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INTRODUCTION 
 

Prostate cancer (PCa) is the most prevalent tumor among 

men in Western nations, whose morbidity has been on 

the rise in recent years, accounting for 27% of newly 

detected tumor cases in men, and is also the second 

leading killer of cancer death [1]. For clinically localized 
prostate cancer, radical prostatectomy (RP) is still the 

most commonly used standard treatment option [2–4]. 

Unfortunately, many patients continue to progress to 
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ABSTRACT 
 

Macrophages, as essential components of the tumor immune microenvironment (TIME), could promote growth 
and invasion in many cancers. However, the role of macrophages in tumor microenvironment (TME) and 
immunotherapy in PCa is largely unexplored at present. Here, we investigated the roles of macrophage-related 
genes in molecular stratification, prognosis, TME, and immunotherapeutic response in PCa. Public databases 
provided single-cell RNA sequencing (scRNA-seq) and bulk RNAseq data. Using the Seurat R package, scRNA-seq 
data was processed and macrophage clusters were identified automatically and manually. Using the CellChat R 
package, intercellular communication analysis revealed that tumor-associated macrophages (TAMs) interact 
with other cells in the PCa TME primarily through MIF - (CD74+CXCR4) and MIF - (CD74+CD44) ligand-receptor 
pairs. We constructed coexpression networks of macrophages using the WGCNA to identify macrophage-
related genes. Using the R package ConsensusClusterPlus, unsupervised hierarchical clustering analysis 
identified two distinct macrophage-associated subtypes, which have significantly different pathway activation 
status, TIME, and immunotherapeutic efficacy. Next, an 8-gene macrophage-related risk signature (MRS) was 
established through the LASSO Cox regression analysis with 10-fold cross-validation, and the performance of 
the MRS was validated in eight external PCa cohorts. The high-risk group had more active immune-related 
functions, more infiltrating immune cells, higher HLA and immune checkpoint gene expression, higher immune 
scores, and lower TIDE scores. Finally, the NCF4 gene has been identified as the hub gene in MRS using the 
“mgeneSim” function. 
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metastatic prostate cancer even after successful  

RP therapy [5, 6]. The 5-year survival rate for PCa 

patients with distant metastases is approximately 30% 

[7]. Therefore, early detection of disease progression  

in patients is key to reducing PCa mortality. However, 

PCa is a heterogeneous disease with a diverse prognosis, 

and the combination of clinical and pathological 

information does not fully elucidate tumor behavior [8]. 

In addition, it is not reliable to predict disease progression 

using frequently used clinical factors, including prostate-

specific antigen (PSA), Gleason score, and TNM 

staging [9]. Therefore, exploring valid and reliable 

biomarkers for predicting disease progression in PCa, 

thereby stratifying PCa patients for risk of disease 

progression, and then exploring sensitive treatment 

options for high-risk patients, will help urologists to 

make rational clinical decisions and aggressively 

individualize treatments for patients in different risk 

strata, thereby improving prognosis. Additionally, the 

molecular mechanisms responsible for tumor progression 

could be clarified and novel therapeutic targets could be 

developed based on these biomarkers. 

 
Tumor progression and invasion are influenced by  

the TME, which contains a variety of cell types, 

including immune cells, stromal cells, endothelial  

cells, and fibroblasts [10, 11]. TME has proven to be  

a highly promising therapeutic target by numerous 

studies demonstrating how immune compositions 

regulate cancer progression [12–14]. A major focus of 

anti-tumor immunity is the adaptive T-cell response, 

whereas innate immune cells still receive insufficient 

attention [15]. There is evidence that the TME interacts 

with innate immune cells to promote tumor growth [16]. 

Macrophages, as classical innate immune cells, have an 

integral role in homeostasis and immunity for healthy 

people but lose their protective function in the context 

of cancer and become Tumor-associated macrophages 

(TAMs), providing a favorable microenvironment for 

cancer growth and invasion at primary and metastatic 

sites [17]. In non-small cell lung cancer, the majority of 

immune cells in TME are TAMs [18, 19]. There are two 

main categories of TAMs: M1 and M2 [20, 21]. The  

M1 pro-inflammatory phenotype of TAMs is mainly 

observed in the early stage of tumor development  

and plays a crucial role in the inhibition of tumor 

growth. During the tumor development process, TAMs 

progressively convert to the M2 phenotype, thereby 

contributing to tumor angiogenesis and immuno-

suppression [22, 23]. There is growing evidence that 

dynamic changes in macrophage phenotypes play a 

significant role in the tumorigenesis, progression, and 

metastasis of tumors [24]. Additionally, TAMs can 

facilitate tumor metastasis and promote cancer angio-

genesis by promoting epithelial-mesenchymal transition 

and secreting angiogenic growth factors, respectively 

[25–27]. It is also important to note that TAMs  

can inhibit anti-tumor immunity by interacting with 

different types of immune cells and immunosuppressive 

cells within the TME, thus promoting tumorigenesis 

[28, 29]. Therefore, it is essential to elucidate the 

properties of TAMs and identify biomarkers that are 

associated with macrophage infiltration in the treatment, 

prognosis, and immune infiltration mechanism of  

PCa. Nevertheless, the characterization of the immune 

microenvironment and immune cells in PCa, especially 

macrophages, has rarely been comprehensively and 

systematically studied so far. 

 

Unlike bulk RNA sequencing (bulk RNA-seq),  

which focuses primarily on the average expression  

level of all cells in a sample and is unable to uncover 

the heterogeneity among tumor cells in a sample, 

single-cell RNA-sequencing (scRNA-seq) can identify 

intra-tumor heterogeneity at the cellular level [30].  

With the development of scRNA-seq technology and 

corresponding data analysis methods, it is now possible 

to determine the molecular characteristics of various 

immune cell populations within the TME, offering a 

new approach to identifying functional biomarkers [31, 

32]. Due to the advantage of scRNA-seq, a number of 

novel biomarkers for cancer have been identified using 

the organic combination of scRNA-seq with bulk RNA-

seq [15, 33]. In this study, we identified macrophage 

marker genes and depicted the cell-cell communication 

between TAMs and other cell types within the  

TME on the basis of scRNA-seq analysis. Through  

bulk RNA-seq analysis, we constructed coexpression 

networks of macrophages using the weighted gene 

coexpression network analysis (WGCNA) to identify 

macrophage-related genes. Then, macrophage-related 

molecular subtypes with entirely different prognoses, 

clinicopathologic features, immune microenvironment, 

and immunotherapy response were identified. Next, a 

macrophage-related risk signature (MRS) was established 

for the prognosis prediction of PCa, and the performance 

of the MRS was validated in eight independent PCa 

cohorts. Meanwhile, we also revealed the dissimilarities 

in the immune infiltration landscape and immunotherapy 

between different risk groups. Moreover, we identified 

NCF4 as the hub gene in MRS, which may be a 

potential research target for PCa. Overall, these findings 

will serve to provide insights into how macrophages 

affect PCa and assist PCa patients in receiving more 

effective individualized treatment. 

 

MATERIALS AND METHODS 
 

Data collection 

 

In this study, we included a total of 10 prostate cancer 

(PCa) cohorts, including a scRNA-seq cohort and 9 
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bulk RNA-seq cohorts (Supplementary Table 1).  

The scRNA-seq data with twelve primary prostate 

cancer (PCa) samples were obtained from the Gene 

Expression Omnibus (GEO) database (accession 

number GSE141445). For bulk RNA-seq data used in 

this study, there were nine independent PCa cohorts. 

First, we obtained transcriptomic profiles (Transcripts 

Per Kilobase Million or TPM) for 501 PCa cases and 

52 normal cases from The Cancer Genome Atlas 

(TCGA) database (https://portal.gdc.cancer.gov/). The 

UCSC (University of California, Santa Cruz) Xena 

public data hub (https://xenabrowser.net/) provided the 

corresponding clinical and progression-free survival 

information of the TCGA cohort. The Chinese Prostate 

Cancer Genome and Epigenome Atlas (CPGEA, 

n=136) bulk RNA-seq data were downloaded from 

(http://www.cpgea.com/download.php), and the latest 

survival data were used (n=125). From the cBioPortal 

for Cancer Genomics (https://www.cbioportal.org/), 

we downloaded the bulk RNA-seq profiles and  

the corresponding survival data of DFKZ (The  

German Cancer Research Center, Deutsches 

Krebsforschungszentrum, n=81) and MSKCC (The 

Memorial Sloan Kettering Cancer Center, n=140).  

The GEO database (https://www.ncbi.nlm.nih.gov/geo/) 

was utilized to obtain the transcriptome profiles and 

corresponding survival data of GSE116918 (n=248), 

GSE70768 (n=111), GSE70769 (n=92), GSE46602 

(n=36), and GSE70770 (n=203).  

 

scRNA-seq analysis 

 

The R package “Seurat” was used for converting scRNA-

seq data into a Seurat object [34]. The scRNA-seq data 

was first quality controlled by removing genes expressed 

in less than 3 cells, cells expressing fewer than 50 genes, 

and cells expressing more than 5% of mitochondrial 

genes. A total of 25,999 eligible cells were selected for 

further analysis. We then normalized the scRNA-seq data 

using Seurat’s “NormalizeData” function with the 

normalization method set to “LogNormalize”. After that, 

the “FindVariableFeatures” function was utilized to 

identify the top 1,500 highly variable genes. Following 

this, based on the top 1,500 genes, scRNA-seq data were 

reduced in dimension by performing principal component 

analysis (PCA) with the “RunPCA” function. The top  

20 significant PCs were selected for cell clustering 

analysis based on the result of the JackStraw analysis. 

With the “Seurat” package, cell clustering analysis was 

conducted using the “FindNeighbors” and “FindClusters” 

functions. According to the PCA Euclidean distance,  

the “FindNeighbors” function was conducted to find  

the nearest neighbors of each cell and generate a k- 
nearest neighbor graph. The “FindClusters” function was 

implemented to identify clusters with a resolution of 0.5. 

The “RunTSNE” function was used for dimensionality 

reduction and visualization via t-distributed stochastic 

neighbor embeddings (t-SNEs). The marker genes for 

each cluster were identified using the “FindAllMarkers” 

function with the threshold set to |log2 (fold change) | > 1 

and adjusted P-value < 0.05. For cluster annotation,  

we first used “HumanPrimaryCellAtlasData” from the R 

package “singleR” [35] as the reference data to assist in 

the annotation, and then manually annotated the different 

clusters using the CellMarker database [36] and the 

marker genes found in previous studies. For cell 

communication analysis, the “CellChat” R package was 

implemented to infer cellular communication in PCa 

tumor microenvironment (TME) based on receptor-ligand 

interactions. For the computation of communication 

networks, linking numbers and communication probability 

were calculated. A visualization was built to show how 

many interactions there are between any two groups of 

cells, as well as their strength. Visualization of the major 

signal sender and receiver cells through scatter plots 

helped to determine the largest contributors of efferent 

and afferent signals in the cell population. 

 

Macrophage co-expression network construction 

based on WGCNA 

 

We estimated the relative proportion of infiltrating 

immune cells in each cohort using the ssGSEA algorithm. 

Using the R package “WGCNA”, we construct the gene 

co-expression networks of the TCGA-PRAD cohort (501 

tumor samples), CPGEA cohort (136 tumor samples), and 

GSE70768 cohort (126 tumor samples) to identify co-

expressed genes in macrophages. There are six main steps 

involved in network construction: 1. Establishment of a 

similarity matrix. 2. Creating an adjacency matrix from 

the similarity matrix using the suitable soft thresholds 

(TCGA=10, CPGEA=8, GSE70768=7). 3. A topological 

overlap matrix (TOM) was generated by transforming the 

adjacency matrix. 4. A hierarchical clustering tree was 

obtained by layering the dissTOM with Tom Cluster. 5. 

Modules were identified from the hierarchical clustering 

tree. 6. Calculating the module eigengenes (MEs) for each 

module. The Pearson test was then used to determine the 

correlation between MEs and macrophages. A significant 

connection between the module and macrophages was 

found when P<0.05. By doing so, we identified a set  

of functionally similar genes that are associated with 

macrophage proportions. Subsequently, we intersected the 

genes in the modules most correlated with macrophages 

in the above three datasets with the macrophage marker 

genes in the single-cell dataset and displayed them as 

Venn diagrams. 

 

Consensus clustering analysis 

 

Using the R package “ConsensusClusterPlus”, un-

supervised hierarchical clustering was implemented to 
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determine macrophage-related molecular subtypes in 

the TCGA-PRAD cohort according to the expression of 

macrophage-related intersection genes. The prognostic 

differences between the two molecular subtypes were 

compared using Kaplan-Meier (K-M) analysis. Dis-

similarities in clinicopathologic traits between the two 

subtypes were compared utilizing the chi-square test 

and demonstrated by the heat map. For comparing 

dissimilarities in biological pathways between the two 

subtypes, gene set variation analysis (GSVA) was 

implemented with the “GSVA” R package. 

 

Immune microenvironment analysis 

 

The single-sample gene set enrichment analysis 

(ssGSEA) was implemented to compute immune  

cell infiltration and immune-related pathway activity 

scores for each sample. The two-sample Wilcoxon test 

was performed to compare the differences in these 

immunization characteristics between different groups. 

Meanwhile, the immune cell infiltration abundance  

in PCa patients from the TCGA-PRAD cohort was 

measured using seven different software programs. The 

distinctions in abundance between different subtypes 

were compared, and Pearson’s correlation between 

immune cell content and risk scores was calculated. 

Additionally, we compared the gene expression of 

common human leukocyte antigen (HLA) and immune 

checkpoints in different groups. The TME difference 

between different groups was investigated with the  

R package “ESTIMATE” based on the ssGSEA  

result. In addition, the immune subtype profiles of the 

TGGA-PRAD cohort were obtained from the UCSC-

Xena public data hub. Then, based on macrophage-

related molecular subtypes, the distinction in immune 

subtypes between risk groups was compared via the 

“RColorBrewer” R package.  

 

Immunotherapy response 

 

The immunophenoscore (IPS) of PCa samples obtained 

from The Cancer Immunome Atlas (TCIA, https://tcia.at/) 

was utilized to predict the immunotherapeutic response 

[37]. Immune reactivity is higher with a higher IPS score. 

The possible response to immune checkpoint blockade in 

PCa was predicted with the tumor immune dysfunction 

and exclusion (TIDE). Immunotherapy responses are 

better when the TIDE score is lower.  

 

Development and validation of the prognostic 

signature 

 

To begin with, we used the “DESeq2” R package  
to determine the differentially expressed genes  

(DEGs) between the macrophage-related molecular 

subtypes with the threshold set to “P-value<0.05 and  

|log2FoldChange|> 1”. To identify prognostically 

relevant DEGs, we implemented a univariate Cox 

regression analysis. Next, we used the TCGA-PRAD 

cohort containing 497 prostate cancer patients as a 

training set. For a further selection of the most 

predictive DEGs, the least absolute shrinkage and 

selection operator (LASSO) Cox regression analysis 

with 10-fold cross-validation was performed in the 

TCGA training cohort with the R package “glmnet”. 

Based on the candidate DEGs obtained from the above 

screening, a macrophage-related prognosis signature 

was developed using forward stepwise selection and 

multivariate Cox regression. Utilizing the median risk 

score value, the patients from the TCGA cohort were 

classified into the low-risk or high-risk groups. With  

the “survivalROC” package, the area under the curve 

(AUC) of the receiver operating characteristic (ROC) 

curve was computed to verify the signature’s ability  

to predict prognosis. Using the R package “survminer”, 

the Kaplan–Meier (KM) method was utilized to 

implement the survival analysis, and the log-rank test 

was performed to determine the statistical significance 

of the differences. The robustness of the signature  

was also validated through KM analysis and AUC in 

eight completely independent datasets. Furthermore, 

univariate and multivariate Cox regression analyses 

confirmed that MRRS was an independent prognostic 

factor for PCa, and a clinically applicable nomogram 

was developed. 

 

Pathway and function enrichment analysis 

 

Three different aspects of gene function were examined 

using Gene Ontology (GO) enrichment analysis, 

including biological processes, molecular functions, and 

cellular components. Through the Kyoto Encyclopedia 

of Genes and Genomes (KEGG) enrichment analysis, 

certain genes were searched to find their biological 

pathways. Based on DEGs between macrophage-related 

clusters, we conducted GO and KEGG analyses via  

the R package “clusterProfiler”. Gene set enrichment 

analysis (GSEA) was utilized to examine the differences 

in function and associated pathways between high- and 

low-risk samples using the R package “clusterProfiler”.  

 

Identifying the most important gene in the signature 

 

Generally, if two gene products have similar functions, 

they will have high semantic similarity and have  

close gene ontology term trees [38]. Based on the 

“mgeneSim” function, which measures similarity by 

computing the geometric mean of molecular functions 

and cellular components, we assessed the significance 
of each gene to other genes in the signature by 

calculating the average similarity [39]. Additionally,  

we explored the hub gene expression in cells in the 
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GSE141445 dataset and six PCa single-cell datasets in 

the tumor immune single-cell hub (TISCH) database. 

Moreover, the Tumor Immune Estimation Resource  

2.0 (TIMER2.0) database (http://timer.cistrome.org/) 

evaluated the association between NCF4 expression and 

immune cell infiltration in PCa. Pairwise difference 

analysis was implemented to compare NCF4 expression 

differences in prostate tumor tissues and normal tissues. 

Utilizing the Human Protein Atlas (HPA) database,  

we verified whether NCF4 expression in PCa was 

different at the protein level from that in normal 

prostate tissue. Finally, we also explored the differences 

in clinicopathologic features and prognosis between  

the NCF4 high- and low-expression groups. 

 

Statistical analysis 

 

Data processing, statistical analysis, and plotting were 

all conducted with R software (version 4.2.0). For the 

comparison of non-normally distributed continuous 

variables between two groups, the Wilcoxon rank-sum 

was applied. For the comparison of categorical variables 

between two groups, the chi-square test was utilized. 

Unless otherwise stated, the threshold for statistically 

significant differences was set to p-value <0.05. 

 

Data availability statement 

 

The data used in this study are openly available  

in the TCGA database (https://portal.gdc.cancer.gov/, 

(accessed on 7 August 2022)), cBioPortal for Cancer 

Genomics (https://www.cbioportal.org/ (accessed on 11 

August 2022)), CPGEA database (http://www.cpgea. 

com/download.php, (accessed on 13 August 2022)),  

and GEO database (https://www.ncbi.nlm.nih.gov/geo/, 

(accessed on 14 August 2022)).  

 

RESULTS 
 

Macrophage marker genes identification 

 

The scRNA-seq data of GSE141445 contain 102899  

cells from 12 primary PCa samples. Following strict 

quality control, 25999 cells were retained for further 

analysis (Figure 1A). Based on the normalized data,  

the top 1500 highly variable genes were selected  

(Figure 1B). Utilizing the top 1500 variable genes, PCA 

was implemented to reduce the dimensionality, and 20 

principal components (PCs) were selected with a p-value 

< 0.05 for subsequent analysis (Figure 1C). Following 

that, 22 independent cell clusters were identified utilizing 

the t-SNE algorithm (Figure 1D). Across the 22 clusters, 

we identified 4054 differentially expressed marker  

genes shown in Supplementary Table 2. The heatmap 

displaying the relative expression of the top 5 marker 

genes within each cluster is shown in Figure 1E. Next, 

the cell identity of each cluster was annotated and cells  

in cluster 6 were designated as macrophages (Figure 1F 

and Table 1). Meanwhile, the expression of macrophage 

marker genes for PCa from the CellMarker database was 

visualized by bubble plots (Figure 1G), which further 

identified cluster 6 cells as macrophages. Ultimately, we 

identified 320 TAMs marker genes for PCa in this study 

(Supplementary Table 3). 

 

Cell communication analysis between cluster C6 and 

other clusters 

 

In multicellular organisms, the basic processes of cellular 

activity are dependent on intercellular interactions, and 

ligand-receptor pairs are the primary mechanisms of 

intercellular communication. Considering that TAMs 

play a pivotal role in tumor progression, we analyzed 

cell communication between cluster C6 and other 

clusters using Cell Chat. A high degree of intercellular 

correlation was found within 22 clusters based on the 

number and strength of ligand-receptor interactions 

(Figure 2A, 2B). According to the ligand-receptor 

information for each cluster, the C6 cluster affects other 

clusters via ligand-receptor pairs; for instance, the C6 

cluster affects C2 and C20 clusters mainly through MIF 

- (CD74+CXCR4) and MIF - (CD74+CD44) (Figure 

2C). Notably, other cell clusters including the C6 cluster 

itself also affect the C6 cluster mainly through MIF - 

(CD74+CXCR4) and MIF - (CD74+CD44) (Figure 2D). 

Taken together, intercellular communication provides 

new ideas for the development of novel therapies 

targeting macrophages. 

 
Identification of genes related to macrophage 

infiltration in PCa through WGCNA 

 
In the TCGA-PRAD cohort dataset, genes were 

classified into fifteen modules (Figure 3A), in which the 

green module, containing 880 genes (Supplementary 

Table 4), was highly correlated with macrophage 

(Figure 3B, R2 = 0.71, P = 6e−78). In the CPGEA 

cohort dataset, genes were divided into sixteen modules 

(Figure 3C), in which the brown module, containing 

4726 genes (Supplementary Table 5), was highly 

correlated with macrophage (Figure 3D, R2 = 0.66, P = 

2e−18). In the GSE70768 cohort dataset, genes were 

divided into seventeen modules (Figure 3E), in which 

the red module, containing 410 genes (Supplementary 

Table 6), was highly correlated with macrophage 

(Figure 3F, R2 = 0.70, P = 1e−19). Next, we intersected 

these genes in the highly macrophage-relevant modules 

of the three datasets described above with the 

macrophage marker genes in the single-cell dataset 

(Figure 3G) and finally obtained 65 genes highly 

correlated with macrophages for subsequent analysis 

(Supplementary Table 7). 
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Figure 1. scRNA-seq analysis identifies marker genes for macrophages. (A) A total of 25999 eligible cells were identified after quality 
control of scRNA-seq data with twelve PCa samples. (B) Variation in gene expression across all PCa cells is shown in the variance plot. The 
black dots represent non-variable genes, while the red dots represent highly variable genes. (C) A P-value of 0.05 identified 20 PCs. (D) A t-
SNE algorithm was applied to visualize 22 clusters. (E) The top 5 marker genes in each cell cluster are displayed in a heatmap. Genes with high 
expression are yellow, and genes with low expression are purple. (F) Cell types identified by marker genes. (G) Macrophage marker gene 
expression levels in each cell cluster are represented by bubble plots. 
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Table 1. Clusters annotate. 

Seurat clusters Cell type 

0 Epithelial_cells 

1 fibroblast 

2 T_cells 

3 Epithelial_cells 

4 Epithelial_cells 

5 Epithelial_cells 

6 Macrophage 

7 Endothelial_cells 

8 Endothelial_cells 

9 Epithelial_cells 

10 Tissue_stem_cells 

11 Endothelial_cells 

12 CMP 

13 fibroblast 

14 iPS_cells 

15 Tissue_stem_cells 

16 Epithelial_cells 

17 Epithelial_cells 

18 Endothelial_cells 

19 fibroblast 

20 B_cell 

21 Pro-B_cell_CD34+ 

 

Identification of macrophage-related molecular 

subtypes in PCa and characterization of the immune 

landscape between subtypes  

 

To further explore inter-tumor macrophage hetero-

geneity, the expression of the 65 macrophage-related 

intersection genes described above was analyzed using 

unsupervised consensus analysis to categorize 497 PCa 

patients in the TCGA-PRAD cohort into two distinct 

subtypes, with 263 samples in macrophage-related cluster 

1 and 234 samples in macrophage-related cluster 2 

(Figure 4A Supplementary Figure 1). According to 3D 

PCA, 65 macrophage-related intersecting genes could 

well distinguish the two clusters (Figure 4B). The KM 

analysis showed that cluster C2 had a worse prognosis 

(Figure 3C, p=0.008). The heatmap showed that all 65 

macrophage-related intersecting genes were significantly 

highly expressed in cluster 2, and there were significant 

distributional differences of GS, ISUP, pathological  

T-stage, and pathological N-stage between the two 

molecular subtypes (Figure 3D). Of these, cluster 2 had 

significantly higher proportions of high-level GS  

(Figure 4E, p<0.001), ISUP (Figure 4F, p<0.001), 

pathologic T-stage (Figure 4G, p=0.015), and pathologic 

N-stage (Figure 4H, p<0.001). In summary, the results of 

this study imply that 65 macrophage-related intersecting 

genes can be used to distinguish two subtypes of PCa, 

each of which has an entirely different prognosis and 

clinicopathologic profile.  

The GSVA was implemented to identify the potential 

mechanisms that may explain the differences between the 

two subtypes. Notably, virtually all pathways associated 

with tumor progression, intercellular communication, and 

immunity, including the JAK-STAT signaling pathway, 

ECM-receptor interaction, Chemokine signaling path-

way, and T cell receptor signaling pathway, were 

significantly enriched in cluster 2 (Figure 4I, p<0.05), 

which may account for the poorer prognosis. To further 

explore the intrinsic reasons for the differences between 

the two subtypes, a comparison was made between the 

two subtypes in terms of the TIME and the activities of 

immune-related pathways. Notably, all immune functions 

including the checkpoint, HLA, and macrophages  

were more active in cluster 2 (Figure 5A, p<0.05).  

In comparison with cluster 1, cluster 2 demonstrated 

significantly higher infiltration abundance of all  

immune cells, including macrophages, as determined by 

ssGSEA (Figure 5B, p<0.05). In addition, the seven 

immune infiltration algorithms were consistent, with 

more immune cell infiltration including macrophage, 

macrophage M1, and macrophage M2 in cluster 2 

(Figure 5C). Moreover, we compared gene expression 

between different clusters for immune checkpoints and 

HLAs. All common HLA genes were significantly 

highly expressed in cluster 2 (Figure 5D, p<0.05). 

Immune checkpoint genes, including B7H3 (CD276), 

HAVCR2, CTLA4, TIGIT, and PD-1 (PDCD1), were 

highly expressed in cluster 2 (Figure 5E, p<0.05). Using 
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the ESTIMATE algorithm, we calculated the stromal, 

immune, and estimate scores based on the gene 

expression profiles of each PCa sample, and the results 

indicated that all these scores were significantly higher 

in cluster 2 (Figure 5F, p<0.001). Lastly, IPS files 

downloaded from the TCIA database were utilized  

to analyze the response to immunotherapy in patients 

with PCa to determine whether macrophage-related 

clusters can predict ICI responses. The IPS, the IPS-

CTLA4 score, the IPS-PD1 blocker score, and the IPS-

CTLA4+PD1 blocker score were significantly higher  

in cluster 2 than in cluster 1 (Figure 5G–5J, p<0.01), 

which demonstrated a more immunogenic phenotype in 

cluster 2, suggesting that immunotherapy might be more 

beneficial to PCa patients in cluster 2. In conclusion, 

macrophage-associated subtypes have significantly 

different pathway activation status, tumor immune 

microenvironment, and immunotherapeutic efficacy, 

which is of great significance for clinical practice and 

research in PCa. 

 

Development and validation of a macrophage-

related signature (MRS) 

 

First, a total of 1,390 significant DEGs, including 1,332 

up-regulated genes and 58 down-regulated genes, were 

 

 
 

Figure 2. The cellular communication between C6 and other clusters. The circle diagrams show the high intercellular interactions 

concerning the number (A) and strength (B) of ligand–receptor interactions among the 22 clusters. Interactions between overexpressed 
ligands and receptors are shown in the bubble chart when C6 cluster cells act as the ligand (C) and receptor (D) cells, respectively. 
Permutation test P-values are represented by bubble size, while interaction possibilities are represented by color. 
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Figure 3. The co-expression network and heatmap illustrating the association between module eigengenes and macrophages were 
constructed through WGCNA based on the bulk RNA-seq data from the TCGA-PRAD database (A, B), the CPGEA dataset (C, D), and the 
GSE70768 database (E, F), respectively. (G) The Venn diagram displays the intersection of genes between macrophage-related genes selected 
from the above different datasets and macrophage marker genes from the scRNA-seq data. 

6817



www.aging-us.com 10 AGING 

 
 

Figure 4. Unsupervised consensus analysis in the TCGA cohort. (A) Based on the expression of the 65 macrophage-related 

intersection genes, PCa patients in the TCGA cohort were separated into two distinct clusters when k = 2. (B) According to the 3D PCA plots, 
the cluster well-differentiated PCa patients from one another. (C) The KM analysis between different clusters. (D) Heatmap showing the 
expression levels of the 65 macrophage-related intersection genes and the distribution of clinicopathological features between clusters. The 
fractions of GS (E) ISUP (F), pathologic T stage (G), and pathologic N stage (H) between cluster groups. (I) The heatmap displays the GSVA 
result between distinct macrophage-related clusters. ns, not significant; **P < 0.01; ***P < 0.001. 
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Figure 5. The immune landscape of macrophage-related molecular subtypes. (A) The boxplot displays the difference in immune-

related functions between different clusters. (B) Two clusters have different levels of immune cell infiltration. (C) Seven immune infiltration 
software displays the immune infiltration between different clusters. (D) Comparing the expression of HLA molecules between two clusters. 
(E) Expression of immune checkpoint molecules between the two clusters. (F) The comparisons of stromal score, immune score, and estimate 
score between clusters. Comparing immunophenoscores (IPS) across clusters; (G) CTLA4−_PD1−, (H) CTLA4−_PD1+, (I) CTLA4+_PD1−, and (J) 
CTLA4+_PD1+. ns, not significant; **P < 0.01; ***P < 0.001. 
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obtained by differential expression analysis between  

the macrophage-related molecular subtypes (Figure  

6A, 6B). The GO analysis indicated that DEGs were 

primarily enriched in functions related to immunity and 

intercellular communication, including the activation of 

immune response, plasma membrane signaling receptor, 

T cell receptor complex, antigen binding, and immune 

receptor activity (Figure 6C). The KEGG enrichment 

results showed that the Cytokine−cytokine receptor 

interaction, Chemokine signaling pathway, and Cell 

adhesion molecules were the enriched pathways for 

DEGs (Figure 6D). 

 

The univariate Cox regression analysis screened  

out 171 DEGs related to progress free survival  

(PFS) in PCa (Supplementary Table 8). Next, 14 

DEGs were screened out as optimal prognostic 

biomarkers by LASSO regression analysis with 10-

fold cross-validation using the TCGA cohort with  

497 PCa patients as a training set (Figure 6E, 6F).  

Following that, the model with the lowest Akaike  

information criterion (AIC) value was generated  

via multivariate Cox regression analysis. Finally, a  

macrophage-related signature consisting of eight DEGs,  

including ADAMTS14, LCN2, SCARA5, SYT4, NCF4, 

CHST13, FEV, and PAX1, was constructed (Figure 6G 

Supplementary Table 9). The risk score was computed 

utilizing the coefficient of each gene in the signature: 

MRS = (0.5156*ADAMTS14 expression) + (-0.1546* 

LCN2expression) + (-0.4346*SCARA5expression) +  

(0.1359*SYT4expression) + (0.4235*NCF4expression) + 

(0.6643*CHST13expression) + (-0.1348*FEVexpression) 

+ (0.2045*PAX1expression).  

 

Subsequently, we evaluated the prognostic signature’s 

predictive value. According to the median risk score 

value, PCa patients in the training set were divided into 

high-risk and low-risk groups. Compared with the low-

risk group, the high-risk group possessed significantly 

poorer PFS (Figure 6H, p<0.001). The AUC of 1-,  

3-, and 5-year in the training cohort were 0.771, 0.772, 

and 0.741, respectively (Figure 6I). The ROC curves 

illustrated that the risk score was notably superior  

to other clinicopathological variables in predicting  

the PFS of PCa patients (Figure 6J). Additionally,  

eight independent datasets (CPGEA, DFKZ, MSKCC, 

GSE116918, GSE70768, GSE70769, GSE46602, and 

GSE70770) were validated externally to further verify 

the signature’s robustness. Consistently, all cohorts 

demonstrated significantly shorter PFS time for patients 

in the high-risk group, containing the CPGEA cohort 

(n=125, p<0.001, Figure 7A), the DFKZ cohort (n=81, 

p<0.001, Figure 7C), the MSKCC cohort (n=140, 
p=0.001, Figure 7E), the GSE116918 cohort (n=248, 

p=0.043, Figure 7G), the GSE70768 cohort (n=111, 

p<0.001, Figure 7I), the GSE70769 cohort (n=92, 

p<0.001, Figure 7K), the GSE46602 cohort (n=36, 

p=0.030, Figure 7M), and the GSE70770 cohort 

(n=203, p=0.006, Figure 7O). Moreover, the ROC 

curves confirmed that the signature held good predictive 

value in these datasets (Figure 7). Overall, this signature 

is robust and has promising application prospects. 

 

Independent prognostic analysis and nomogram 

establishment 

 

The Sankey diagram illustrated a relationship among 

macrophage-related subtypes, risk scores, and prognosis, 

in which patients with disease progression predominantly 

from the high-risk group (Figure 8A). In the TCGA-

PRAD cohort, a significant correlation was found 

between risk scores and GS, ISUP, pathologic T-stage, 

and pathologic N-stage, with higher grades of these 

characteristics indicating a significant increase in risk 

scores (Figure 8B–8F, P < 0.05). Moreover, both 

univariate and multivariate Cox regression analyses 

confirmed that MRS was an independent prognostic 

factor for PCa (Figure 9A, 9B). Consequently, we 

constructed a clinically adapted nomogram to predict the 

1-, 3-, and 5-year prognosis for PCa patients depending 

on the results of Cox regression analysis (Figure  

9C). Nomogram predictions and observed probabilities 

showed excellent concordance on the calibration plot 

(Figure 9D). Additionally, the decision curve analysis 

(DCA) suggested that the MRS provided a greater net 

clinical benefit than other clinicopathological features 

(Figure 9E). In summary, the above findings suggest that 

MRS is an independent prognostic factor for PCa and the 

MRS-based nomogram has good prognostic predictive 

value for PCa patients. 

 

GSEA between different risk groups 

 

To provide further insight into the underlying 

mechanisms by which high-risk subgroups have worse 

pathologic stages and prognosis, we performed GSEA 

to identify the KEGG pathways most significantly 

enriched in high-risk groups. The results indicate that 

several classical intercellular communication-related 

pathways, containing the Chemokine signaling pathway, 

Cytokine−cytokine receptor interaction, and ECM− 

receptor interaction, as well as tumor-related pathways, 

containing NF−kappa B signaling pathway, PI3K−Akt 

signaling pathway, and Cell cycle, were enriched in  

the high-risk group (Figure 9F). Additionally, many 

immune-related pathways were also enriched in the 

high-risk group, including Antigen processing and 

presentation, B cell receptor signaling pathway, T  

cell receptor signaling pathway, and Natural killer  
cell mediated cytotoxicity (Figure 9G). This partly 

explains the significantly higher pathologic grade and 

significantly worse prognosis in the high-risk group. 
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Figure 6. Development of a macrophage-related signature (MRS). (A) Volcano plot of DEGs between macrophage-related molecular 

subtypes in TCGA cohort. Significant DEGs were found when P < 0.05 and |log2FoldChange|> 1. Genes that are upregulated are shown in red, 
and genes that are downregulated are shown in blue. (B) Heatmap of DEGs. Bubble plots of the GO (C) and KEGG pathways (D) functional 
enrichment of DEGs. (E) Based on macrophage-related clusters, LASSO Cox regression analysis selected eight genes. (F) Cross-validation for 
tuning parameter selection in the LASSO model. (G) Forest plot of multivariate Cox regression result. (H) The Kaplan-Meier curves in the 
training cohort (TCGA). (I) The AUC at 1-, 3-, and 5-years of prognostic models in the training cohort. (J) ROC curves evaluate the predictive 
accuracy of the risk score and clinicopathological features. ns, not significant; **P < 0.01; ***P < 0.001. 
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The immune landscape of the signature 

 

Significant differences in immunophenotypes between 

risk groups were found by comparing PCa immune 

subtype proportions in different risk groups, with 

significantly higher proportions of C1 (Wound Healing) 

subtype, C2 (IFN-γ Dominant) subtype, and C4 

(Lymphocyte Depleted) subtype and significantly  

lower proportions of C3 (Inflammatory) subtype in the  

high-risk group (Figure 10A, p=0.001). Notably, it was 

shown that C1 subtype had elevated angiogenic gene 

expression with a high tumor cell proliferation rate; C2 

 

 

 

Figure 7. External validation of the MRS. KM analysis as well as ROC curve and AUC of MRS in CPGEA cohort (A, B), DFKZ cohort  
(C, D), MSKCC cohort (E, F), GSE116918 cohort (G, H), GSE70768 cohort (I, J), GSE70769 cohort (K, L), GSE46602 cohort (M, N) and GSE70770 
cohort (O, P). 
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Figure 8. Correlation analysis of risk scores with clinical characteristics. (A) The potential correlation between clusters, risk score, 
and survival status was displayed by the Sankey diagram. (B) Heatmap of the MRS signature and clinicopathological characteristics. Boxplot 
showing the correlation between risk score and different ISUP stages (C), GS stages (D), pathologic T stages (E), and pathologic N stages  
(F). ns, not significant; **P < 0.01; ***P < 0.001. 

6823



www.aging-us.com 16 AGING 

 
 

Figure 9. Establishment and assessment of the nomogram. (A) Univariate Cox analysis of risk scores and clinical characteristics.  
(B) Multifactorial Cox analysis of risk scores and clinical characteristics. (C) Construction of the nomogram. (D) The calibration curve of the 
nomogram. (E) DCA diagram. Enrichment of tumor-related pathways (F) and immune-related pathways (G) in the high-risk group. 
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Figure 10. The immune landscape of the signature. (A) Different risk groups have different immune subtypes. (B) Differences between 

the two risk groups in immune cell infiltration. (C) The bubble plot shows the correlation between different immune cells and risk scores.  
(D) The comparison of immune-related functions or pathways between the two risk groups. The comparison of immune checkpoint (E) and 
HLA (F) molecules expression between the two risk groups. (G) Stromal score, immune score, and estimate score between the two risk 
groups. (H) Comparison of the tumor immune dysfunction and exclusion (TIDE) prediction scores in the low- and high-risk groups. ns, not 
significant; **P < 0.01; ***P < 0.001. 
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subtype had the highest degree of M1/M2 macrophage 

polarization, which promoted tumor cell proliferation; C4 

subtype exhibited a more prominent macrophage profile, 

with suppressed Th1 and a high M2 response; while C3 

subtype had elevated expression of Th17 and Th1 genes 

and a low tumor cell proliferation rate [40]. Based on 

ssGSEA results, the high-risk group had more infiltration 

of immune cells, including macrophages (Figure 10B, 

p<0.001). Moreover, the seven immune infiltration 

algorithms were consistent, with risk scores positively 

correlating with the cellular content of macrophage, 

macrophage M1, and macrophage M2 (Figure 10C). The 

high-risk group possessed more active immune functions, 

including checkpoints, HLA, and macrophages (Figure 

10D, p<0.001). Furthermore, in the high-risk group, 

immune checkpoints (including CTLA4 and PDCD1/PD-

1) as well as HLA were highly expressed (Figure 10E, 

10F, p<0.05). Consistently, tumor microenvironment 

analyses showed that stromal scores, immune scores, and 

estimate scores were higher in the high-risk group 

(Figure 10G, p<0.001). Moreover, we examined whether 

MRS could predict immunotherapy response in PCa 

patients. As measured by the TIDE algorithm, the TIDE 

score for the high-risk group was significantly lower than 

that of the low-risk group (Figure 10H, p<0.05), 

suggesting that anti-PD1/CTALA4 therapy may be more 

beneficial for high-risk patients. In summary, possessing 

significant differences in immunophenotyping, TIME 

and immunotherapeutic response between the two risk 

groups suggests that MRS may contribute to research and 

clinical practice in PCa immunotherapy. 

 
Identification of the MRS core gene NCF4 

 

NCF4 was identified as a key gene in MRS using  

the “mgeneSim” function (Figure 11A). We then 

explored the expression of NCF4 in cell types in 12 

primary prostate cancer samples from the single- 

cell dataset GSE141445. The results indicated that 

NCF4 was predominantly expressed in macrophages 

and rarely in other cells (Figure 11B). Additionally, all 

six PRAD single-cell datasets in the TISCH database 

were analyzed to determine the expression of NCF4  

in immune and non-immune cells. Consistently, NCF4 

was highly expressed predominantly in monocytes or 

macrophages and to a lesser extent in non-immune and 

tumor cells in the microenvironment (Supplementary 

Figure 2A). In TIMER 2.0, we further utilized multiple 

algorithms to examine the relationship between immune 

cell infiltration and NCF4 expression. The results 

indicated that macrophage, macrophage M1, and 

macrophage M2 were significantly positively correlated 

with NCF4 expression (Figure 11C–11E).  

 
Additionally, we explored the expression of NCF4  

in prostate tissues. Pairwise analysis revealed that  

NCF4 expression was significantly higher in normal 

tissues than in tumor tissues in the TCGA-PRAD  

cohort (Figure 11F, p=0.0053) and CPGEA cohort 

(Figure 11G, p<0.001). According to the HPA database 

immunohistochemical data, NCF4 was also expressed  

at lower protein levels in PCa than in normal tissues 

(Figure 11H). Furthermore, clinicopathologic analysis 

showed significant differences in clinicopathologic 

characteristics between patients with PCa in the  

high-expression and low-expression groups of NCF4 

(Supplementary Figure 2B). Among them, there is a 

higher proportion of high-grade ISUP, high-grade GS, 

high-grade pathologic T-stage, high-grade pathologic 

N-stage, and higher age in the NCF4 high-expression 

group (Supplementary Figure 2C–2G). Meanwhile, 

patients in the NCF4 high expression group had a poorer 

prognosis (Supplementary Figure 2H). In summary, 

NCF4 is not only closely related to TAMs, but these 

results also inform the value of exploring NCF4 in 

future PCa studies. 

 

DISCUSSION 
 

PCa is the most common tumor of the male genitourinary 

system and the second leading cause of cancer-related 

deaths in male patients [1]. High-grade PCa patients  

are at risk of developing resistance to treatment and 

progressing to advanced PCa, for which treatment 

options are limited. Among them, immunotherapy is one 

of the treatment methods for advanced tumors, but its 

efficacy in advanced PCa is not revolutionary. This  

is mainly due to PCa being referred to as a ‘cold tumor’ 

in its immunosuppressive microenvironment, where  

its immune system cannot be fully activated to fight 

against the tumor [41, 42]. However, recent studies have 

shown that the TME is dynamic, and a ‘cold tumor’ may 

have the potential to transform into a ‘hot tumor’ [43]. 

Considering that the majority of immune cells in the PCa 

TME are TAMs, targeting TAMs to activate anti-tumor 

immunity is a novel direction in PCa immunotherapy. 

Previous studies have shown that TAMs can induce PCa 

tumor cells to become resistant to chemotherapy, and 

castration-resistant PCa patients who are treated with 

docetaxel benefit from TAM inhibitors [44]. However, 

the role of TAMs in the TIME and immunotherapy  

of PCa is largely unexplored at present. Therefore, this 

study aimed to investigate the roles of TAMs-related 

genes in molecular stratification, prognosis, TME, and 

immunotherapeutic response in PCa. 

 

TAMs, as an important component of the TIME, are 

now found to be used for molecular subtyping in 

various tumors in relevant studies. Su et al.’s study 

divided patients with hepatocellular carcinoma (HCC) 

into three subtypes (high, medium, and low expression 

types) based on the expression levels of TAMs-related 
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Figure 11. Identifying NCF4 as the hub gene. (A) The “mgeneSim” function reveals the hub gene NCF4 in the MRS. (B) The violin diagram 
shows the expression of NCF4 in various types of cells in GSE141445. Correlation scatter plots demonstrate the correlation of NCF4 
expression levels with the content of macrophage cells (C), macrophage M1 cells (D), and macrophage M2 cells (E). Paired box plots 
demonstrating the difference in NCF4 expression between normal and cancerous prostate tissues in TCGA-PRAD cohort (F) and CPGEA cohort 
(G). (H) The immunohistochemical staining shows NCF4 expression at the protein level in normal and PCa tissues. 
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genes, among which patients with high expression type 

had higher tumor grades, lower survival rates, and higher 

TIDE scores [45]. This suggests that HCC patients with 

high expression of TAMs-related genes have a worse 

prognosis and are also more prone to immune escape, 

demonstrating the potential of molecular subtyping in 

immunotherapy and prognosis prediction in HCC. Xie  

et al.’s study on TAMs molecular subtyping in non- 

small cell lung cancer also shows that patients with  

high TAMs-related gene expression type have immune 

suppression and tumor immune escape phenomena [46]. 

 

Immunotherapy, as an emerging treatment strategy for 

advanced PCa, its therapeutic agents mainly include 

Sipuleucel-T, an autologous vaccine targeting PAP, and 

ipilimumab, which targets CTLA-4. The effectiveness 

of these immunotherapeutic agents in treating PCa has 

been demonstrated in several studies, but they do not 

benefit all PCa patients due to the highly heterogeneous 

nature of PCa [47, 48]. To improve treatment 

effectiveness, it is crucial to determine the molecular 

subtypes that can help predict which patients are most 

likely to benefit from immunotherapy. 

 

In this study, we divided PCa into high-expression and 

low-expression clusters (cluster C1 and cluster C2) 

based on the expression levels of 65 marker genes 

highly correlated with macrophages. In subsequent 

studies, we found that cluster C2 has more active 

immune functions, higher infiltration abundance of all 

immune cells, higher expression of HLA and immune 

checkpoint genes, as well as higher stromal, immune, 

and estimate scores, demonstrating that C2 has more 

active TIME and is more likely to benefit from immune 

therapy compared to cluster C1. The more sensitive 

response of cluster C2 to PD-1 and CTLA-4 inhibitors 

in subsequent studies of this study proves the above 

point. Therefore, the TAMs-related molecular subtypes 

constructed in this study have the potential to identify 

populations that can benefit more from immunotherapy, 

so as to develop personalized treatment regimens and 

prolong the survival of PCa patients.  

 

Furthermore, it has been found that TAMs may directly 

or indirectly participate in tumor proliferation and 

differentiation. Based on our analysis of intercellular 

communication, we found that TAMs are extensively 

involved in interactions with other cells through ligand-

receptor pairs. Of note, TAMs interact with other  

cells in the TME of PCa primarily through MIF - 

(CD74+CXCR4) and MIF - (CD74+CD44) ligand-

receptor pairs, providing new insights for the 

development of targeted therapies against TAMs. 
 

The current risk grading system of PCa is mainly based 

on PSA, ISUP, and TNM staging to categorize patients 

into low-, intermediate-, and high-risk groups for 

different treatment choices [49, 50]. Traditional risk 

models, which primarily classify PCa patients based  

on their clinicopathologic features, have limited ability 

to assess the efficacy of emerging therapies such as 

immunotherapy and targeted therapy at the molecular 

level [51]. Therefore, in this study, we combined 

TAMs-related molecular subtypes with PCa prognosis 

information and constructed MRS consisting of 8  

genes (ADAMTS14, LCN2, SCARA5, SYT4, NCF4, 

CHST13, FEV, PAX1). Among them, the high-risk 

group had worse PFS (p<0.001), with AUCs of  

0.771, 0.772, and 0.741 for 1-year, 3-year, and 5-year, 

respectively, which had better predictive efficacy than 

traditional predictors, including PSA (AUC=0.509), 

ISUP staging (AUC=0.729), T staging (AUC=0.649), 

and N staging (AUC= 0.556). 

 

Immunotherapy fights against tumors by utilizing the 

body’s immune system, and different tumors respond 

differently to immunotherapy due to differences in their 

TIME [52]. PCa is usually considered an immune ‘cold 

tumor’ with low tumor burden (TMB) and complex 

TME, which limits the benefits of immunotherapy [53, 

54]. However, recent studies have shown that the TME 

undergoes dynamic changes, and with the changes in 

the TME, ‘cold tumor’ can also transform into ‘hot 

tumors’ [43]. As an inert tumor, PCa allows sufficient 

time for anti-tumor immunity to develop, so PCa, which 

has long been considered a cold tumor, also has the 

potential to benefit from immunotherapy. A previous 

study based on TAMs in HCC showed that the high-risk 

group had a higher TMB and lower levels of immune 

infiltration, indicating that patients in the high-risk 

group may be generally immunosuppressed and more 

susceptible to immune escape, making it more difficult 

for them to benefit from immunotherapy [45]. However, 

in PCa, through the MRS prognostic model established 

in this study, we found that the high-risk group had 

higher immune cell infiltration, higher expression of 

immune-related molecules, and lower TIDE scores, 

indicating that the TIME of patients in the high-risk 

group exhibited a phenotype of hot tumors, which make 

them more likely to respond to immunotherapy. 

 

In this study, we identified NCF4 as the core gene in 

MRS. NCF4 is a type of NADPH oxidase complex  

that is involved in the production of extracellular 

reactive oxygen species (ROS). ROS induces the 

transformation of macrophages into TAMs in the TIME, 

thereby promoting tumor proliferation [55, 56]. Ryan  

et al. found that the downregulation and functional 

attenuation of NCF4 is associated with an increased risk 
of colorectal cancer progression, and colorectal cancer 

patients with high expression of NCF4 have a better 

prognosis [57]. Lee et al. also showed that NCF4 is 
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associated with the risk of breast cancer incidence [58]. 

Chen et al. also demonstrated that high expression  

of NCF4 is related to poor prognosis in clear cell  

renal cell carcinoma patients, and knocking down NCF4 

can inhibit the proliferation and migration of renal 

cancer cells [59]. In this study, we found that NCF4 is 

primarily expressed in macrophages within the PCa 

tissue, and the degree of macrophage infiltration in  

the TME is significantly positively correlated with 

NCF4 expression. Additionally, we also found that PCa 

patients with high expression of NCF4 have a worse 

prognosis. Currently, there is insufficient research on 

the association between NCF4 and PCa, which requires 

further exploration. 

 

The study objectives were to identify macrophage-related 

molecular subtypes in PCa patients, establish an MRS 

model, and characterize the immune profiles between 

different molecular subtypes and between different  

risk groups. We have conducted multidimensional and 

multi-database validations, and the MRS model presents 

promising prospects for predicting the prognosis of PCa 

patients. There are, however, some limitations to our 

study. Firstly, this study is retrospective, and the data 

and corresponding clinical information are acquired 

from publicly accessible databases. The sample size is 

limited, and the analysis of clinical and pathological 

parameters is not comprehensive, which may lead to 

potential biases. Secondly, the role of NCF4 in PCa is 

unclear. In future research, the key gene NCF4 will be 

further explored through phenotypic and molecular 

biology experiments to determine its functional role in 

PCa. 

 

In conclusion, this study identified TAMs-related genes 

in PCa patients, established and validated an MRS model 

to predict the prognosis of PCa patients, demonstrating 

good predictive ability, and evaluated the differences in 

TIME and immune therapy response among MRS risk 

groups. These results may help us further understand 

the characteristic changes of macrophage infiltration  

in PCa and provide new strategies for personalized 

treatment. 

 

Abbreviations 
 

PCa: prostate cancer; TIME: tumor immune 

microenvironment; TME: tumor microenvironment; 

scRNA-seq: single-cell RNA sequencing; MRS: 

macrophage-related risk signature; TAMs: tumor-

associated macrophages; WGCNA: weighted gene 

coexpression network analysis; GEO: Gene Expression 

Omnibus; TCGA: The Cancer Genome Atlas; UCSC: 

University of California, Santa Cruz; CPGEA: Chinese 

Prostate Cancer Genome and Epigenome Atlas; DFKZ: 

The German Cancer Research Center, Deutsches 

Krebsforschungszentrum; MSKCC: The Memorial Sloan 

Kettering Cancer Center; PCA: principal component 

analysis; t-SNEs: t-distributed stochastic neighbor 

embeddings; MEs: module eigengenes; KM: Kaplan-

Meier; GSVA: gene set variation analysis; ssGSEA: 

single-sample gene set enrichment analysis; HLA: 

human leukocyte antigen; IPS: immunophenoscore; 

TCIA: The Cancer Immunome Atlas; TIDE: tumor 

immune dysfunction and exclusion; DEGs: differentially 

expressed genes; LASSO: least absolute shrinkage  

and selection operator; AUC: area under the curve; 

ROC: receiver operating characteristic; DCA: decision 

curve analysis; GO: Gene Ontology; KEGG: Kyoto 

Encyclopedia of Genes and Genomes; GSEA: gene set 

enrichment analysis; TISCH: tumor immune single-cell 

hub; TIMER2.0: Tumor Immune Estimation Resource 

2.0; HPA: Human Protein Atlas; PCs: principal 

components.  

 

AUTHOR CONTRIBUTIONS 
 

Jili Zhang conceived and designed the experiments, 

performed the experiments, and performed the 

bioinformatic analysis. Shaoqin Jiang, Mengqiang Li, 

and Xin Jiang conceived the project and supervised  

its execution. Zhihao Li managed the project and 

experiments and coordinated its execution. Zhenlin 

Chen, Wenzhen Shi, and Yue Xu analyzed the data 

and co-wrote the manuscript. Zhangcheng Huang, 

Zequn Lin, Ruiling Dou, and Shaoshan Lin collected 

data and reviewed drafts of the paper. All authors 

reviewed the article. 

 

ACKNOWLEDGMENTS 
 

We acknowledge and appreciate our colleagues for their 

valuable efforts and comments on this paper. 

 

CONFLICTS OF INTEREST 
 

The authors declare that the research was conducted in 

the absence of any commercial or financial relationships 

that could be construed as a potential conflict of interest. 

 

FUNDING 
 

This work was supported by funds from the  

Fujian Natural Sciences Foundation (Grant number: 

2022J01260) and Health Science and Technology 

Project, Fujian Province (Grant number: 2020CXB018). 
 

REFERENCES 
 
1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer 

statistics, 2022. CA Cancer J Clin. 2022; 72:7–33. 
 https://doi.org/10.3322/caac.21708  

6829

https://doi.org/10.3322/caac.21708


www.aging-us.com 22 AGING 

PMID:35020204 

2. Cornford P, van den Bergh RC, Briers E, Van den Broeck 
T, Cumberbatch MG, De Santis M, Fanti S, Fossati N, 
Gandaglia G, Gillessen S, Grivas N, Grummet J, Henry 
AM, et al. EAU-EANM-ESTRO-ESUR-SIOG Guidelines on 
Prostate Cancer. Part II-2020 Update: Treatment of 
Relapsing and Metastatic Prostate Cancer. Eur Urol. 
2021; 79:263–82. 

 https://doi.org/10.1016/j.eururo.2020.09.046 
PMID:33039206 

3. Mohler JL, Antonarakis ES, Armstrong AJ, D’Amico AV, 
Davis BJ, Dorff T, Eastham JA, Enke CA, Farrington TA, 
Higano CS, Horwitz EM, Hurwitz M, Ippolito JE, et al. 
Prostate Cancer, Version 2.2019, NCCN Clinical Practice 
Guidelines in Oncology. J Natl Compr Canc Netw. 2019; 
17:479–505. 

 https://doi.org/10.6004/jnccn.2019.0023 
PMID:31085757 

4. Spratt DE, Dai DL, Den RB, Troncoso P, Yousefi K, Ross 
AE, Schaeffer EM, Haddad Z, Davicioni E, Mehra R, 
Morgan TM, Rayford W, Abdollah F, et al. Performance 
of a Prostate Cancer Genomic Classifier in Predicting 
Metastasis in Men with Prostate-specific Antigen 
Persistence Postprostatectomy. Eur Urol. 2018; 
74:107–14. 

 https://doi.org/10.1016/j.eururo.2017.11.024 
PMID:29233664 

5. Bhargava HK, Leo P, Elliott R, Janowczyk A, Whitney J, 
Gupta S, Fu P, Yamoah K, Khani F, Robinson BD, 
Rebbeck TR, Feldman M, Lal P, Madabhushi A. 
Computationally Derived Image Signature of Stromal 
Morphology Is Prognostic of Prostate Cancer 
Recurrence Following Prostatectomy in African 
American Patients. Clin Cancer Res. 2020; 26:1915–23. 

 https://doi.org/10.1158/1078-0432.CCR-19-2659 
PMID:32139401 

6. Van den Broeck T, van den Bergh RC, Arfi N, Gross T, 
Moris L, Briers E, Cumberbatch M, De Santis M, Tilki D, 
Fanti S, Fossati N, Gillessen S, Grummet JP, et al. 
Prognostic Value of Biochemical Recurrence Following 
Treatment with Curative Intent for Prostate Cancer: A 
Systematic Review. Eur Urol. 2019; 75:967–87. 

 https://doi.org/10.1016/j.eururo.2018.10.011 
PMID:30342843 

7. Rebello RJ, Oing C, Knudsen KE, Loeb S, Johnson DC, 
Reiter RE, Gillessen S, Van der Kwast T, Bristow RG. 
Prostate cancer. Nat Rev Dis Primers. 2021; 7:9. 

 https://doi.org/10.1038/s41572-020-00243-0 
PMID:33542230 

8. González LO, Eiro N, Fraile M, Beridze N, Escaf AR, 
Escaf S, Fernández-Gómez JM, Vizoso FJ. Prostate 
Cancer Tumor Stroma: Responsibility in Tumor Biology, 
Diagnosis and Treatment. Cancers (Basel). 2022; 

14:4412. 
 https://doi.org/10.3390/cancers14184412 

PMID:36139572 

9. Mithal P, Howard LE, Aronson WJ, Kane CJ, Cooperberg 
MR, Terris MK, Amling CL, Freedland SJ. Prostate-
specific antigen level, stage or Gleason score: which is 
best for predicting outcomes after radical 
prostatectomy, and does it vary by the outcome being 
measured? Results from Shared Equal Access Regional 
Cancer Hospital database. Int J Urol. 2015; 22:362–6. 

 https://doi.org/10.1111/iju.12704  
PMID:25728968 

10. Ali SR, Jordan M, Nagarajan P, Amit M. Nerve Density 
and Neuronal Biomarkers in Cancer. Cancers (Basel). 
2022; 14:4817. 

 https://doi.org/10.3390/cancers14194817 
PMID:36230740 

11. Anderson NM, Simon MC. The tumor 
microenvironment. Curr Biol. 2020; 30:R921–5. 

 https://doi.org/10.1016/j.cub.2020.06.081 
PMID:32810447 

12. Xiao Y, Yu D. Tumor microenvironment as a 
therapeutic target in cancer. Pharmacol Ther. 2021; 
221:107753. 

 https://doi.org/10.1016/j.pharmthera.2020.107753 
PMID:33259885 

13. Bejarano L, Jordāo MJ, Joyce JA. Therapeutic Targeting 
of the Tumor Microenvironment. Cancer Discov. 2021; 
11:933–59. 

 https://doi.org/10.1158/2159-8290.CD-20-1808 
PMID:33811125 

14. Wu T, Dai Y. Tumor microenvironment and therapeutic 
response. Cancer Lett. 2017; 387:61–8. 

 https://doi.org/10.1016/j.canlet.2016.01.043 
PMID:26845449 

15. Song P, Li W, Guo L, Ying J, Gao S, He J. Identification 
and Validation of a Novel Signature Based on NK Cell 
Marker Genes to Predict Prognosis and 
Immunotherapy Response in Lung Adenocarcinoma by 
Integrated Analysis of Single-Cell and Bulk RNA-
Sequencing. Front Immunol. 2022; 13:850745. 

 https://doi.org/10.3389/fimmu.2022.850745 
PMID:35757748 

16. Hinshaw DC, Shevde LA. The Tumor Microenvironment 
Innately Modulates Cancer Progression. Cancer Res. 
2019; 79:4557–66. 

 https://doi.org/10.1158/0008-5472.CAN-18-3962 
PMID:31350295 

17. Christofides A, Strauss L, Yeo A, Cao C, Charest A, 
Boussiotis VA. The complex role of tumor-infiltrating 
macrophages. Nat Immunol. 2022; 23:1148–56. 

 https://doi.org/10.1038/s41590-022-01267-2 

6830

https://pubmed.ncbi.nlm.nih.gov/35020204
https://doi.org/10.1016/j.eururo.2020.09.046
https://pubmed.ncbi.nlm.nih.gov/33039206
https://doi.org/10.6004/jnccn.2019.0023
https://pubmed.ncbi.nlm.nih.gov/31085757
https://doi.org/10.1016/j.eururo.2017.11.024
https://pubmed.ncbi.nlm.nih.gov/29233664
https://doi.org/10.1158/1078-0432.CCR-19-2659
https://pubmed.ncbi.nlm.nih.gov/32139401
https://doi.org/10.1016/j.eururo.2018.10.011
https://pubmed.ncbi.nlm.nih.gov/30342843
https://doi.org/10.1038/s41572-020-00243-0
https://pubmed.ncbi.nlm.nih.gov/33542230
https://doi.org/10.3390/cancers14184412
https://pubmed.ncbi.nlm.nih.gov/36139572
https://doi.org/10.1111/iju.12704
https://pubmed.ncbi.nlm.nih.gov/25728968
https://doi.org/10.3390/cancers14194817
https://pubmed.ncbi.nlm.nih.gov/36230740
https://doi.org/10.1016/j.cub.2020.06.081
https://pubmed.ncbi.nlm.nih.gov/32810447
https://doi.org/10.1016/j.pharmthera.2020.107753
https://pubmed.ncbi.nlm.nih.gov/33259885
https://doi.org/10.1158/2159-8290.CD-20-1808
https://pubmed.ncbi.nlm.nih.gov/33811125
https://doi.org/10.1016/j.canlet.2016.01.043
https://pubmed.ncbi.nlm.nih.gov/26845449
https://doi.org/10.3389/fimmu.2022.850745
https://pubmed.ncbi.nlm.nih.gov/35757748
https://doi.org/10.1158/0008-5472.CAN-18-3962
https://pubmed.ncbi.nlm.nih.gov/31350295
https://doi.org/10.1038/s41590-022-01267-2


www.aging-us.com 23 AGING 

PMID:35879449 

18. Cassetta L, Pollard JW. A timeline of tumour-
associated macrophage biology. Nat Rev Cancer. 
2023; 23:238–57. 

 https://doi.org/10.1038/s41568-022-00547-1 
PMID:36792751 

19. Gentles AJ, Bratman SV, Lee LJ, Harris JP, Feng W, Nair 
RV, Shultz DB, Nair VS, Hoang CD, West RB, Plevritis SK, 
Alizadeh AA, Diehn M. Integrating Tumor and Stromal 
Gene Expression Signatures With Clinical Indices for 
Survival Stratification of Early-Stage Non-Small Cell 
Lung Cancer. J Natl Cancer Inst. 2015; 107:djv211. 

 https://doi.org/10.1093/jnci/djv211 PMID:26286589 

20. Murray PJ. Macrophage Polarization. Annu Rev Physiol. 
2017; 79:541–66. 

 https://doi.org/10.1146/annurev-physiol-022516-
034339 PMID:27813830 

21. Funes SC, Rios M, Escobar-Vera J, Kalergis AM. 
Implications of macrophage polarization in 
autoimmunity. Immunology. 2018; 154:186–95. 

 https://doi.org/10.1111/imm.12910 PMID:29455468 

22. Biswas SK, Mantovani A. Macrophage plasticity and 
interaction with lymphocyte subsets: cancer as a 
paradigm. Nat Immunol. 2010; 11:889–96. 

 https://doi.org/10.1038/ni.1937 PMID:20856220 

23. Wildes TJ, Dyson KA, Francis C, Wummer B, Yang C, 
Yegorov O, Shin D, Grippin A, Dean BD, Abraham R, 
Pham C, Moore G, Kuizon C, et al. Immune Escape 
After Adoptive T-cell Therapy for Malignant Gliomas. 
Clin Cancer Res. 2020; 26:5689–700. 

 https://doi.org/10.1158/1078-0432.CCR-20-1065 
PMID:32788225 

24. Qian BZ, Pollard JW. Macrophage diversity 
enhances tumor progression and metastasis. Cell. 
2010; 141:39–51. 

 https://doi.org/10.1016/j.cell.2010.03.014 
PMID:20371344 

25. Han L, Wang S, Wei C, Fang Y, Huang S, Yin T, Xiong B, 
Yang C. Tumour microenvironment: a non-negligible 
driver for epithelial-mesenchymal transition in 
colorectal cancer. Expert Rev Mol Med. 2021; 23:e16. 

 https://doi.org/10.1017/erm.2021.13  
PMID:34758892 

26. Kessenbrock K, Plaks V, Werb Z. Matrix 
metalloproteinases: regulators of the tumor 
microenvironment. Cell. 2010; 141:52–67. 

 https://doi.org/10.1016/j.cell.2010.03.015 
PMID:20371345 

27. Cassetta L, Pollard JW. Targeting macrophages: 
therapeutic approaches in cancer. Nat Rev Drug 
Discov. 2018; 17:887–904. 

 https://doi.org/10.1038/nrd.2018.169  
PMID:30361552 

28. Petty AJ, Yang Y. Tumor-associated macrophages: 
implications in cancer immunotherapy. 
Immunotherapy. 2017; 9:289–302. 

 https://doi.org/10.2217/imt-2016-0135 
PMID:28231720 

29. Wang D, Yang L, Yue D, Cao L, Li L, Wang D, Ping Y, 
Shen Z, Zheng Y, Wang L, Zhang Y. Macrophage-
derived CCL22 promotes an immunosuppressive tumor 
microenvironment via IL-8 in malignant pleural 
effusion. Cancer Lett. 2019; 452:244–53. 

 https://doi.org/10.1016/j.canlet.2019.03.040 
PMID:30928379 

30. Nip KM, Chiu R, Yang C, Chu J, Mohamadi H, Warren 
RL, Birol I. RNA-Bloom enables reference-free and 
reference-guided sequence assembly for single-cell 
transcriptomes. Genome Res. 2020; 30:1191–200. 

 https://doi.org/10.1101/gr.260174.119 
PMID:32817073 

31. Chen H, Ye F, Guo G. Revolutionizing immunology with 
single-cell RNA sequencing. Cell Mol Immunol. 2019; 
16:242–9. 

 https://doi.org/10.1038/s41423-019-0214-4 
PMID:30796351 

32. Azizi E, Carr AJ, Plitas G, Cornish AE, Konopacki C, 
Prabhakaran S, Nainys J, Wu K, Kiseliovas V, Setty M, 
Choi K, Fromme RM, Dao P, et al. Single-Cell Map of 
Diverse Immune Phenotypes in the Breast Tumor 
Microenvironment. Cell. 2018; 174:1293–308.e36. 

 https://doi.org/10.1016/j.cell.2018.05.060 
PMID:29961579 

33. Zheng H, Liu H, Ge Y, Wang X. Integrated single-cell and 
bulk RNA sequencing analysis identifies a cancer 
associated fibroblast-related signature for predicting 
prognosis and therapeutic responses in colorectal 
cancer. Cancer Cell Int. 2021; 21:552. 

 https://doi.org/10.1186/s12935-021-02252-9 
PMID:34670584 

34. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi 
E, Mauck WM 3rd, Hao Y, Stoeckius M, Smibert P, 
Satija R. Comprehensive Integration of Single-Cell Data. 
Cell. 2019; 177:1888–902.e21. 

 https://doi.org/10.1016/j.cell.2019.05.031 
PMID:31178118 

35. Aran D, Looney AP, Liu L, Wu E, Fong V, Hsu A, Chak S, 
Naikawadi RP, Wolters PJ, Abate AR, Butte AJ, 
Bhattacharya M. Reference-based analysis of lung 
single-cell sequencing reveals a transitional profibrotic 
macrophage. Nat Immunol. 2019; 20:163–72. 

 https://doi.org/10.1038/s41590-018-0276-y 
PMID:30643263 

6831

https://pubmed.ncbi.nlm.nih.gov/35879449
https://doi.org/10.1038/s41568-022-00547-1
https://pubmed.ncbi.nlm.nih.gov/36792751
https://doi.org/10.1093/jnci/djv211
https://pubmed.ncbi.nlm.nih.gov/26286589
https://doi.org/10.1146/annurev-physiol-022516-034339
https://doi.org/10.1146/annurev-physiol-022516-034339
https://pubmed.ncbi.nlm.nih.gov/27813830
https://doi.org/10.1111/imm.12910
https://pubmed.ncbi.nlm.nih.gov/29455468
https://doi.org/10.1038/ni.1937
https://pubmed.ncbi.nlm.nih.gov/20856220
https://doi.org/10.1158/1078-0432.CCR-20-1065
https://pubmed.ncbi.nlm.nih.gov/32788225
https://doi.org/10.1016/j.cell.2010.03.014
https://pubmed.ncbi.nlm.nih.gov/20371344
https://doi.org/10.1017/erm.2021.13
https://pubmed.ncbi.nlm.nih.gov/34758892
https://doi.org/10.1016/j.cell.2010.03.015
https://pubmed.ncbi.nlm.nih.gov/20371345
https://doi.org/10.1038/nrd.2018.169
https://pubmed.ncbi.nlm.nih.gov/30361552
https://doi.org/10.2217/imt-2016-0135
https://pubmed.ncbi.nlm.nih.gov/28231720
https://doi.org/10.1016/j.canlet.2019.03.040
https://pubmed.ncbi.nlm.nih.gov/30928379
https://doi.org/10.1101/gr.260174.119
https://pubmed.ncbi.nlm.nih.gov/32817073
https://doi.org/10.1038/s41423-019-0214-4
https://pubmed.ncbi.nlm.nih.gov/30796351
https://doi.org/10.1016/j.cell.2018.05.060
https://pubmed.ncbi.nlm.nih.gov/29961579
https://doi.org/10.1186/s12935-021-02252-9
https://pubmed.ncbi.nlm.nih.gov/34670584
https://doi.org/10.1016/j.cell.2019.05.031
https://pubmed.ncbi.nlm.nih.gov/31178118
https://doi.org/10.1038/s41590-018-0276-y
https://pubmed.ncbi.nlm.nih.gov/30643263


www.aging-us.com 24 AGING 

36. Zhang X, Lan Y, Xu J, Quan F, Zhao E, Deng C, Luo T, Xu 
L, Liao G, Yan M, Ping Y, Li F, Shi A, et al. CellMarker: a 
manually curated resource of cell markers in human 
and mouse. Nucleic Acids Res. 2019; 47:D721–8. 

 https://doi.org/10.1093/nar/gky900  
PMID:30289549 

37. Charoentong P, Finotello F, Angelova M, Mayer C, 
Efremova M, Rieder D, Hackl H, Trajanoski Z. Pan-
cancer Immunogenomic Analyses Reveal Genotype-
Immunophenotype Relationships and Predictors of 
Response to Checkpoint Blockade. Cell Rep. 2017; 
18:248–62. 

 https://doi.org/10.1016/j.celrep.2016.12.019 
PMID:28052254 

38. Liu Y, Zhang H, Mao Y, Shi Y, Wang X, Shi S, Hu D, Liu S. 
Bulk and single-cell RNA-sequencing analyses along 
with abundant machine learning methods identify a 
novel monocyte signature in SKCM. Front Immunol. 
2023; 14:1094042. 

 https://doi.org/10.3389/fimmu.2023.1094042 
PMID:37304304 

39. Han Y, Yu G, Sarioglu H, Caballero-Martinez A, Schlott 
F, Ueffing M, Haase H, Peschel C, Krackhardt AM. 
Proteomic investigation of the interactome of FMNL1 
in hematopoietic cells unveils a role in calcium-
dependent membrane plasticity. J Proteomics. 2013; 
78:72–82. 

 https://doi.org/10.1016/j.jprot.2012.11.015 
PMID:23182705 

40. Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, 
Ou Yang TH, Porta-Pardo E, Gao GF, Plaisier CL, Eddy 
JA, Ziv E, Culhane AC, Paull EO, et al, and Cancer 
Genome Atlas Research Network. The Immune 
Landscape of Cancer. Immunity. 2018; 48:812–30.e14. 

 https://doi.org/10.1016/j.immuni.2018.03.023 
PMID:29628290 

41. Sfanos KS, Bruno TC, Maris CH, Xu L, Thoburn CJ, 
DeMarzo AM, Meeker AK, Isaacs WB, Drake CG. 
Phenotypic analysis of prostate-infiltrating 
lymphocytes reveals TH17 and Treg skewing. Clin 
Cancer Res. 2008; 14:3254–61. 

 https://doi.org/10.1158/1078-0432.CCR-07-5164 
PMID:18519750 

42. Lu X, Horner JW, Paul E, Shang X, Troncoso P, Deng P, 
Jiang S, Chang Q, Spring DJ, Sharma P, Zebala JA, 
Maeda DY, Wang YA, DePinho RA. Effective 
combinatorial immunotherapy for castration-resistant 
prostate cancer. Nature. 2017; 543:728–32. 

 https://doi.org/10.1038/nature21676  
PMID:28321130 

43. Hu R, Han Q, Zhang J. STAT3: A key signaling molecule 
for converting cold to hot tumors. Cancer Lett. 2020; 
489:29–40. 

 https://doi.org/10.1016/j.canlet.2020.05.035 
PMID:32522692 

44. Salvagno C, Ciampricotti M, Tuit S, Hau CS, van 
Weverwijk A, Coffelt SB, Kersten K, Vrijland K, Kos K, 
Ulas T, Song JY, Ooi CH, Rüttinger D, et al. Therapeutic 
targeting of macrophages enhances chemotherapy 
efficacy by unleashing type I interferon response. Nat 
Cell Biol. 2019; 21:511–21. 

 https://doi.org/10.1038/s41556-019-0298-1 
PMID:30886344 

45. Su Y, Xue C, Gu X, Wang W, Sun Y, Zhang R, Li L. 
Identification of a novel signature based on 
macrophage-related marker genes to predict prognosis 
and immunotherapeutic effects in hepatocellular 
carcinoma. Front Oncol. 2023; 13:1176572. 

 https://doi.org/10.3389/fonc.2023.1176572 
PMID:37305578 

46. Xie S, Huang G, Qian W, Wang X, Zhang H, Li Z, Liu Y, 
Wang Y, Yu H. Integrated analysis reveals the 
microenvironment of non-small cell lung cancer and a 
macrophage-related prognostic model. Transl Lung 
Cancer Res. 2023; 12:277–94. 

 https://doi.org/10.21037/tlcr-22-866  
PMID:36895934 

47. Mukherjee AG, Wanjari UR, Prabakaran DS, Ganesan R, 
Renu K, Dey A, Vellingiri B, Kandasamy S, Ramesh T, 
Gopalakrishnan AV. The Cellular and Molecular 
Immunotherapy in Prostate Cancer. Vaccines (Basel). 
2022; 10:1370. 

 https://doi.org/10.3390/vaccines10081370 
PMID:36016257 

48. Rehman LU, Nisar MH, Fatima W, Sarfraz A, Azeem N, 
Sarfraz Z, Robles-Velasco K, Cherrez-Ojeda I. 
Immunotherapy for Prostate Cancer: A Current 
Systematic Review and Patient Centric Perspectives. J 
Clin Med. 2023; 12:1446. 

 https://doi.org/10.3390/jcm12041446  
PMID:36835981 

49. Loeb S, Vonesh EF, Metter EJ, Carter HB, Gann PH, 
Catalona WJ. What is the true number needed to 
screen and treat to save a life with prostate-specific 
antigen testing? J Clin Oncol. 2011; 29:464–7. 

 https://doi.org/10.1200/JCO.2010.30.6373 
PMID:21189374 

50. Fizazi K, Flaig TW, Stöckle M, Scher HI, de Bono JS, 
Rathkopf DE, Ryan CJ, Kheoh T, Li J, Todd MB, Griffin 
TW, Molina A, Ohlmann CH. Does Gleason score at 
initial diagnosis predict efficacy of abiraterone acetate 
therapy in patients with metastatic castration-resistant 
prostate cancer? An analysis of abiraterone acetate 
phase III trials. Ann Oncol. 2016; 27:699–705. 

 https://doi.org/10.1093/annonc/mdv545 
PMID:26609008 

6832

https://doi.org/10.1093/nar/gky900
https://pubmed.ncbi.nlm.nih.gov/30289549
https://doi.org/10.1016/j.celrep.2016.12.019
https://pubmed.ncbi.nlm.nih.gov/28052254
https://doi.org/10.3389/fimmu.2023.1094042
https://pubmed.ncbi.nlm.nih.gov/37304304
https://doi.org/10.1016/j.jprot.2012.11.015
https://pubmed.ncbi.nlm.nih.gov/23182705
https://doi.org/10.1016/j.immuni.2018.03.023
https://pubmed.ncbi.nlm.nih.gov/29628290
https://doi.org/10.1158/1078-0432.CCR-07-5164
https://pubmed.ncbi.nlm.nih.gov/18519750
https://doi.org/10.1038/nature21676
https://pubmed.ncbi.nlm.nih.gov/28321130
https://doi.org/10.1016/j.canlet.2020.05.035
https://pubmed.ncbi.nlm.nih.gov/32522692
https://doi.org/10.1038/s41556-019-0298-1
https://pubmed.ncbi.nlm.nih.gov/30886344
https://doi.org/10.3389/fonc.2023.1176572
https://pubmed.ncbi.nlm.nih.gov/37305578
https://doi.org/10.21037/tlcr-22-866
https://pubmed.ncbi.nlm.nih.gov/36895934
https://doi.org/10.3390/vaccines10081370
https://pubmed.ncbi.nlm.nih.gov/36016257
https://doi.org/10.3390/jcm12041446
https://pubmed.ncbi.nlm.nih.gov/36835981
https://doi.org/10.1200/JCO.2010.30.6373
https://pubmed.ncbi.nlm.nih.gov/21189374
https://doi.org/10.1093/annonc/mdv545
https://pubmed.ncbi.nlm.nih.gov/26609008


www.aging-us.com 25 AGING 

51. A J, Zhang B, Zhang Z, Hu H, Dong JT. Novel Gene 
Signatures Predictive of Patient Recurrence-Free 
Survival and Castration Resistance in Prostate Cancer. 
Cancers (Basel). 2021; 13:917. 

 https://doi.org/10.3390/cancers13040917 
PMID:33671634 

52. Cha HR, Lee JH, Ponnazhagan S. Revisiting 
Immunotherapy: A Focus on Prostate Cancer. Cancer 
Res. 2020; 80:1615–23. 

 https://doi.org/10.1158/0008-5472.CAN-19-2948 
PMID:32066566 

53. Kim TJ, Koo KC. Current Status and Future Perspectives 
of Checkpoint Inhibitor Immunotherapy for Prostate 
Cancer: A Comprehensive Review. Int J Mol Sci. 2020; 
21:5484. 

 https://doi.org/10.3390/ijms21155484 
PMID:32751945 

54. Saleem S, Rashid AB, Shehzadi S, Mumtaz H, Saqib M, 
Bseiso A, Villasenor AV, Ahmed A, Sonia SN. 
Contemporaneous and upcoming trends in 
immunotherapy for prostate cancer: review. Ann Med 
Surg (Lond). 2023; 85:4005–14. 

 https://doi.org/10.1097/MS9.0000000000001070 
PMID:37554896 

55. Martner A, Aydin E, Hellstrand K. NOX2 in 
autoimmunity, tumor growth and metastasis. J Pathol. 
2019; 247:151–4. 

 https://doi.org/10.1002/path.5175  
PMID:30270440 

56. Zhang J, Li H, Wu Q, Chen Y, Deng Y, Yang Z, Zhang L, 
Liu B. Tumoral NOX4 recruits M2 tumor-associated 
macrophages via ROS/PI3K signaling-dependent 
various cytokine production to promote NSCLC growth. 
Redox Biol. 2019; 22:101116. 

 https://doi.org/10.1016/j.redox.2019.101116 
PMID:30769285 

57. Ryan BM, Zanetti KA, Robles AI, Schetter AJ, 
Goodman J, Hayes RB, Huang WY, Gunter MJ, 
Yeager M, Burdette L, Berndt SI, Harris CC. Germline 
variation in NCF4, an innate immunity gene, is 
associated with an increased risk of colorectal 
cancer. Int J Cancer. 2014; 134:1399–407. 

 https://doi.org/10.1002/ijc.28457  
PMID:23982929 

58. Lee JY, Park AK, Lee KM, Park SK, Han S, Han W, Noh 
DY, Yoo KY, Kim H, Chanock SJ, Rothman N, Kang D. 
Candidate gene approach evaluates association 
between innate immunity genes and breast cancer 
risk in Korean women. Carcinogenesis. 2009; 
30:1528–31. 

 https://doi.org/10.1093/carcin/bgp084 
PMID:19372141 

59. Chen Y, He F, Wang R, Yao M, Li Y, Guo D, He S. 
NCF1/2/4 Are Prognostic Biomarkers Related to the 
Immune Infiltration of Kidney Renal Clear Cell 
Carcinoma. Biomed Res Int. 2021; 2021:595403. 

 https://doi.org/10.1155/2021/5954036 
PMID:34708124 

 

 

  

6833

https://doi.org/10.3390/cancers13040917
https://pubmed.ncbi.nlm.nih.gov/33671634
https://doi.org/10.1158/0008-5472.CAN-19-2948
https://pubmed.ncbi.nlm.nih.gov/32066566
https://doi.org/10.3390/ijms21155484
https://pubmed.ncbi.nlm.nih.gov/32751945
https://doi.org/10.1097/MS9.0000000000001070
https://pubmed.ncbi.nlm.nih.gov/37554896
https://doi.org/10.1002/path.5175
https://pubmed.ncbi.nlm.nih.gov/30270440
https://doi.org/10.1016/j.redox.2019.101116
https://pubmed.ncbi.nlm.nih.gov/30769285
https://doi.org/10.1002/ijc.28457
https://pubmed.ncbi.nlm.nih.gov/23982929
https://doi.org/10.1093/carcin/bgp084
https://pubmed.ncbi.nlm.nih.gov/19372141
https://doi.org/10.1155/2021/5954036
https://pubmed.ncbi.nlm.nih.gov/34708124


www.aging-us.com 26 AGING 

SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. (A) The legend of the consensus matrix. (B–I) Consensus clustering matrix when k = 2-9. (J) Consensus clustering 

CDF with k valued 2 to 9. (K) Relative change in area under CDF curve for k = 2 to 9. (L) Item tracking plot.  
  

6834



www.aging-us.com 27 AGING 

 
 

Supplementary Figure 2. (A) Utilizing the TISCH database to identify the expression patterns of NCF4 in immune and nonimmune cells 
across all six PRAD single-cell datasets. (B) Heatmap of NCF4 expression and clinicopathologic characteristics. (C–G) Relationship between 
ISUP, GS, p_T stage, p_N stage, Age, and the NCF4 expression. (H) Prognostic comparison between NCF4 high- and low-expression groups.   
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 2–6, 8. 

 

Supplementary Table 1. Detailed information on the PCa cohort used in this study.  

Datasets Platform 
Number of input 

samples(tumor/normal) 
Application 

GSE141445 
GPL24676 Illumina NovaSeq 6000 (Homo 

sapiens) 
12/- 

 Identification of Macrophage-

Cell Marker Genes 

TCGA-PRAD 
Illumina HumanHT-12 V4.0 expression 

beadchip 
501/52 

WGCNA, Molecular subtypes, 

Construction of the prognostic 

signature,… 

CPGEA Illumina HiSeq X TEN 136/136 
WGCNA, External validation of 

the signature 

DKFZ-PRAD 
Illumina HumanHT-12 V3.0 expression 

beadchip 
81/- 

External validation of the 

signature 

MSKCC-

PRAD 
Affymetrix Human Exon 1.0 ST Array 140/- 

External validation of the 

signature 

GSE116918 

GPL25318 [ADXPCv1a520642] Almac 

Diagnostics Prostate Disease Specific Array 

(DSA) 

248/- 
External validation of the 

signature 

GSE70768 
GPL10558 Illumina HumanHT-12 V4.0 

expression beadchip 
126/- 

WGCNA, External validation of 

the signature 

GSE70769 
GPL10558 Illumina HumanHT-12 V4.0 

expression beadchip 
92/- 

External validation of the 

signature 

GSE46602 
GPL570 [HG-U133_Plus_2] Affymetrix Human 

Genome U133 Plus 2.0 Array 
36/- 

External validation of the 

signature 

GSE70770 
GPL10558 Illumina HumanHT-12 V4.0 

expression beadchip 
203/- 

External validation of the 

signature 

 

Supplementary Table 2. Cluster marker genes.  

 

Supplementary Table 3. Macrophage marker genes.  

 

Supplementary Table 4. Green module genes of WGCNA in TCGA.  

 

Supplementary Table 5. Brown module genes of WGCNA in CPGEA.  

 

Supplementary Table 6. Red module genes of WGCNA in GSE70768.  
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Supplementary Table 7. The 65 intersection genes. 

GMFG 

HLA-DPA1 

CTSZ 

APOE 

APOC1 

C3AR1 

EVI2B 

STX11 

HLA-DRA 

LGALS9 

LY96 

FCER1G 

TMEM176A 

FCGR2A 

HCLS1 

ARHGDIB 

C1QC 

C1QA 

C1orf162 

CD53 

TNFSF13B 

TYROBP 

LST1 

ARPC1B 

HLA-B 

FXYD5 

HLA-DPB1 

VSIG4 

HCST 

AIF1 

CD4 

IFI30 

CD74 

GPNMB 

CD48 

SPI1 

CTSS 

TMEM176B 

PLAU 

PLEK 

CD163 

CSF1R 

ADAP2 

SLCO2B1 

CD37 

CPVL 

ITGB2 

MS4A6A 
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RNASE6 

IGSF6 

HLA-DQB1 

HLA-DQA2 

CYBB 

HLA-DQA1 

TYMP 

UCP2 

CYBA 

TMSB4X 

LAPTM5 

CD14 

C1QB 

ALOX5AP 

HLA-DMA 

FCGR2B 

LY86 

 

Supplementary Table 8. The result of univariate Cox regression analysis.  

 

Supplementary Table 9. The result 
of multivariate Cox regression 
analysis. 

Model genes Coefficient 

ADAMTS14 0.515638204 

LCN2 -0.154605129 

SCARA5 -0.434633801 

SYT4 0.135870367 

NCF4 0.42349482 

CHST13 0.664288472 

FEV -0.134764099 

PAX1 0.204530723 
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