metabolism, 

such as PCSK9 and LDLR. Ten proteins play a  

role in both maternal and paternal ageing, including 

CDH1, CPE, CXCL9, F3, LAIR1, LEFTY2, LGALS9, 

LILRB4, POLR2F and RP2. The analysis was robust  

to weighted median, weighted mode and MR-SPI 

(Supplementary Tables 19–24). The associations were 

also consistent when using cis-SNPs as instruments 

(Supplementary Tables 25–27). Heterogeneity test 

suggested large heterogeneity for some protein-outcome 

associations (Supplementary Tables 28–33), such as 

AMY2B and severe COVID-19, in which case estimates 

from more robust methods are more valid.  

 

Proteins related to both COVID-19 and ageing 

 

According to Figures 3 and 5, we found two proteins 

shared between severe COVID-19 and healthspan/ 

lifespan, including CXADR, and LEFTY2. Two 

proteins shared between COVID-19 hospitalization and 

healthspan/lifespan, including CXADR and LEFTY2. 

Three proteins were shared between SARS-COV2 

infection and healthspan/lifespan, including CDH17, 

CXADR and LEFTY2. 

 

 
 

Figure 3. Proteins that are significantly associated with (A) severe COVID-19, (B) COVID-19 hospitalization, and (C) COVID-19 infection. The 

inverse-variance weighted (IVW) estimates are presented in log-odds ratio with the corresponding 95% confidence intervals. 
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Drug repurposing opportunity 

 

Table 1 shows the proteins targeted by existing drugs. 

In this study, we found three proteins that affect the 

risk of COVID-19 in MR analysis have already been 

targeted by drugs currently used for the treatment of 

epilepsy, glaucoma, rheumatoid arthritis and neoplasm. 

Seven proteins that affect healthspan or lifespan  

have been targeted by drugs currently used for the 

treatment of cardiovascular disease, atherosclerosis, 

and neoplasm. This suggests that these existing drugs 

have the repurposing potential for lowering the risk  

of COVID-19 or improving healthspan/lifespan. 

DISCUSSION 
 

Using MR to minimize confounding bias, we not only 

confirmed some proteins reported in previous studies, 

such as SFTPD lowering the risk of severe COVID-19 

[8], but also identified several novel proteins which are 

associated with the risk of COVID-19, with functions 

involved in inflammation and immunity, apoptosis  

and metabolism. We also identified novel proteins 

related to healthspan and lifespan, and some of them are 

also involved in inflammation and immunity, such as 

CXCL9, HLA-DRA, LILRB4, IL19 and TNFRSF8, in 

apoptosis, such as FOXO3, and involved in metabolism, 

 

 
 

Figure 4. Volcano plot on the associations of proteins with healthspan and lifespan. 

 

 
 

Figure 5. Proteins that are significantly associated with (A) healthspan, (B) father’s attained age, and (C) mother’s attained age. The 

inverse-variance weighted (IVW) estimates are presented in years of life gained with the corresponding 95% confidence intervals. 
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Table 1. Proteins targeted by existing drugs with potential for drug repurposing. 

Protein Findings in this MR Drug(s) targeting this protein Disease of treatment Action type 

CA4 
Increases the risk of COVID-19 
hospitalization and SARS-COV2 
infection 

METHAZOLAMIDE Open-angle glaucoma Inhibitor 

ACETAZOLAMIDE Epilepsy Inhibitor 

TOPIRAMATE Migraine disorder Inhibitor 

SULTHIAME Epilepsy Inhibitor 

DICHLORPHENAMIDE Glaucoma Inhibitor 

FGFR2 
Increases the risk of SARS-COV2 
infection 

NINTEDANIB Pulmonary fibrosis; neoplasm Inhibitor 

REGORAFENIB Metastatic colorectal cancer Inhibitor 

ERDAFITINIB Neoplasm Inhibitor 

TDGF1 
Lowers the risk of three COVID-19 
related traits 

BIIB-015 Neoplasm Binding agent 

CD74 Lowers father’s lifespan MILATUZUMAB 
Multiple myeloma; chronic 
lymphocytic leukemia 

Antagonist 

GP1BA Lowers father’s lifespan ANFIBATIDE Myocardial infarction Antagonist 

GPNMB Increases healthspan 
GLEMBATUMUMAB 
VEDOTIN; 
GLEMBATUMUMAB 

Breast cancer; melanoma Binding agent 

KIR2DL3 Lowers father’s lifespan IPH-2101; LIRILUMAB Multiple myeloma Inhibitor 

PCSK9 Lowers father’s lifespan 
PCSK9 inhibitors, such as 
EVOLOCUMAB and 
INCLISIRAN 

Cardiovascular disease Inhibitor 

PLA2G7 Lowers healthspan 

DARAPLADIB Atherosclerosis Inhibitor 

RILAPLADIB 
Atherosclerosis; Alzheimer’s 
disease 

Inhibitor 

TNFRSF8 Lowers mother’s lifespan BRENTUXIMAB VEDOTIN Lymphoma Inhibitor 

 
such as PCSK9 and LDLR. This finding implies  

that drugs targeting on these proteins may be used  

for disease prevention and treatment. For example, 

PCSK9 inhibitors, which have been used to treat hyper-

lipidemia, increase years of life. The identification  

of these proteins deepened the understanding of 

molecular mechanisms and provided new targets,  

with relevance to new drug development. Notably,  

we found 3 proteins affecting COVID-19 and 7 

proteins affecting healthspan or lifespan are targeted 

by existing drugs, suggesting a great potential of drug 

repurposing. In the following discussion, we discussed 

in detail these proteins involved in these functions, as 

well as proteins targeted by existing drugs. 

 

Proteins involved in inflammation and immune 

function 

 

In the analysis of COVID-19, our findings are 

consistent with a previous MR study showing SFTPD is 

related to lower severe COVID-19 [8]. The protein is 

part of the innate immune response, the protein and the 

gene encoding this protein protects the lung against 

inhaled microorganisms and chemicals [19]. SFTPD 

also interacts with COVID-19 spike proteins [20]. 

Partly consistent with a previous MR study showing 

sICAM-2 lowers the risk of severe COVID-19 [21]  

and in line with another MR study showing ICAM5  

lowers the risk of severe COVID-19 [22], we found 

ICAM-2 and ICAM-5 lower the risk of COVID-19 

hospitalization. ICAM-2 and ICAM-5 both belong to 

the Ig-like cell adhesion molecule family which may 

play a role in lymphocyte recirculation by blocking 

LFA-1-dependent cell adhesion. They mediate adhesive 

interactions important for antigen-specific immune 

response, NK-cell mediated clearance, lymphocyte 

recirculation, and other cellular interactions important 

for immune response and surveillance. The gene, 

ICAM5, is also related to severe COVID-19 [23]. 

 

Moreover, we identified several other inflammation-

related proteins that are linked to COVID-19, such as 

CD209, CD58, CCL15, CCL28, and MNDA. CD209  

is a pathogen-recognition receptor expressed on the 

surface of immature dendritic cells (DCs) and involved 

in initiation of primary immune response. In vitro 

experiment shows that CD209 also serves as alternative 

receptors for SARS-CoV-2 in disease-relevant cell 

types, including the vascular system [24]. This is in  

line with our findings that CD209 increased the risk  

of severe COVID-19, COVID-19 hospitalization and 

SARS-COV2 infection. CD58 is involved in activation 

of NK and T cells, a reduction in the expression of 

CD58 results in reduced activation of NK and cytotoxic 
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T cells and may play a role in COVID-19 [25].  

This may explain why we found CD58 lowers the  

risk of severe COVID-19 in our MR study. CCL15,  

a chemokine involved in leukocyte trafficking, was 

identified as predictor for severe COVID-19 [26]. 

CCL28 displays strong homing capabilities for B and 

T cells and orchestrates the trafficking and functioning 

of lymphocytes [27]. CCL28 may be used as an 

indicator for mucosal immune responses in people 

with SARS-COV2 infection [28]. In our study, we 

found CCL28 lowers the risk of SARS-COV2 infection. 

MNDA plays a role in the granulocyte/monocyte  

cell-specific response to interferon. It is required for 

INFα production from human blood cells in response 

to viruses [29], and may contribute to the immune 

response to SARS-CoV-2 [30]. 

 

Meanwhile, in the analysis for healthspan and lifespan, 

we also found several proteins which play a role in 

inflammation and immune function and have not been 

reported in previous MR studies, including CXCL9, 

HLA-DRA, LILRB4, IL19 and TNFRSF8. CXCL9 was 

involved in T cell trafficking. In animal experiments,  

it increased with aging, which can be prevented by 

calorie restriction, an established approach of increasing 

longevity [31]. Consistently, we found CXCL9 was 

related to shorter years of life. HLA-DRA was 

expressed on the surface of various antigen presenting 

cells such as B lymphocytes, dendritic cells, and 

monocytes/macrophages, and plays a central role in the 

immune system. The expression of HLA-DRA was 

higher in older people [32]. LILRB4 plays an important 

role in adaptive immunity, and increases with age  

in animal experiments [33]. In our study, we further 

suggested that increased HLA-DRA and LILRB4  

lower healthspan and lifespan, respectively. TNFRSF8 

may play a role in the regulation of cellular growth, 

transformation of activated lymphoblasts. Its regulating 

gene, TNFRSF8, has also been shown to relate to ageing 

[34]. IL19 promotes the production of IL6, which 

increased with age and its in vitro synthesis is prevented 

by diet restriction [35]. In our study, for the first time, 

we clearly showed that TNFRSF8 and IL19 possibly 

lowered lifespan. 

 

Proteins involved in apoptosis 
 

Apoptosis is an important process in aging. Consistent 

with previous studies [36], we found FOXO3 affects 

healthspan and maternal lifespan. The FOXO3 gene 

functions as a trigger for apoptosis through expression 

of genes necessary for cell death. Notably, in the 

proteins related to COVID-19, we also found several 
proteins involved in apoptosis, such as FGFR2 and 

ERBB4. FGFR2 promotes gastric cancer progression  

by inhibiting the expression of Thrombospondin4 via 

PI3K-Akt-Mtor pathway [37]. Drug targeting FGFR2 

has been hypothesized to be used as treatments for 

COVID-19 [38] but this has not been tested in trials. 

ERBB4 is a tyrosine-protein kinase that plays an 

essential role as cell surface receptor for neuregulins 

and EGF family members and regulates cell proliferation, 

differentiation, migration and apoptosis. ERBB4 was 

downregulated after the coronavirus infection, and was 

upregulated by using the Wortmannin, which may 

inhibit the pathological cycle and development of 

SARS-CoV-2 in the human hosts [39]. 

 

Notably, we also found LEFTY2 contributes to  

both COVID-19 and lifespan. LEFTY2 lowers the  

risk of all COVID-19 phenotypes and increases paternal 

and maternal lifespan. LEFTY2 encodes a secreted 

ligand of the transforming growth factor-beta (TGF-

beta) superfamily of proteins, which acts as a crucial 

regulator of cell growth, proliferation, differentiation 

and apoptosis [40]. More studies are needed to clarify 

the pathways underlying the effects of LEFTY2, to 

provide insights for clinical practice and healthcare. 

 

Proteins involved in metabolism 

 

Metabolic syndrome is a known risk factor for COVID-

19 and leads to multiple chronic diseases and mortality. 

Interestingly, we identified several proteins regulating 

metabolism. For example, we found AMY2B lowers the 

risk of severe COVID-19 and AMY2A lowers the risk 

of hospitalization. AMY2A and AMY2B both play a 

role in carbohydrate metabolism; the former (AMY2A) 

was FDA approved drug target. Evidently, the levels  

of AMY2A and AMY2B were relatively higher in 

survivors of COVID-19 compared to those who died of 

COVID-19 [41]. 

 

Among the proteins for aging, we found PLA2G7, 

PCSK9 and LDLR, which are all related to  

lipid metabolism, lower healthspan and/or lifespan. 

PLA2G7 has been associated with atherosclerosis, 

diabetes, and cardiovascular disease, and considered as 

a potential target that is a nexus between the immune, 

metabolic, and cardiovascular pathways of aging  

[42, 43]. PCSK9 and LDLR play an important role  

in lipid metabolism, and lead to higher risk of IHD,  

the leading cause of mortality. PCSK9 inhibitors, the 

drugs targeting PCSK9, are getting arising attention. In 

this novel study, we showed that PCSK9 inhibitors not 

only lower the cardiovascular risk, but also should be 

considered as a treatment for aging. 

 

Proteins related to hormone regulation 

 

Hormones have been thought to play a vital role in 

COVID-19 and ageing. In our study, we also found 
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proteins regulating hormone metabolism affected 

COVID-19 and healthspan/lifespan. For example, 

NELL2, which was involved in the regulation of 

hypothalamic GNRH secretion and the control of 

puberty, lowers the risk of COVID-19 hospitalization 

and SARS-COV2 infection. In line with our findings, 

NELL2 is downregulated in patients with severe  

and mild COVID-19 in comparison to controls [44].  

In proteins related to lifespan, we found IGFBP-1 

lowers paternal lifespan. IGFBP-1 binds with IGF-1, 

which increased the risk of prostate cancer [45] and 

cardiometabolic diseases [46]. We also found AgRP 

lowers paternal lifespan. The main action of AgRP 

involves its antagonistic binding to melanocortin 

receptors 3 and 4, which are normally targeted by 

alpha Melanocyte Stimulating Hormone [47]. AgRP-

deficiency was thought to lead to increased lifespan 

[48]. In our study, we confirmed its role in lifespan. 

 
Drug repurposing opportunity 

 
Importantly, we found that several proteins are targeted 

by existing drugs, which provided novel insights into 

drug repurposing. For example, we found that PLA2G7 

which lowers healthspan is targeted by PLA2G7 

inhibitors which are currently used in the treatment for 

atherosclerosis and Alzheimer disease. This suggests 

that PLA2G7 inhibitors may be repurposed to increase 

healthspan. Similarly, we suggested several drugs, such 

as FGFR2 inhibitors which have been used for the 

treatment of neoplasm can be considered to lower the 

risk of COVID-19. These novel findings are worthwhile 

to be tested in future randomized controlled trials.  

 
Strengths and limitations 

 
Using MR enables us to minimize unmeasured 

confounding bias in cohort studies and case-control 

studies. In this study, we used by far the largest 

available GWAS of proteomics, COVID-19, lifespan 

and healthspan, which improves the power to identify 

proteins causally related to these outcomes. Despite, 

we also acknowledge a few limitations. First, MR is 

based on three core assumptions, i.e., the relevance, 

independence, and exclusion-restriction assumption 

[49]. To satisfy these assumptions, we used genetic 

variants strongly associated with these proteins, with 

Bonferroni-corrected significance. We also used 

multiple sensitivity analysis methods robust to 

pleiotropy and checked the directions of associations 

from different genetic instruments (trans plus cis SNPs 

versus cis SNPs). In the situation where heterogeneity 

test suggested large heterogeneity, estimates from 
methods robust to pleiotropy are more valid than IVW. 

Considering that the measurements of proteins at 

baseline were conducted before the occurrence of the 

outcomes, reverse causality is not a main concern,  

so we did not perform bi-directional MR analysis. 

Second, MR studies of COVID-19 might be subject  

to survivor bias (selection bias), i.e., people might 

have died of COVID-19 or other diseases before 

recruitment. So, the causal effects might be under-

estimated. Third, population stratification might affect 

MR estimates. However, the GWAS data used in this 

study were derived from people largely of European 

ancestry. Meanwhile, as the study was based on people 

of European ancestry, the findings may not be 

generalizable to other ancestries. Fourth, the samples 

for proteins and outcomes both included UK Biobank. 

The partly overlapping in samples may bias two-

sample MR estimates [2], but a simulation study 

shows two-sample MR can be safely conducted in a 

single large dataset [3], such as UK Biobank. So, the 

sample overlapping may not be a main concern, but 

the estimates need to be interpreted more cautiously. 

Finally, as we used summary statistics, we cannot 

assess the potential nonlinear association of these 

proteins with COVID-19, healthspan and lifespan.  

 

CONCLUSIONS 
 

In this study, using genetic instruments from by far the 

largest GWAS of proteomics, as well as by far the 

largest GWAS of COVID-19, healthspan and lifespan, 

we identified multiple proteins affecting COVID-19  

and aging. We not only confirmed proteins identified in 

previous studies, such as SFTPD which affects COVID-

19 and FOXO3 which affects healthspan, notably  

we identified several proteins with functions involved  

in inflammation and immune function, apoptosis, 

metabolism and hormone regulation. These findings 

provide novel insights into disease pathogenesis and 

pinpoint targets for therapeutic development or drug 

repurposing. For example, our findings of PCSK9 

shortening lifespan and PLA2G7 shortening healthspan 

suggested that PCSK9 inhibitors, such as Evolocumab, 

and drugs inhibiting PLA2G7, such as Darapladib, may 

be beneficial for increasing lifespan and healthspan.  
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SUPPLEMENTARY MATERIALS 
 

Supplementary Methods 
 

The proteomics data come from the UK Biobank 

Pharma Proteomics Project (UKB-PPP), compromising 

54,306 samples (46,673 UKB participants at baseline 

visit, 6,385 samples selected by the UKB-PPP con-

sortium, and 1,268 samples who participated in the 

COVID-19 repeat imaging study). The selection of 

UKB-PPP samples was based on two temporally and 

algorithmically separated picking processes. The first 

process involved pre-selecting 5,500 samples from 

participants’ baseline recruitment visits, supplemented 

by additional 44,502 samples selected from the UK 

Biobank cohort with stratification against age, sex, and 

recruitment centre. The second process included a total 

of 7,000 samples, with 1,020 pre-selected samples, 

3,637 samples from participants in the COVID-19 case-

control imaging study, and 2,343 baseline samples 

selected randomly as described for the first sample 

selection. The full description of the selection criteria 

can be found in the Supplementary Material in Sun, 

et al. [1]. Generally, the 46,673 UKB participants were 

highly representative of the overall UKB population 

across various demographic characteristics except for 

deprivation index, distribution of recruitment centres, 

and time since recruitment. The 6,385 UKB-PPP 

consortium-selected participants were on average 2.5 

years older than the overall UKB participants, and  

there were also differences in sex, ethnic background, 

body mass index, and smoking prevalence. The 1,268 

COVID-19 imaging participants were on average 6.3 

years younger than the overall UKB participants, while 

the other demographic characteristics were comparable 

to the UKB population. 
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et al. Genetic regulation of the human plasma 
proteome in 54,306 UK Biobank participants. bioRxiv. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1–5 and 15–18. 

 

Supplementary Table 1. Genetic instruments for proteins used in the Mendelian randomization analysis. 
 

Supplementary Table 2. Associations of genetically predicted proteins with severe COVID-19 using IVW method 
and cis+trans SNPs. 
 

Supplementary Table 3. Associations of genetically predicted proteins with COVID-19 hospitalization using IVW 
method and cis+trans SNPs. 
 

Supplementary Table 4. Associations of genetically predicted proteins with COVID-19 infection using IVW 
method and cis+trans SNPs. 
 

Supplementary Table 5. Function of proteins affecting COVID-19 risk in MR analysis. 
 

Supplementary Table 6. Sensitivity analysis of genetically predicted proteins with severe COVID-19 using the 
weighted mode and weighted median methods. 

Protein 
No. of  
SNPs 

BETA  
(Weighted 

Mode) 

SE  
(Weighted 

Mode) 

P-val  
(Weighted 

Mode) 

BETA  
(Weighted 

Median) 

SE  
(Weighted 

Median) 

P-val  
(Weighted 

Median) 

ADGRG2 6 0.15 0.15 3.36E-01 0.18 0.16 2.60E-01 

AMY2B 9 −0.08 0.04 3.09E-02 −0.09 0.04 2.36E-02 

CCL15 4 0.47 0.08 1.23E-09 0.39 0.08 1.85E-07 

CD109 6 −0.49 0.08 5.78E-10 −0.48 0.08 1.31E-10 

CD209 8 0.11 0.02 3.56E-11 0.11 0.02 1.28E-11 

CD34 3 −0.24 0.04 5.26E-10 −0.23 0.04 2.46E-09 

CDH15 4 0.31 0.05 6.57E-11 0.30 0.05 1.62E-10 

CKMT1A_CKMT1B 6 0.10 0.20 6.16E-01 0.25 0.14 8.03E-02 

CX3CL1 7 0.02 0.49 9.61E-01 −0.55 0.17 1.45E-03 

ERBB4 16 −0.14 0.08 7.33E-02 −0.15 0.07 3.54E-02 

FGF19 5 0.37 0.06 5.58E-09 0.31 0.06 8.35E-07 

GOLM2 9 0.29 0.07 1.88E-05 0.17 0.08 3.01E-02 

ICAM5 6 −0.09 0.02 3.58E-05 −0.09 0.02 7.01E-05 

ISLR2 8 −0.16 0.03 4.74E-10 −0.17 0.03 9.15E-11 

KEL 16 −0.13 0.04 4.93E-04 −0.08 0.05 9.28E-02 

KLK1 13 −0.10 0.02 2.16E-09 −0.10 0.02 4.65E-10 

LAMP3 10 −0.09 0.09 2.94E-01 −0.19 0.10 5.00E-02 

LEFTY2 4 0.04 0.35 9.07E-01 −0.57 0.31 6.21E-02 

LGALS4 3 −0.19 0.03 3.31E-11 −0.19 0.03 2.59E-11 

LGALS8 6 −0.22 0.04 3.48E-07 −0.20 0.04 3.83E-06 

MNDA 1 NA NA NA NA NA NA 

MUC13 4 −0.03 0.10 7.50E-01 −0.18 0.09 3.98E-02 

NRCAM 6 −0.11 0.17 5.02E-01 −0.25 0.15 8.32E-02 

PECAM1 8 −0.19 0.03 6.47E-10 −0.19 0.03 5.32E-10 

PODXL 6 −0.20 0.03 1.59E-09 −0.19 0.03 1.68E-08 

PTPRM 8 −0.16 0.03 1.18E-09 −0.16 0.03 8.58E-10 

REG1A 5 0.13 0.06 1.95E-02 0.17 0.06 5.56E-03 

REG1B 7 0.09 0.05 7.77E-02 0.15 0.06 1.69E-02 

SCG2 4 −0.16 0.25 5.22E-01 −0.85 0.19 1.17E-05 

SCGN 5 0.66 0.27 1.55E-02 0.23 0.13 7.21E-02 
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SEMA4C 4 −0.43 0.07 6.90E-10 −0.43 0.07 1.95E-10 

SFTPD 11 −0.08 0.02 1.04E-05 −0.09 0.02 7.16E-07 

TDGF1 1 NA NA NA NA NA NA 

VAMP5 2 NA NA NA NA NA NA 

VTCN1 2 NA NA NA NA NA NA 

The results for proteins with number of SNPs less than 3 are filled with NA values. 

 

Supplementary Table 7. Sensitivity analysis of genetically predicted proteins with COVID-19 hospitalization 
using the weighted mode and weighted median methods. 

Protein 
No. of 

SNPs 

BETA 
(Weighted 

Mode) 

SE 
(Weighted 

Mode) 

P-val  
(Weighted 

Mode) 

BETA 
(Weighted 
Median) 

SE 
(Weighted 
Median) 

P-val 
(Weighted 
Median) 

ADGRG1 9 −0.04 0.08 6.66E-01 −0.13 0.07 7.43E-02 

ADGRG2 6 0.11 0.09 2.52E-01 0.17 0.13 1.80E-01 

AMY2A 8 −0.04 0.03 2.65E-01 −0.05 0.04 2.11E-01 

AMY2B 9 −0.04 0.02 1.31E-01 −0.05 0.03 8.59E-02 

CA4 9 0.04 0.03 1.67E-01 0.05 0.03 1.16E-01 

CCL15 4 0.28 0.05 9.09E-08 0.26 0.05 2.61E-07 

CD109 6 −0.42 0.05 1.28E-14 −0.40 0.06 2.91E-12 

CD209 8 0.11 0.01 4.03E-21 0.11 0.01 5.57E-20 

CD34 3 −0.22 0.03 4.84E-16 −0.19 0.03 1.23E-13 

CDH15 4 0.17 0.03 1.06E-07 0.17 0.03 8.76E-08 

CLEC14A 8 −0.27 0.04 4.35E-14 −0.22 0.04 2.22E-07 

CTSS 7 −0.06 0.08 4.95E-01 −0.09 0.08 2.66E-01 

CX3CL1 7 −0.02 0.22 9.46E-01 −0.26 0.12 3.27E-02 

EFNA1 4 0.13 0.03 1.84E-05 0.13 0.03 1.37E-05 

ERBB4 16 −0.03 0.05 5.63E-01 −0.06 0.05 2.04E-01 

FGF19 5 0.24 0.04 3.28E-08 0.23 0.04 2.98E-08 

GOLM2 9 0.11 0.08 2.12E-01 0.12 0.05 1.54E-02 

GP2 8 0.16 0.02 2.67E-15 0.15 0.02 6.80E-10 

ICAM2 10 −0.05 0.01 1.51E-06 −0.02 0.03 4.19E-01 

ICAM5 7 −0.04 0.02 1.12E-02 −0.07 0.02 5.37E-05 

ISLR2 8 −0.14 0.02 1.38E-15 −0.13 0.02 3.87E-13 

KLK1 13 −0.06 0.01 8.04E-08 −0.06 0.01 5.47E-08 

LEFTY2 4 −0.10 0.15 4.79E-01 −0.33 0.19 8.40E-02 

LGALS4 3 −0.19 0.02 3.97E-22 −0.18 0.02 8.61E-22 

MET 20 −0.26 0.04 8.78E-10 −0.21 0.05 1.49E-05 

NELL2 14 −0.44 0.07 2.36E-09 −0.28 0.08 7.18E-04 

NRCAM 7 0.00 0.08 9.67E-01 −0.04 0.09 6.38E-01 

PECAM1 8 −0.16 0.02 1.35E-15 −0.15 0.02 1.37E-13 

PODXL 6 −0.17 0.02 3.06E-14 −0.14 0.02 1.63E-09 

PRSS27 18 −0.08 0.02 2.14E-07 −0.07 0.02 1.08E-05 

PTPRM 8 −0.14 0.02 5.37E-16 −0.14 0.02 3.28E-16 

REG1A 5 0.12 0.04 7.72E-04 0.17 0.04 2.68E-05 

REG1B 7 0.09 0.03 1.15E-02 0.08 0.04 3.96E-02 

SCG2 4 0.01 0.15 9.33E-01 −0.48 0.12 1.20E-04 

SCGN 5 0.09 0.16 5.68E-01 0.13 0.07 7.15E-02 

SELE 9 −0.10 0.01 3.55E-16 −0.10 0.01 5.32E-15 

SEMA3F 5 −0.12 0.10 2.31E-01 −0.15 0.10 1.36E-01 

SEMA4C 5 −0.36 0.05 1.03E-14 −0.34 0.05 1.18E-13 

SFTPA2 6 0.07 0.02 1.61E-05 0.07 0.02 1.75E-05 
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SFTPD 11 −0.07 0.01 6.42E-09 −0.07 0.01 1.70E-08 

TDGF1 1 NA NA NA NA NA NA 

TGFBR2 8 −0.57 0.08 8.99E-12 −0.30 0.11 5.09E-03 

VAMP5 2 NA NA NA NA NA NA 

The results for proteins with number of SNPs less than 3 are filled with NA values. 

 

 

Supplementary Table 8. Sensitivity analysis of genetically predicted proteins with COVID-19 infection using the 
weighted mode and weighted median methods. 

Protein 
No. of 

SNPs 

BETA 

(Weighted 

Mode) 

SE 

(Weighted 

Mode) 

P-val  

(Weighted 

Mode) 

BETA 

(Weighted 

Median) 

SE 

(Weighted 

Median) 

P-val 

(Weighted 

Median) 

ADAM15 8 0.04 0.01 1.50E-09 0.04 0.01 1.58E-09 

ADGRG1 10 0.02 0.03 5.94E-01 −0.01 0.03 7.22E-01 

ADGRG2 6 0.04 0.04 3.23E-01 0.07 0.05 1.30E-01 

AMY2A 8 0.00 0.01 8.32E-01 −0.02 0.02 3.48E-01 

AMY2B 9 −0.01 0.01 3.75E-01 −0.03 0.01 4.90E-02 

BST2 11 −0.01 0.03 8.44E-01 0.00 0.03 9.41E-01 

CA4 11 0.00 0.01 8.09E-01 0.00 0.01 7.70E-01 

CCL15 4 0.19 0.03 1.32E-12 0.16 0.03 6.19E-09 

CCL28 18 0.00 0.02 9.62E-01 −0.01 0.02 5.38E-01 

CD109 6 −0.36 0.03 1.20E-37 −0.29 0.04 1.84E-12 

CD209 8 0.10 0.01 5.45E-54 0.10 0.01 1.10E-48 

CD34 3 −0.18 0.01 3.99E-42 −0.16 0.01 2.50E-38 

CD58 12 −0.19 0.01 1.21E-40 −0.13 0.03 5.94E-06 

CDH17 12 0.09 0.01 1.19E-14 0.02 0.03 5.69E-01 

CKMT1A_CKMT1B 8 0.01 0.03 7.50E-01 0.02 0.03 5.08E-01 

CLEC14A 9 −0.24 0.02 1.05E-37 −0.21 0.02 2.65E-18 

CTSS 7 −0.06 0.04 8.33E-02 −0.07 0.04 7.34E-02 

CX3CL1 8 −0.05 0.06 3.36E-01 −0.16 0.07 3.30E-02 

DPP10 5 −0.01 0.02 4.96E-01 −0.02 0.02 2.59E-01 

DRAXIN 17 −0.05 0.02 6.29E-03 −0.05 0.02 5.51E-03 

EFNA1 4 0.10 0.01 8.92E-12 0.10 0.01 1.81E-11 

F2R 8 −0.03 0.03 3.60E-01 −0.03 0.03 1.87E-01 

FCGR2B 4 −0.01 0.01 4.36E-01 −0.01 0.02 5.55E-01 

FGF19 5 0.16 0.02 4.81E-14 0.15 0.02 6.08E-15 

FGFR2 8 0.00 0.04 9.14E-01 0.01 0.03 7.81E-01 

FLT4 12 0.00 0.01 7.98E-01 0.00 0.01 5.96E-01 

FOLR1 8 −0.06 0.05 2.88E-01 −0.13 0.05 5.44E-03 

GKN1 4 0.10 0.11 3.50E-01 0.27 0.07 5.46E-05 

GOLM2 8 0.03 0.02 1.24E-01 0.06 0.02 1.71E-02 

ICAM2 10 −0.01 0.01 3.96E-01 0.00 0.02 9.41E-01 

ICAM5 7 −0.01 0.01 1.37E-01 −0.01 0.01 1.77E-01 

IDS 3 −0.01 0.02 7.23E-01 −0.02 0.02 3.63E-01 

ISLR2 8 −0.13 0.01 6.41E-39 −0.11 0.01 2.62E-26 

ITGA6 7 −0.03 0.02 1.43E-01 −0.03 0.02 8.71E-02 

ITGB1 7 0.01 0.03 7.85E-01 0.00 0.03 9.52E-01 

KEL 17 −0.01 0.01 6.63E-01 −0.01 0.01 4.39E-01 

KLK1 13 −0.04 0.01 1.32E-14 −0.04 0.01 8.85E-14 

LEFTY2 3 −0.02 0.06 7.72E-01 −0.24 0.09 5.42E-03 

MNDA 1 NA NA NA NA NA NA 
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MUC13 4 −0.03 0.02 2.23E-01 −0.15 0.05 1.88E-03 

NELL2 15 0.04 0.06 4.54E-01 −0.20 0.05 3.72E-05 

NME3 14 −0.02 0.02 2.30E-01 −0.02 0.02 1.39E-01 

NRCAM 7 0.00 0.03 9.40E-01 −0.04 0.04 4.03E-01 

PECAM1 8 −0.14 0.01 1.53E-43 −0.14 0.01 9.26E-37 

PLAT 4 −0.05 0.05 3.13E-01 −0.11 0.05 4.46E-02 

PODXL 6 −0.15 0.01 5.01E-29 −0.11 0.01 1.81E-16 

PTPRM 8 −0.12 0.01 1.26E-44 −0.12 0.01 7.06E-46 

REG1A 6 0.02 0.02 1.76E-01 0.04 0.02 1.13E-01 

REG1B 7 0.03 0.02 3.16E-02 0.02 0.02 4.75E-01 

S100A16 3 0.02 0.04 6.24E-01 0.03 0.05 5.49E-01 

SCARF2 8 −0.03 0.02 6.28E-02 −0.03 0.02 3.68E-02 

SCG2 4 −0.13 0.06 2.44E-02 −0.33 0.06 1.93E-08 

SEMA3F 6 −0.01 0.06 8.04E-01 −0.03 0.05 5.54E-01 

SEMA4C 6 −0.32 0.02 3.69E-38 −0.26 0.03 1.49E-21 

SFTPD 12 −0.03 0.01 1.27E-06 −0.03 0.01 1.88E-05 

SLITRK2 11 0.18 0.04 3.55E-06 0.09 0.03 4.29E-03 

SPINK5 7 −0.02 0.01 2.06E-01 −0.02 0.02 2.14E-01 

STC1 6 0.04 0.03 2.45E-01 0.01 0.04 6.90E-01 

TDGF1 2 NA NA NA NA NA NA 

TGFBR2 8 −0.04 0.07 5.73E-01 −0.19 0.07 8.11E-03 

ULBP2 8 0.01 0.01 5.83E-01 0.01 0.01 5.51E-01 

VAMP5 2 NA NA NA NA NA NA 

VTCN1 2 NA NA NA NA NA NA 

The results for proteins with number of SNPs less than 3 are filled with NA values. 

 

 

Supplementary Table 9. Sensitivity analysis of genetically predicted proteins with severe COVID-19 using  
MR-SPI. 

Protein No. of SNPs No. of valid SNPs BETA (MR-SPI) SE (MR-SPI) P-val (MR-SPI) 

ADGRG2 6 5 0.25 0.13 5.34E-02 

AMY2B 9 7 −0.06 0.04 7.58E-02 

CCL15 4 4 0.34 0.07 1.74E-06 

CD109 6 6 −0.35 0.08 4.11E-06 

CD209 8 8 0.11 0.02 1.47E-10 

CD34 3 3 −0.21 0.04 3.12E-07 

CDH15 4 4 0.28 0.05 2.19E-09 

CKMT1A_CKMT1B 6 5 0.10 0.11 3.74E-01 

CX3CL1 7 6 −0.46 0.11 3.84E-05 

ERBB4 16 15 −0.21 0.06 3.10E-04 

FGF19 5 5 0.30 0.05 2.53E-08 

GOLM2 9 8 0.22 0.05 4.70E-06 

ICAM5 6 6 −0.09 0.02 1.31E-05 

ISLR2 8 8 −0.13 0.03 5.72E-07 

KEL 16 15 −0.10 0.03 3.83E-04 

KLK1 13 11 −0.10 0.02 2.04E-10 

LAMP3 10 6 −0.11 0.08 1.64E-01 

LEFTY2 4 4 −0.16 0.21 4.40E-01 

LGALS4 3 3 −0.19 0.03 5.43E-11 

LGALS8 6 6 −0.22 0.03 5.08E-10 

MUC13 4 4 −0.35 0.07 1.25E-07 
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NRCAM 6 5 −0.12 0.12 2.99E-01 

PECAM1 8 8 −0.16 0.03 5.00E-08 

PODXL 6 6 −0.13 0.03 2.34E-06 

PTPRM 8 7 −0.15 0.03 5.94E-09 

REG1A 5 5 0.53 0.06 2.30E-17 

REG1B 7 7 0.09 0.04 2.55E-02 

SCG2 4 4 −0.06 0.18 7.59E-01 

SCGN 5 5 0.11 0.10 2.42E-01 

SEMA4C 4 4 −0.37 0.07 7.94E-08 

SFTPD 11 8 −0.09 0.02 5.49E-07 

The results for proteins with number of SNPs less than 3 are omitted. 

 

 

Supplementary Table 10. Sensitivity analysis of genetically predicted proteins with COVID-19 hospitalization 
using MR-SPI.  

Protein No. of SNPs No. of valid SNPs BETA (MR-SPI) SE (MR-SPI) P-val (MR-SPI) 

ADGRG1 9 8 −0.04 0.05 4.80E-01 

ADGRG2 6 4 0.16 0.08 5.14E-02 

AMY2A 8 6 −0.03 0.03 2.51E-01 

AMY2B 9 7 −0.03 0.02 1.45E-01 

CA4 9 8 0.03 0.03 3.23E-01 

CCL15 4 4 0.24 0.05 6.20E-07 

CD109 6 6 −0.32 0.05 5.44E-11 

CD209 8 8 0.10 0.01 6.80E-19 

CD34 3 3 −0.17 0.03 3.61E-11 

CDH15 4 4 0.16 0.03 1.98E-07 

CLEC14A 8 8 0.09 0.06 1.83E-01 

CTSS 7 6 −0.07 0.06 2.56E-01 

CX3CL1 7 5 0.00 0.09 9.63E-01 

EFNA1 4 4 0.13 0.03 4.10E-06 

ERBB4 16 14 −0.04 0.03 2.56E-01 

FGF19 5 5 0.18 0.04 2.13E-07 

GOLM2 9 7 0.06 0.04 9.16E-02 

GP2 8 7 0.17 0.02 1.91E-21 

ICAM2 10 9 −0.10 0.01 1.85E-12 

ICAM5 7 7 −0.20 0.03 3.39E-13 

ISLR2 8 7 0.02 0.04 6.94E-01 

KLK1 13 13 −0.05 0.01 1.20E-06 

LEFTY2 4 4 −0.15 0.12 2.11E-01 

LGALS4 3 3 −0.18 0.02 6.56E-21 

MET 20 18 0.01 0.03 6.78E-01 

NELL2 14 11 −0.03 0.06 6.35E-01 

NRCAM 7 6 −0.03 0.07 6.39E-01 

PECAM1 8 8 −0.14 0.02 1.26E-12 

PODXL 6 6 −0.12 0.02 9.56E-11 

PRSS27 18 17 −0.08 0.02 9.75E-08 

PTPRM 8 7 −0.13 0.02 9.40E-15 

REG1A 5 4 0.14 0.03 3.03E-07 

REG1B 7 5 0.06 0.03 4.02E-02 

SCG2 4 4 0.15 0.12 2.32E-01 

SCGN 5 5 0.20 0.05 4.09E-05 
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SELE 9 8 −0.09 0.01 3.79E-14 

SEMA3F 5 4 −0.07 0.08 3.57E-01 

SEMA4C 5 5 −0.25 0.04 2.42E-08 

SFTPA2 6 6 0.07 0.02 1.83E-05 

SFTPD 11 9 −0.07 0.01 3.26E-09 

TGFBR2 8 7 −0.05 0.07 4.95E-01 

The results for proteins with number of SNPs less than 3 are omitted. 

 

 

Supplementary Table 11. Sensitivity analysis of genetically predicted proteins with COVID-19 infection using 
MR-SPI. 

Protein No. of SNPs No. of valid SNPs BETA (MR-SPI) SE (MR-SPI) P-val (MR-SPI) 

ADAM15 8 7 0.03 0.01 1.57E-09 

ADGRG1 10 9 −0.02 0.02 3.00E-01 

ADGRG2 6 4 0.04 0.04 2.76E-01 

AMY2A 8 6 0.00 0.01 9.70E-01 

AMY2B 9 7 0.00 0.01 8.96E-01 

BST2 11 9 −0.02 0.02 3.13E-01 

CA4 11 10 0.00 0.01 7.67E-01 

CCL15 4 3 −0.10 0.05 4.49E-02 

CCL28 18 17 −0.01 0.02 3.55E-01 

CD109 6 5 −0.01 0.04 8.30E-01 

CD209 8 8 0.11 0.01 8.13E-76 

CD34 3 2 0.02 0.04 5.63E-01 

CD58 12 11 −0.02 0.01 2.66E-01 

CDH17 12 11 0.08 0.01 4.59E-15 

CKMT1A_CKMT1B 8 6 0.02 0.03 5.17E-01 

CLEC14A 9 7 −0.01 0.03 6.32E-01 

CTSS 7 6 −0.11 0.03 1.73E-04 

CX3CL1 8 6 0.03 0.04 3.79E-01 

DPP10 5 4 −0.01 0.02 5.21E-01 

DRAXIN 17 16 −0.04 0.01 2.21E-03 

EFNA1 4 4 0.09 0.01 1.01E-10 

F2R 8 7 −0.02 0.02 3.01E-01 

FCGR2B 4 3 −0.01 0.01 6.02E-01 

FGF19 5 5 0.13 0.02 1.22E-15 

FGFR2 8 7 0.01 0.03 7.29E-01 

FLT4 12 11 0.00 0.01 6.78E-01 

FOLR1 8 5 −0.05 0.03 1.18E-01 

GKN1 4 4 0.47 0.06 6.15E-16 

GOLM2 8 6 0.02 0.02 2.22E-01 

ICAM2 10 8 0.00 0.01 6.79E-01 

ICAM5 7 6 −0.01 0.01 8.60E-02 

IDS 3 2 −0.01 0.02 5.18E-01 

ISLR2 8 6 −0.02 0.02 2.58E-01 

ITGA6 7 6 −0.03 0.02 5.95E-02 

ITGB1 7 6 0.00 0.02 8.30E-01 

KEL 17 14 0.00 0.01 6.26E-01 

KLK1 13 12 0.01 0.02 5.11E-01 

LEFTY2 3 2 −0.03 0.06 6.71E-01 

MUC13 4 3 −0.02 0.02 2.47E-01 
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NELL2 15 13 −0.03 0.02 1.85E-01 

NME3 14 12 −0.01 0.01 5.66E-01 

NRCAM 7 6 −0.04 0.03 1.44E-01 

PECAM1 8 8 −0.01 0.02 8.32E-01 

PLAT 4 4 −0.24 0.05 1.62E-06 

PODXL 6 5 −0.02 0.01 1.59E-01 

PTPRM 8 7 −0.11 0.01 4.97E-43 

REG1A 6 4 0.03 0.01 4.30E-02 

REG1B 7 5 0.01 0.01 2.62E-01 

S100A16 3 2 0.02 0.04 6.09E-01 

SCARF2 8 7 −0.03 0.01 3.07E-02 

SCG2 4 2 −0.10 0.06 8.04E-02 

SEMA3F 6 5 −0.01 0.04 8.91E-01 

SEMA4C 6 5 −0.02 0.04 6.01E-01 

SFTPD 12 10 −0.03 0.01 5.31E-06 

SLITRK2 11 11 0.09 0.02 1.23E-05 

SPINK5 7 6 −0.02 0.01 1.34E-01 

STC1 6 5 0.03 0.03 3.91E-01 

TGFBR2 8 7 −0.02 0.03 4.77E-01 

ULBP2 8 7 0.00 0.01 8.05E-01 

The results for proteins with number of SNPs less than 3 are omitted. 

 

 

Supplementary Table 12. Sensitivity analysis of genetically predicted proteins with severe COVID-19 using the 
cis-SNPs only. 

Protein BETA (cis SNPs) SE (cis SNPs) P-val (cis SNPs) 

ADGRG2 NA NA NA 

AMY2B −0.08 0.04 2.32E-02 

CCL15 NA NA NA 

CD109 NA NA NA 

CD209 0.08 0.04 6.45E-02 

CD34 NA NA NA 

CDH15 0.31 0.05 4.55E-11 

CKMT1A_CKMT1B NA NA NA 

CX3CL1 NA NA NA 

ERBB4 −0.15 0.08 7.59E-02 

FGF19 NA NA NA 

GOLM2 NA NA NA 

ICAM5 −0.09 0.02 1.80E-05 

ISLR2 −0.08 0.07 2.71E-01 

KEL −0.04 0.06 4.55E-01 

KLK1 −0.10 0.02 2.42E-10 

LAMP3 −0.09 0.10 3.63E-01 

LEFTY2 NA NA NA 

LGALS4 −0.31 0.22 1.66E-01 

LGALS8 −0.01 0.05 8.01E-01 

MNDA NA NA NA 

MUC13 −0.02 0.07 7.64E-01 

NRCAM NA NA NA 

PECAM1 NA NA NA 

PODXL −0.01 0.06 8.97E-01 
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PTPRM −0.37 0.22 8.93E-02 

REG1A 0.10 0.06 8.88E-02 

REG1B 0.08 0.04 8.88E-02 

SCG2 NA NA NA 

SCGN 0.18 0.17 2.85E-01 

SEMA4C NA NA NA 

SFTPD −0.09 0.02 8.14E-07 

TDGF1 NA NA NA 

VAMP5 0.16 0.20 4.24E-01 

VTCN1 −0.02 0.28 9.56E-01 

The results for proteins without cis-SNPs are filled with NA values. 

 

 

Supplementary Table 13. Sensitivity analysis of genetically predicted proteins with COVID-19 hospitalization 
using the cis-SNPs only. 

Protein BETA (cis SNPs) SE (cis SNPs) P-val (cis SNPs) 

ADGRG1 −0.31 0.15 3.57E-02 

ADGRG2 NA NA NA 

AMY2A −0.04 0.03 1.95E-01 

AMY2B −0.04 0.02 8.00E-02 

CA4 0.04 0.03 1.68E-01 

CCL15 NA NA NA 

CD109 NA NA NA 

CD209 0.05 0.03 1.33E-01 

CD34 NA NA NA 

CDH15 0.17 0.03 4.43E-08 

CLEC14A NA NA NA 

CTSS NA NA NA 

CX3CL1 NA NA NA 

EFNA1 0.13 0.03 1.55E-05 

ERBB4 −0.05 0.06 3.52E-01 

FGF19 NA NA NA 

GOLM2 NA NA NA 

GP2 0.00 0.04 9.30E-01 

ICAM2 NA NA NA 

ICAM5 −0.04 0.01 2.52E-03 

ISLR2 −0.05 0.05 2.78E-01 

KLK1 −0.06 0.01 2.65E-08 

LEFTY2 NA NA NA 

LGALS4 −0.05 0.12 6.60E-01 

MET −0.02 0.08 8.05E-01 

NELL2 NA NA NA 

NRCAM NA NA NA 

PECAM1 NA NA NA 

PODXL −0.05 0.04 2.45E-01 

PRSS27 −0.03 0.06 6.77E-01 

PTPRM −0.25 0.15 1.09E-01 

REG1A 0.08 0.04 5.68E-02 

REG1B 0.06 0.03 5.68E-02 

SCG2 NA NA NA 

SCGN 0.11 0.12 3.38E-01 
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SELE −0.03 0.12 7.85E-01 

SEMA3F NA NA NA 

SEMA4C NA NA NA 

SFTPA2 0.07 0.02 1.30E-05 

SFTPD −0.07 0.01 1.40E-07 

TDGF1 NA NA NA 

TGFBR2 NA NA NA 

VAMP5 0.14 0.14 3.37E-01 

The results for proteins without cis-SNPs are filled with NA values. 

 

 

Supplementary Table 14. Sensitivity analysis of genetically predicted proteins with COVID-19 infection using the 
cis-SNPs only. 

Protein BETA (cis SNPs) SE (cis SNPs) P-val (cis SNPs) 

ADAM15 0.03 0.01 4.44E-08 

ADGRG1 −0.03 0.07 6.93E-01 

ADGRG2 NA NA NA 

AMY2A −0.01 0.01 6.83E-01 

AMY2B −0.01 0.01 3.94E-01 

BST2 0.00 0.03 9.13E-01 

CA4 0.00 0.01 8.81E-01 

CCL15 NA NA NA 

CCL28 NA NA NA 

CD109 NA NA NA 

CD209 0.02 0.01 8.28E-02 

CD34 NA NA NA 

CD58 −0.02 0.03 4.40E-01 

CDH17 NA NA NA 

CKMT1A_CKMT1B 0.02 0.05 6.82E-01 

CLEC14A NA NA NA 

CTSS NA NA NA 

CX3CL1 NA NA NA 

DPP10 −0.02 0.02 3.90E-01 

DRAXIN −0.05 0.02 9.96E-03 

EFNA1 0.10 0.01 6.46E-12 

F2R −0.01 0.04 8.88E-01 

FCGR2B −0.01 0.01 4.67E-01 

FGF19 NA NA NA 

FGFR2 0.01 0.04 7.20E-01 

FLT4 −0.02 0.02 2.91E-01 

FOLR1 −0.12 0.08 1.27E-01 

GKN1 NA NA NA 

GOLM2 NA NA NA 

ICAM2 NA NA NA 

ICAM5 −0.01 0.01 1.39E-01 

IDS NA NA NA 

ISLR2 −0.04 0.02 1.05E-01 

ITGA6 −0.03 0.02 1.29E-01 

ITGB1 NA NA NA 

KEL 0.00 0.02 8.64E-01 

KLK1 −0.04 0.01 1.21E-14 
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LEFTY2 NA NA NA 

MNDA NA NA NA 

MUC13 −0.03 0.02 1.11E-01 

NELL2 NA NA NA 

NME3 −0.03 0.03 3.89E-01 

NRCAM NA NA NA 

PECAM1 NA NA NA 

PLAT −0.03 0.06 6.39E-01 

PODXL −0.04 0.02 3.86E-02 

PTPRM −0.03 0.07 6.20E-01 

REG1A 0.01 0.02 4.95E-01 

REG1B 0.01 0.01 4.95E-01 

S100A16 0.02 0.05 7.45E-01 

SCARF2 −0.03 0.02 4.90E-02 

SCG2 NA NA NA 

SEMA3F NA NA NA 

SEMA4C NA NA NA 

SFTPD −0.03 0.01 5.36E-07 

SLITRK2 NA NA NA 

SPINK5 −0.02 0.01 1.93E-01 

STC1 −0.07 0.08 3.52E-01 

TDGF1 NA NA NA 

TGFBR2 NA NA NA 

ULBP2 0.01 0.01 6.55E-01 

VAMP5 0.15 0.08 5.59E-02 

VTCN1 −0.11 0.06 9.55E-02 

The results for proteins without cis-SNPs are filled with NA values. 

 

 

Supplementary Table 15. Associations of genetically predicted proteins with healthspan using IVW method and 
cis+trans SNPs. 

 

Supplementary Table 16. Associations of genetically predicted proteins with father’s attained age using IVW 
method and cis+trans SNPs. 

 

Supplementary Table 17. Associations of genetically predicted proteins with mother’s attained age using IVW 
method and cis+trans SNPs. 

 

Supplementary Table 18. Function of proteins affecting healthspan or lifespan in MR analysis. 

 

Supplementary Table 19. Sensitivity analysis of genetically predicted proteins with healthspan using the 
weighted mode and weighted median methods. 

Protein 
No. of  
SNPs 

BETA  
(Weighted 

Mode) 

SE  
(Weighted 

Mode) 

P-val  
(Weighted 

Mode) 

BETA  
(Weighted 

Median) 

SE  
(Weighted 

Median) 

P-val  
(Weighted 

Median) 

FOXO3 1 NA NA NA NA NA NA 

GPNMB 6 0.43 0.14 2.59E-03 0.44 0.14 1.96E-03 

HLA-DRA 3 −0.41 0.09 4.89E-06 −0.42 0.09 3.67E-06 

PLA2G7 8 −0.30 0.67 6.51E-01 −1.26 0.40 1.80E-03 

The results for proteins with number of SNPs less than 3 are filled with NA values. 
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Supplementary Table 20. Sensitivity analysis of genetically predicted proteins with father’s attained age using 
the weighted mode and weighted median methods. 

Protein 
No. of  

SNPs 

BETA 
(Weighted 

Mode) 

SE  
(Weighted 

Mode) 

P-val  
(Weighted 

Mode) 

BETA 
(Weighted 
Median) 

SE (Weighted 

Median) 

P-val 
(Weighted 
Median) 

AGRP 9 −0.74 0.41 7.16E-02 −0.83 0.35 1.83E-02 

CA11 2 NA NA NA NA NA NA 

CCN1 11 −0.34 0.38 3.59E-01 −0.40 0.31 2.01E-01 

CD27 7 −0.46 0.18 1.09E-02 −0.54 0.18 1.94E-03 

CD74 6 −0.29 0.23 1.98E-01 −0.32 0.23 1.54E-01 

CDH1 6 0.34 0.09 7.10E-05 0.35 0.09 6.90E-05 

CEACAM21 2 NA NA NA NA NA NA 

CPE 6 1.32 0.42 1.54E-03 1.35 0.37 2.83E-04 

CXCL13 7 −0.40 0.36 2.73E-01 −0.75 0.40 6.28E-02 

CXCL9 5 −0.46 0.32 1.52E-01 −1.09 0.36 2.13E-03 

F3 8 0.47 0.12 1.01E-04 0.49 0.12 8.17E-05 

FASLG 18 −0.20 0.15 1.87E-01 −0.25 0.15 7.99E-02 

FES 1 NA NA NA NA NA NA 

FURIN 3 −1.32 0.24 7.34E-08 −1.03 0.22 3.57E-06 

GCNT1 4 −2.15 0.33 1.27E-10 −1.81 0.39 2.73E-06 

GP1BA 14 −0.03 0.30 9.16E-01 −0.12 0.24 6.10E-01 

GRN 10 −0.41 0.07 2.41E-08 −0.38 0.07 2.35E-07 

GZMB 8 −0.56 0.29 5.12E-02 −0.58 0.27 3.36E-02 

IGFBP1 2 NA NA NA NA NA NA 

KIR2DL3 2 NA NA NA NA NA NA 

LAIR1 3 −0.72 0.71 3.13E-01 −1.63 0.82 4.61E-02 

LDLR 15 −1.00 0.26 9.71E-05 −0.96 0.22 1.46E-05 

LEFTY2 3 1.74 0.58 2.96E-03 2.21 0.73 2.39E-03 

LGALS9 3 −1.43 1.03 1.67E-01 −1.77 0.56 1.66E-03 

LILRB4 2 NA NA NA NA NA NA 

PAG1 6 −0.56 0.43 1.95E-01 −0.63 0.40 1.19E-01 

PCSK9 8 −0.48 0.14 6.45E-04 −0.49 0.14 4.77E-04 

POLR2F 1 NA NA NA NA NA NA 

RP2 2 NA NA NA NA NA NA 

SIT1 6 −0.30 0.64 6.39E-01 −0.75 0.40 5.84E-02 

VCAM1 10 −0.42 0.82 6.08E-01 −0.76 0.30 1.22E-02 

VSTM2L 2 NA NA NA NA NA NA 

The results for proteins with number of SNPs less than 3 are filled with NA values. 

 

 

Supplementary Table 21. Sensitivity analysis of genetically predicted proteins with mother’s attained age using 
the weighted mode and weighted median methods. 

Protein 
No. of  

SNPs 

BETA  

(Weighted 

Mode) 

SE  

(Weighted 

Mode) 

P-val  

(Weighted 

Mode) 

BETA  

(Weighted 

Median) 

SE  

(Weighted 

Median) 

P-val  

(Weighted 

Median) 

CDH1 6 0.50 0.09 1.35E-08 0.50 0.09 2.03E-08 

CDH17 10 0.36 0.08 1.05E-05 0.31 0.10 2.07E-03 

CDHR2 6 −0.17 0.49 7.36E-01 0.05 0.48 9.22E-01 

CPE 6 0.54 0.42 1.98E-01 0.67 0.38 8.17E-02 

CXADR 5 1.06 0.23 4.07E-06 1.10 0.23 1.41E-06 

CXCL9 5 −0.32 0.45 4.75E-01 −0.90 0.36 1.20E-02 
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F3 8 0.69 0.12 1.71E-08 0.71 0.13 2.46E-08 

FOXO3 1 NA NA NA NA NA NA 

GFAP 7 −0.06 0.38 8.85E-01 −0.21 0.32 5.16E-01 

IL19 3 −0.41 0.11 1.11E-04 −0.40 0.10 3.29E-05 

ITGB6 9 0.52 0.16 1.47E-03 0.53 0.16 6.94E-04 

LAIR1 3 −1.21 1.06 2.53E-01 −2.01 0.88 2.32E-02 

LEFTY2 3 2.09 0.77 6.45E-03 2.54 0.57 1.03E-05 

LGALS9 3 −2.64 0.51 1.99E-07 −2.46 0.49 4.59E-07 

LILRB4 2 NA NA NA NA NA NA 

POLR2F 1 NA NA NA NA NA NA 

RP2 2 NA NA NA NA NA NA 

STC2 4 −0.92 0.65 1.55E-01 −1.13 0.56 4.34E-02 

TNFRSF8 7 −0.50 0.22 2.03E-02 −0.56 0.22 9.55E-03 

The results for proteins with number of SNPs less than 3 are filled with NA values. 

 

 

Supplementary Table 22. Sensitivity analysis of genetically predicted proteins with healthspan using MR-SPI. 

Protein No. of SNPs No. of valid SNPs BETA (MR-SPI) SE (MR-SPI) P-val (MR-SPI) 

GPNMB 6 5 0.31 0.13 2.22E-02 

HLA-DRA 3 3 −0.42 0.09 3.16E-06 

PLA2G7 8 8 −1.20 0.27 8.80E-06 

The results for proteins with number of SNPs less than 3 are omitted. 

 

 

Supplementary Table 23. Sensitivity analysis of genetically predicted proteins with father’s attained age using 
MR-SPI. 

Protein 
No. of  

SNPs 

No. of  

valid SNPs 

BETA  

(MR-SPI) 

SE  

(MR-SPI) 

P-val  

(MR-SPI) 

AGRP 9 7 −0.93 0.26 2.94E-04 

CCN1 11 8 −0.49 0.22 2.49E-02 

CD27 7 6 −0.49 0.17 2.92E-03 

CD74 6 5 −0.18 0.19 3.51E-01 

CDH1 6 6 0.37 0.08 8.32E-06 

CPE 6 5 0.91 0.28 1.33E-03 

CXCL13 7 6 −0.94 0.28 8.23E-04 

CXCL9 5 4 −0.67 0.26 9.59E-03 

F3 8 8 0.43 0.11 3.54E-05 

FASLG 18 17 −0.17 0.11 1.31E-01 

FURIN 3 3 −1.05 0.21 3.14E-07 

GCNT1 4 4 −2.19 0.32 5.14E-12 

GP1BA 14 13 −0.24 0.17 1.63E-01 

GRN 10 10 −0.36 0.07 3.06E-08 

GZMB 8 7 −0.56 0.22 1.02E-02 

LAIR1 3 2 −0.71 0.64 2.69E-01 

LDLR 15 13 −1.21 0.16 2.68E-14 

LEFTY2 3 3 4.15 0.65 1.64E-10 

LGALS9 3 3 −2.82 0.42 2.88E-11 

PAG1 6 5 −0.45 0.29 1.16E-01 

PCSK9 8 7 −0.54 0.13 3.34E-05 

SIT1 6 5 −0.10 0.29 7.17E-01 
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VCAM1 10 8 −0.05 0.19 8.14E-01 

The results for proteins with number of SNPs less than 3 are omitted. 

 

 

Supplementary Table 24. Sensitivity analysis of genetically predicted proteins with mother’s attained age using 
MR-SPI. 

Protein 
No. of  

SNPs 

No. of valid  

SNPs 

BETA  

(MR-SPI) 

SE  

(MR-SPI) 

P-val  

(MR-SPI) 

CDH1 6 6 0.53 0.08 3.84E-10 

CDH17 10 10 0.37 0.07 3.96E-07 

CDHR2 6 5 −0.05 0.36 8.89E-01 

CPE 6 6 1.23 0.26 2.27E-06 

CXADR 5 5 0.79 0.18 9.95E-06 

CXCL9 5 5 −1.65 0.29 8.56E-09 

F3 8 8 0.64 0.11 1.60E-09 

GFAP 7 6 −0.23 0.25 3.43E-01 

IL19 3 3 −0.39 0.09 2.37E-05 

ITGB6 9 8 0.51 0.14 2.86E-04 

LAIR1 3 3 −2.28 0.56 4.09E-05 

LEFTY2 3 3 2.65 0.46 7.68E-09 

LGALS9 3 2 −2.65 0.42 2.34E-10 

STC2 4 4 −1.66 0.42 6.53E-05 

TNFRSF8 7 7 −0.33 0.18 6.78E-02 

The results for proteins with number of SNPs less than 3 are omitted. 

 

 

Supplementary Table 25. Sensitivity analysis of genetically predicted proteins with healthspan using the cis-
SNPs only. 

Protein BETA (cis SNPs) SE (cis SNPs) P-val (cis SNPs) 

FOXO3 NA NA NA 

GPNMB 0.47 0.15 1.28E-03 

HLA-DRA −0.40 0.09 9.04E-06 

PLA2G7 NA NA NA 

The results for proteins without cis-SNPs are filled with NA values. 

 

 

Supplementary Table 26. Sensitivity analysis of genetically predicted proteins with father’s attained age using 
the cis-SNPs only. 

Protein BETA (cis SNPs) SE (cis SNPs) P-val (cis SNPs) 

AGRP −0.07 0.60 9.01E-01 

CA11 NA NA NA 

CCN1 −0.16 0.42 7.08E-01 

CD27 −0.52 0.18 3.53E-03 

CD74 −0.23 0.81 7.80E-01 

CDH1 NA NA NA 

CEACAM21 NA NA NA 

CPE NA NA NA 

CXCL13 −0.80 0.86 3.53E-01 

CXCL9 −0.50 0.35 1.55E-01 

F3 0.28 0.24 2.59E-01 
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FASLG −0.99 0.60 9.87E-02 

FES 1.78 0.33 4.80E-08 

FURIN −1.32 0.24 2.69E-08 

GCNT1 NA NA NA 

GP1BA NA NA NA 

GRN −0.19 0.19 3.19E-01 

GZMB NA NA NA 

IGFBP1 NA NA NA 

KIR2DL3 NA NA NA 

LAIR1 NA NA NA 

LDLR NA NA NA 

LEFTY2 NA NA NA 

LGALS9 NA NA NA 

LILRB4 NA NA NA 

PAG1 −0.64 0.61 2.91E-01 

PCSK9 −0.44 0.14 2.25E-03 

POLR2F NA NA NA 

RP2 NA NA NA 

SIT1 NA NA NA 

VCAM1 NA NA NA 

VSTM2L −0.04 0.39 9.23E-01 

The results for proteins without cis-SNPs are filled with NA values. 

 

 

Supplementary Table 27. Sensitivity analysis of genetically predicted proteins with mother’s attained age using 
the cis-SNPs only. 

Protein BETA (cis SNPs) SE (cis SNPs) P-val (cis SNPs) 

CDH1 NA NA NA 

CDH17 NA NA NA 

CDHR2 NA NA NA 

CPE NA NA NA 

CXADR 0.85 0.38 2.54E-02 

CXCL9 −0.07 0.35 8.32E-01 

F3 0.30 0.24 2.22E-01 

FOXO3 NA NA NA 

GFAP −0.16 0.54 7.67E-01 

IL19 −0.18 0.15 2.31E-01 

ITGB6 0.49 0.16 3.17E-03 

LAIR1 NA NA NA 

LEFTY2 NA NA NA 

LGALS9 NA NA NA 

LILRB4 NA NA NA 

POLR2F NA NA NA 

RP2 NA NA NA 

STC2 NA NA NA 

TNFRSF8 −0.36 0.21 9.29E-02 

The results for proteins without cis-SNPs are filled with NA values. 
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Supplementary Table 28. Heterogeneity test of protein on severe COVID. 

Protein No. of SNPs Q statistic P-val of Q statistic 

ADGRG2 6 42.14 5.51E-08 

AMY2B 9 72.35 1.67E-12 

CCL15 4 11.65 8.70E-03 

CD109 6 6.06 3.01E-01 

CD209 8 11.84 1.06E-01 

CD34 3 3.65 1.61E-01 

CDH15 4 2.48 4.79E-01 

CKMT1A_CKMT1B 6 26.02 8.86E-05 

CX3CL1 7 43.16 1.09E-07 

ERBB4 16 44.94 7.82E-05 

FGF19 5 11.67 1.99E-02 

GOLM2 9 62.23 1.70E-10 

ICAM5 6 16.57 5.38E-03 

ISLR2 8 23.48 1.40E-03 

KEL 16 72.11 1.88E-09 

KLK1 13 42.97 2.28E-05 

LAMP3 10 144.56 1.18E-26 

LEFTY2 4 22.69 4.69E-05 

LGALS4 3 5.58 6.14E-02 

LGALS8 6 15.10 9.96E-03 

MNDA 1 NA NA 

MUC13 4 24.43 2.03E-05 

NRCAM 6 27.86 3.88E-05 

PECAM1 8 13.05 7.08E-02 

PODXL 6 14.95 1.06E-02 

PTPRM 8 30.44 7.87E-05 

REG1A 5 35.36 3.91E-07 

REG1B 7 49.90 4.93E-09 

SCG2 4 31.72 6.01E-07 

SCGN 5 16.97 1.96E-03 

SEMA4C 4 3.36 3.40E-01 

SFTPD 11 98.80 9.47E-17 

TDGF1 1 NA NA 

VAMP5 2 NA NA 

VTCN1 2 NA NA 

 

 

Supplementary Table 29. Heterogeneity test of protein on COVID hospitalization. 

Protein No. of SNPs Q statistic P-val of Q statistic 

ADGRG1 9 57.47 1.46E-09 

ADGRG2 6 92.04 2.50E-18 

AMY2A 8 95.88 7.64E-18 

AMY2B 9 99.13 6.44E-18 

CA4 9 77.39 1.64E-13 

CCL15 4 4.34 2.27E-01 

CD109 6 23.11 3.22E-04 

CD209 8 23.60 1.34E-03 

CD34 3 11.84 2.68E-03 

CDH15 4 6.17 1.04E-01 
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CLEC14A 8 73.72 2.60E-13 

CTSS 7 84.18 4.89E-16 

CX3CL1 7 47.96 1.20E-08 

EFNA1 4 2.57 4.63E-01 

ERBB4 16 79.76 7.72E-11 

FGF19 5 13.19 1.04E-02 

GOLM2 9 89.74 5.25E-16 

GP2 8 86.98 5.15E-16 

ICAM2 10 70.56 1.18E-11 

ICAM5 7 42.99 1.17E-07 

ISLR2 8 41.26 7.22E-07 

KLK1 13 23.58 2.32E-02 

LEFTY2 4 28.70 2.59E-06 

LGALS4 3 7.15 2.81E-02 

MET 20 77.14 5.75E-09 

NELL2 14 89.19 2.00E-13 

NRCAM 7 53.77 8.22E-10 

PECAM1 8 26.75 3.69E-04 

PODXL 6 19.27 1.71E-03 

PRSS27 18 100.56 6.99E-14 

PTPRM 8 44.44 1.75E-07 

REG1A 5 69.14 3.46E-14 

REG1B 7 85.00 3.30E-16 

SCG2 4 55.74 4.78E-12 

SCGN 5 13.73 8.21E-03 

SELE 9 52.18 1.55E-08 

SEMA3F 5 47.19 1.39E-09 

SEMA4C 5 18.87 8.34E-04 

SFTPA2 6 5.05 4.10E-01 

SFTPD 11 55.32 2.75E-08 

TDGF1 1 NA NA 

TGFBR2 8 33.02 2.63E-05 

VAMP5 2 NA NA 

 

 

Supplementary Table 30. Heterogeneity test of protein on SARS-CoV-2 infection. 

Protein No. of SNPs Q statistic P-val of Q statistic 

ADAM15 8 17.87 1.26E-02 

ADGRG1 10 180.92 3.25E-34 

ADGRG2 6 260.26 3.46E-54 

AMY2A 8 331.37 1.19E-67 

AMY2B 9 342.70 3.28E-69 

BST2 11 351.39 2.02E-69 

CA4 11 306.13 7.87E-60 

CCL15 4 30.43 1.12E-06 

CCL28 18 192.87 7.72E-32 

CD109 6 70.21 9.24E-14 

CD209 8 40.82 8.77E-07 

CD34 3 28.96 5.16E-07 

CD58 12 86.67 7.46E-14 

CDH17 12 391.15 4.63E-77 
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CKMT1A_CKMT1B 8 161.54 1.52E-31 

CLEC14A 9 126.33 1.63E-23 

CTSS 7 275.64 1.34E-56 

CX3CL1 8 158.83 5.66E-31 

DPP10 5 190.95 3.31E-40 

DRAXIN 17 68.97 1.51E-08 

EFNA1 4 7.70 5.27E-02 

F2R 8 185.14 1.60E-36 

FCGR2B 4 310.89 4.36E-67 

FGF19 5 12.76 1.25E-02 

FGFR2 8 328.93 3.98E-67 

FLT4 12 203.99 1.10E-37 

FOLR1 8 109.09 1.42E-20 

GKN1 4 49.76 8.98E-11 

GOLM2 8 238.79 6.71E-48 

ICAM2 10 166.16 3.89E-31 

ICAM5 7 161.01 3.62E-32 

IDS 3 333.48 3.86E-73 

ISLR2 8 59.19 2.19E-10 

ITGA6 7 176.19 2.18E-35 

ITGB1 7 184.40 3.93E-37 

KEL 17 223.16 1.59E-38 

KLK1 13 67.09 1.12E-09 

LEFTY2 3 109.90 1.37E-24 

MNDA 1 NA NA 

MUC13 4 109.02 1.78E-23 

NELL2 15 178.72 1.18E-30 

NME3 14 227.26 3.30E-41 

NRCAM 7 165.94 3.27E-33 

PECAM1 8 57.85 4.04E-10 

PLAT 4 16.33 9.69E-04 

PODXL 6 68.83 1.80E-13 

PTPRM 8 72.39 4.86E-13 

REG1A 6 291.32 7.34E-61 

REG1B 7 326.00 2.18E-67 

S100A16 3 38.70 3.96E-09 

SCARF2 8 180.12 1.84E-35 

SCG2 4 117.26 3.00E-25 

SEMA3F 6 168.95 1.22E-34 

SEMA4C 6 45.21 1.31E-08 

SFTPD 12 65.80 7.62E-10 

SLITRK2 11 22.54 1.26E-02 

SPINK5 7 40.67 3.37E-07 

STC1 6 197.29 1.08E-40 

TDGF1 2 NA NA 

TGFBR2 8 108.75 1.67E-20 

ULBP2 8 327.41 8.38E-67 

VAMP5 2 NA NA 

VTCN1 2 NA NA 
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Supplementary Table 31. Heterogeneity test of protein on healthspan. 

Protein No. of SNPs Q statistic P-val of Q statistic 

FOXO3 1 NA NA 

GPNMB 6 113.95 5.99E-23 

HLA-DRA 3 1.29 5.24E-01 

PLA2G7 8 15.97 2.54E-02 

 

 

Supplementary Table 32. Heterogeneity test of protein on father’s attained age. 

Protein No. of SNPs Q statistic P-val of Q statistic 

AGRP 9 68.91 8.08E-12 

CA11 2 NA NA 

CCN1 11 115.51 4.10E-20 

CD27 7 62.53 1.38E-11 

CD74 6 36.35 8.08E-07 

CDH1 6 11.08 4.98E-02 

CEACAM21 2 NA NA 

CPE 6 30.68 1.08E-05 

CXCL13 7 54.56 5.70E-10 

CXCL9 5 25.75 3.55E-05 

F3 8 4.36 7.37E-01 

FASLG 18 53.29 1.29E-05 

FES 1 NA NA 

FURIN 3 4.72 9.44E-02 

GCNT1 4 48.76 1.46E-10 

GP1BA 14 41.85 6.94E-05 

GRN 10 15.78 7.16E-02 

GZMB 8 39.66 1.46E-06 

IGFBP1 2 NA NA 

KIR2DL3 2 NA NA 

LAIR1 3 25.64 2.71E-06 

LDLR 15 53.37 1.65E-06 

LEFTY2 3 14.54 6.97E-04 

LGALS9 3 35.69 1.78E-08 

LILRB4 2 NA NA 

PAG1 6 36.71 6.83E-07 

PCSK9 8 27.93 2.26E-04 

POLR2F 1 NA NA 

RP2 2 NA NA 

SIT1 6 43.76 2.59E-08 

VCAM1 10 59.77 1.48E-09 

VSTM2L 2 NA NA 

 

 

Supplementary Table 33. Heterogeneity test of protein on mother’s attained age. 

Protein No. of SNPs Q statistic P-val of Q statistic 

CDH1 6 3.37 6.43E-01 

CDH17 10 15.02 9.05E-02 

CDHR2 6 283.66 3.26E-59 

CPE 6 17.55 3.56E-03 
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CXADR 5 7.74 1.01E-01 

CXCL9 5 17.38 1.63E-03 

F3 8 9.46 2.21E-01 

FOXO3 1 NA NA 

GFAP 7 252.84 1.01E-51 

IL19 3 5.17 7.52E-02 

ITGB6 9 24.14 2.17E-03 

LAIR1 3 10.44 5.42E-03 

LEFTY2 3 3.51 1.73E-01 

LGALS9 3 17.25 1.79E-04 

LILRB4 2 NA NA 

POLR2F 1 NA NA 

RP2 2 NA NA 

STC2 4 11.75 8.29E-03 

TNFRSF8 7 38.97 7.25E-07 
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