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INTRODUCTION 
 
Glioblastoma (GBM; World Health Organization grade 
IV) is the most common and devastating primary tumor 
in the central nervous system [1, 2]. Despite multimodal 
treatments involving surgery, radio- and chemotherapy, 
patients with GBM have an average survival time of  

 

only slightly more than one year [1, 2]. Extensive 
investigations have suggested that the dismal prognosis 
of GBM is largely attributed to inevitable therapeutic 
resistance and tumor relapse, while heterogeneity has 
been described as the root cause of multiple cancer types 
[3, 4]. Therefore, an improved understanding of GBM 
heterogeneity has important implications for not only 
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ABSTRACT 
 
Recent advances in single-cell RNA sequencing (scRNA-seq) have endowed researchers with the ability to detect 
and analyze the transcriptomes of individual cancer cells. In the present study, 16,128 tumor cells from EGFR 
wild-type and EGFRvIII mutant cells were profiled by scRNA-seq. Analyses of scRNA-seq data from both U87MG 
and U87MG-EGFRvIII libraries revealed inherent heterogeneity in gene expression and biological processes. The 
cells stably expressing EGFRvIII showed enhanced transcriptional activities and a relatively homogeneous 
pattern, which manifested as less diverse distributions, gene expression levels and functional annotations 
compared with those of cells expressing the nonmutated version. Moreover, the differentially expressed genes 
between the U87MG and U87MG-EGFRvIII groups were mainly enriched in DNA replication, DNA repair and 
angiogenesis. We compared scRNA-seq data with bulk RNA-seq and EGFRvIII xenograft RNA-seq data. 
RAD51AP1 was shown to be upregulated in all three databases. Further analysis of RAD51AP1 revealed that it is 
an independent prognostic factor of glioma. Knocking down RAD51AP1 significantly inhibited tumor volume in 
an intracranial EGFRvIII-positive GBM model and prolonged survival time. Collectively, our microfluidic-based 
scRNA-seq driven by a single genetic event revealed a previously unappreciated implication of EGFRvIII in the 
heterogeneity of GBM and identified RAD51AP1 as an oncogene in glioma. 
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clinical diagnoses but also for the design of better 
therapies and avoidance of tumor recurrence [5, 6]. 
 
Previous efforts with a focus on bulk tissue have revealed 
a remarkably heterogeneous pattern among individual 
patients. Receptor tyrosine kinases (RTKs), especially the 
epidermal growth factor receptor (EGFR), are crucial 
regulators of cellular proliferation, angiogenesis, 
metabolism and survival [7, 8]. Importantly, the deletion 
of exons 2-7 of EGFR (EGFRvIII) is a common genetic 
alteration, accounting for nearly 30% of GBM cases [8]. 
EGFRvIII, which lacks the extracellular ligand-binding 
domain, could constitutively activate the EGFR signaling 
pathway, leading to the malignant progression of tumor 
cells and modulation of the tumor microenvironment [9]. 
While this alteration can drive gliomagenesis, tumors 
harboring EGFRvIII are heterogeneous [10, 11]. 
However, conventional methods failed to adequately 
reflect intratumoral composition. 
 
DNA damage is a high risk factor that leads to replication 
errors, cell cycle arrest, cell death and human disease. 
RAD51-mediated homologous recombination is an 
important method for repairing DNA double-stranded 
breaks (DSBs). RAD51AP1 (RAD51-associated protein 
1), first identified as a RAD51-interacting protein [12], 
stimulates joint molecule formation and is required for 
cellular protection against DSB-inducing agents [13, 14]. 
Because of the importance of DSBs, chemotherapies that 
induce DSBs are widely employed in cancer treatment. 
Thus, molecules involved in DSB repair could influence 
chemotherapeutic drug effectiveness [15]. Although 
reported in ovarian cancer, lung cancer and melanoma, 
RAD51AP1 is still a rarely studied protein [16, 17], and 
its role in glioma is unknown. 
 
The development of single-cell RNA sequencing 
(scRNA-seq) techniques has enabled transcriptomic 
analysis within individual cells. Using scRNA-seq 
libraries, an increasing number of studies have attempted 
to dissect lineage identity, tracking dynamic cellular 
changes and depicting the interplay between intrinsic 
tumor cells and the microenvironment, thereby 
uncovering the intratumoral heterogeneity in glioma [18–
20]. In the present study, we used microfluidic-based 
scRNA-seq techniques to profile single cells from 
U87MG and EGFRvIII-expressing U87MG cell lines, 
which we found to exhibit inherently variable gene 
expression and biological functions. We also observed 
enhanced transcriptional activity and decreased 
heterogeneity caused by the EGFRvIII mutation. By 
comparing the two scRNA-seq libraries, we showed that 
EGFRvIII could induce a phenotypic transition to 
enhance DNA division, DNA repair and angiogenesis. 
We combined the scRNA-seq data with bulk U87/U87-
EGFRvIII RNA-seq data and EGFRvIII xenograft RNA-

seq data under accession number GSE46028 and found 
RAD51AP1 to be upregulated in three of the databases. 
Furthermore, we showed that RAD51AP1 was a GBM 
oncogene by bioinformatics analysis, generated an 
intracranial mouse glioma model and performed clinical 
multiple spot samplings. Therefore, our study reveals the 
impact of EGFRvIII on the dynamic alterations of glioma 
cells at single-cell resolution, further elucidating the exact 
mechanism of EGFRvIII in glioma and identifying the 
role of RAD51AP1 in GBM. 
 
RESULTS 
 
scRNA-seq analysis of U87MG and U87MG-EGFRvIII 
cells 
 
U87MG is a GBM cell line that is widely used in 
experimental investigations. To evaluate the effects of 
EGFRvIII mutation on GBM, U87MG cells were 
transfected with lentivirus containing EGFRvIII cDNA. 
Then, U87MG and U87MG-EGFRvIII cells were 
subjected to scRNA-seq analysis using microfluidic-
based approaches with the 10x Genomics® platform 
[21]. A total of 9,365 cells and 20,033 UMIs per cell 
were estimated to exist in the U87MG library (Table 
1). Although the number of loaded cells was less  
than that in the U87MG library (6763 cells), the 
median UMI counts and genes per cell were 26,811  
and 4238, respectively, in the U87MG-EGFRvIII 
library, and these numbers were higher those in its 
counterpart (Table 1). This augmentation of UMI 
counts and genes within individual cells was indicative 
of a reinforcement of EGFRvIII on whole-genome 
transcriptomic activities. 
 
Next, K-means clustering analysis was conducted to 
examine cellular heterogeneity. Overall, ten distinct cell 
clusters were identified and visualized by the two-
dimensional projection of t-distributed stochastic 
neighbor embedding (t-SNE, Figure 1A and 1B) [22]. 
Interestingly, when k was equal to two, the majority of 
U87MG-EGFRvIII cells belonged to the same cluster 
(Figure 1C). In addition, automated clustering revealed 
an attenuated heterogeneity of U87MG-EGFRvIII at 
k=4, 6, 8 and 10 (Figure 1C). The top 100 differential 
expression genes (Supplementary Table 1) were picked 
up, and clustered in all the 16128 cells. From the 
heatmap we can see that U87-EGFRvIII cells are more 
homogeneous than U87 cells (Figure 1D). 
 
The percentage of each cluster ranged from 1% to 19%, 
and the top three clusters occupied a 49% proportion in 
U87MG cells. GO analyses of the cluster-specific genes 
revealed distinct biological subtypes. Briefly, clusters 
two and seven were enriched in DNA repair, the cell 
cycle and DNA replication; cluster ten was enriched in 
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Table 1. Summary of 10 × Genomics Single-cell RNA Sequencing. 

Summary of barcodes and sequencing parameters U87MG U87MG-EGFRvIII 

Estimated number of cells 9,365 6,763 

Fraction reads in cells 80.9% 75.9% 

Mean reads per cell 56,095 92,544 

Median genes per cell 3,890 4,238 

Total genes detected 16,094 15,874 

Median UMI counts per cell 20,033 26,811 

Reads mapped confidently to the transcriptome 66.6% 69.5% 

Reads mapped confidently to exonic regions 70.8% 73.5% 

Reads mapped confidently to intronic regions 13.2% 10.5% 

Reads mapped confidently to intergenic regions 5.8% 4.5% 

Reads mapped antisense to the gene 5.2% 5.0% 
 

immune and inflammatory responses; and clusters four, 
six and eight were associated with cell adhesion and 
angiogenesis (Supplementary Figure 1). Notably, clusters 
one, three and nine showed too few differentially 
regulated genes to perform GO analysis. For U87MG-
EGFRvIII cells, only clusters 1, 4, 6 and 8 showed 
enough cluster-specific genes for GO analyses 
(Supplementary Figure 2). 
 
Comparison of U87MG and U87MG-EGFRvIII 
scRNA-seq 
 
To further explore the transcriptomic differences 
between U87MG and U87MG-EGFRvIII cells, we 
subjected both libraries to the LOUPE browser 
simultaneously. As expected, the two populations of 
cells showed distinct distribution patterns (Figure 2A, 
2B). The upregulated genes in U87MG-EGFRvIII cells 
were mainly enriched in the DNA damage response, cell 
division and angiogenesis processes, which was 
consistent with the TCGA results (Figure 2C and 
Supplementary Figure 2). Graph-based clustering 
analysis further identified 15 different subgroups with 
cluster-specific genes and biological processes (Figure 
2D–2F). The U87MG-EGFRvIII cells were mainly 
distributed in cluster one (1397, 71.42%), cluster three 
(1108, 74.11%), cluster six (1173, 91.00%) and cluster 
eleven (775, 96.75%), while U87MG cells were 
observed in the other eleven clusters (Supplementary 
Figure 3), which further indicated that the heterogeneity 
is stronger in U87MG cells. Consistently, the biological 
annotations revealed that the cluster-specific biological 
processes in U87MG-EGFRvIII cells are associated with 
angiogenesis (cluster 1), DNA repair and cell division 
(Figure 3). 

RAD51AP1 is closely correlated with EGFRvIII 
 
To further profile the differential genes associated  
with EGFRvIII expression, we employed GSE46028, a 
xenograft GBM RNA-seq database, and the RNA-seq 
results of U87MG vs U87MG-EGFRvIII cells. In total, 
1880 upregulated genes and 1582 downregulated genes 
were observed in the EGFRvIII group in the GSE46028 
database (Figure 4A), 228 upregulated genes and 1290 
downregulated genes were observed in EGFRvIII-
positive cells (Figure 4B), and 385 upregulated genes 
and 269 downregulated genes were observed in the 
RNA-seq results (Figure 4C). We combined these data 
and found that two upregulated genes and four 
downregulated genes coincided in the three datasets 
(Figure 4D, 4E). Among them, RAD51AP1 was 
positively correlated with the EGFRvIII mutation. 
Moreover, both the protein expression of RAD51AP1 
and the proliferative index Ki-67 were higher in 
EGFRvIII mutant specimens than in EGFR wild-type 
samples (Figure 4F). 
 
The oncogenic role of RAD51AP1 in GBM 
 
While RAD51AP1 is known to promote RAD51-
mediated homologous recombination [13], the role of 
RAD51AP1 in glioma has rarely been studied. 
Bioinformatic analyses revealed that RAD51AP1 is 
significantly enriched in high-grade gliomas in the 
CGGA, TCGA and GSE16011 datasets (Figure 5A–5D). 
Kaplan-Meier survival analysis confirmed the poor 
outcomes of patients with both low- and high-grade 
gliomas expressing high levels of RAD51AP1 (Figure 
5E–5H). Uni- and multivariable Cox analyses further 
indicated that RAD51AP1 is an independent prognostic 
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Figure 1. Single-cell analyses of U87MG and U87MG-EGFRvIII cells. U87MG-EGFRvIII cells were less heterogeneous than 
U87MG cells. (A) Clustering analyses reveal ten subsets with cluster-specific genes and functions. The pie chart shows the percentage of 
each cluster. (B) The clustering results of U87MG-EGFRvIII cells (k=10) and the percentage of each cluster. (C) The clustering results with k 
values from two to ten. (D) The heatmap shows the gene expression of every single cell. 
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factor of clinical and molecular pathological parameters 
in the CGGA and TCGA databases (Figure 6A and 6B 
and Supplementary Figure 4). Notably, the RAD51AP1 
positively associated genes were mainly enriched in 
DNA repair and cell cycle-related biological processes 
and KEGG pathways in both the CGGA and TCGA 
databases (Figure 6C and Supplementary Figure 5). 
 
To investigate the role of RAD51AP1, we constructed 
intracranial mouse models using U87MG-EGFRvIII 

cells transfected with a negative control (N.C.) or si-
RAD51AP1 lentivirus. In vivo imaging analysis at days 
7, 14 and 21 revealed that knocking down RAD51AP1 
significantly inhibited the tumor volume compared to 
that in the Lenti-N.C. group (Figure 7A). Low 
RAD51AP1 expression was strongly associated with 
longer survival times in mice (Figure 7B). Furthermore, 
immunohistochemistry (IHC) analysis indicated that the 
CD34 and Ki-67 expression levels were reduced in the 
RAD51AP1 knockdown group (Figure 7C). 

 

 
 

Figure 2. Comparison of single-cell libraries from U87MG and U87MG-EGFRvIII cells. (A) The distribution of U87MG cells. (B) The 
distribution of U87MG-EGFRvIII cells. (C) The biological process annotations of differential genes that were upregulated in EGFRvIII cells.  
(D) Graph-based clustering revealed 15 clusters in 16,128 cells. (E) Distributions of each cluster in the U87MG and U87MG-EGFRvIII libraries. 
(F) The expression levels of cluster-specific genes. 
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Figure 3. Gene Ontology (GO) analysis of EGFRvIII-related cluster-specific genes and biological processes (cluster 1, cluster 3, 
and cluster 6). 
 

 
 

Figure 4. RAD51AP1 is upregulated in EGFRvIII-positive cells. The volcano plot was constructed to profile the differentially expressed 
genes observed in GES46028 (A) and scRNA-seq data (B). (C) A heatmap was employed to profile the differentially expressed genes observed 
in U87MG/U87MG-EGFRvIII RNA-seq data. A Venn diagram was used to profile the common upregulated (D) and downregulated (E) genes in 
three databases. (F) The EGFRvIII, r-H2A.x, RAD51AP1 and Ki-67 expression levels in multipoint samples from two patients were examined by 
IHC staining. 
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Figure 5. The expression level of RAD51AP1 correlated with the GBM clinical grade and patient survival rate. (A–D) ssGSEA was 
employed to evaluate the expression pattern of RAD51AP1 in the CGGA, TCGA and GSE16011 databases. (E–H) Kaplan-Meier survival curves 
were plotted to show the survival times at different RAD51AP1 expression levels. 
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Altogether, these results demonstrated that RAD51AP1 
is an oncogene in glioma and is highly associated with 
EGFRvIII. 
 
DISCUSSION 
 
GBM is a complex entity composed of cells with various 
phenotypes and genotypes. Molecular profiling of bulk 
tumor tissues suggests an intertumoral diversity by 
dividing patients into discrete subpopulations [23, 32], 
while multiregional sampling and single-cell sequencing 
reveal the spatial heterogeneity within individual tumors 
[24, 25]. Uncovering this heterogeneity in GBM will 
provide better insights into the mechanism underlying 

tumor cell behavior. In the present study, U87MG cells, 
a widely used experimental cell line, exhibited varied 
gene transcript levels and several biological processes. 
For instance, clusters two and seven, which accounted 
for 23% of all the detected cells, were enriched in cell 
cycle transition, DNA replication, cell division and DNA 
repair, thus potentially contributing to the variation in 
therapeutic responses of tumor cells observed under the 
same conditions. 
 
Our preliminary investigations shown that mutations in 
EGFRvIII affect exosome formation, proliferation, the 
cytoskeleton and several malignant cellular processes by 
transcriptional, posttranscriptional and epigenetic 

 

 
 

Figure 6. RAD51AP1 is an oncogene in glioma. (A) RAD51AP1 highly coincides with EGFRvIII in scRNA-seq data. (B) GSEA was performed 
to estimate RAD51AP1 expression in gliomas of different clinical grades. (C) Uni- and multivariable Cox analyses were performed to evaluate 
the role of RAD51AP1 in gliomas in the CGGA database, while GO and KEGG analyses were employed to profile the pathways of RAD51AP1-
related genes in the CGGA database. 



www.aging-us.com 7715 AGING 

regulatory mechanisms [26–30]. Based on these works, 
we attempted to further map the EGFRvIII-induced cell 
identity from single-cell gene expression profiles. 
ScRNA-seq analysis of EGFRvIII mutant cells 
demonstrated increased numbers of mean reads, mean 
genes and median UMI counts per cell, indicating a 
higher transcriptional activity conferred by EGFRvIII 
than by the nonmutated version. This result is consistent 
with pioneering investigations demonstrating that EGFR 
mutation remodels the activated enhancer landscape 
through epigenetic reprogramming by promoting GBM 
tumorigenesis in vitro and in vivo [31]. Although the 
crosstalk between malignant and nonmalignant GBM 
cells is complex and heterogeneous, the tumor cells 
driven by the EGFRvIII mutation showed a relatively 
uniform pattern of distribution and gene expression. The 
biology of EGFRvIII has been studied extensively, and 
EGFRvIII has been shown to be a strong oncogene that 
can drive a more aggressive phenotype. Moreover, the 
cells stably expressing EGFRvIII showed enhanced 
malignancies of angiogenesis, DNA repair and  
DNA replication, which verified the consequence  

proposed by bulk tissue sequencing and experimental 
investigations [10, 11]. 
 
To the best of our knowledge, we herein identify 
RAD51AP1 as an oncogene in glioma for the first time. 
Temozolomide (TMZ) is the only chemotherapeutic drug 
used to treat GBM and functions by inducing DNA 
damage in tumor cells. Unfortunately, the average 
survival time of glioma patients is only 15 months 
because patients become resistant to the drug TMZ [1]. 
Thus, our work provides a new possibility of combining 
TMZ and RAD51AP1, which might enhance the DNA 
damaging effect of TMZ. 
 
In conclusion, heterogeneity poses a substantial challenge 
to the treatment of glioma patients. Using scRNA-seq 
and quantitative methods, we delineated transcriptomic 
and functional variations in U87MG and U87MG-
EGFRvIII cells, emphasized the importance of EGFRvIII 
mutations for tumor cell aggressive behavior and 
heterogeneity, and identified RAD51AP1 as an oncogene 
in glioma for the first time. 

 

 
 

Figure 7. Target knocking down RAD51AP1 inhibited the progression of the EGFRvIII-positive intracranial GBM model. (A) The 
tumor volumes at the indicated times were evaluated by bioluminescence imaging. (B) Survival rates of mice bearing U87-EGFRvIII and 
EGFRvIII-siRAD51AP1 tumors. (C) Immunohistochemistry analysis was performed to detect Ki-67 and CD34 expression. 
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MATERIALS AND METHODS 
 
Cell culture and lentivirus infection 
 
The human GBM cell line U87MG was obtained from 
American Type Culture Collection (ATCC). The cells 
were cultured in complete DMEM supplemented with 
100 units/ml penicillin and 50 µg/ml streptomycin. 
Lentivirus containing EGFRvIII cDNA was purchased 
from GENECHEM (Shanghai, China), and cells were 
infected with the virus according to the manufacturer’s 
instructions. U87MG cells (U87MG-EGFRvIII cells) that 
stably expressed EGFRvIII were used for subsequent 
experiments. 
 
RNA sequence analysis 
 
Clinical characteristics, transcriptome sequencing data 
and molecular data were downloaded from The  
Cancer Genome Atlas (TCGA) as a validation set 
(https://cancergenome.nih.gov/) [32]. Differentially 
expressed genes were screened using a significant 
analysis of microarray (SAM) algorithm. Genes with an 
adjusted P value < 0.05 were regarded as candidate 
differential genes and subjected to Gene Ontology (GO) 
analysis using the online tool Database for Annotation, 
Visualization, and Integrated Discovery (DAVID, 
https://david.ncifcrf.gov/) [33]. The GO results were 
visualized with the BiNGO plugin imbedded in 
Cytoscape software (version 3.7.1). 
 
Single-cell RNA-seq 
 
Briefly, cells were trypsinized and resuspended in  
a phosphate buffer solution containing 0.04% 
weight/volume bovine serum albumin (BSA). Barcoded 
single-cell gel beads in emulsion (GEMs) were created 
by 10x Genomics® ChromiumTM and then reverse 
transcribed to generate single-cell RNA-seq libraries. 
Unique molecular identifiers (UMIs), which were 
incorporated into the 5′ end of cDNA during reverse 
transcription, were used to quantify the exact number of 
transcripts in a cell. The single-cell transcriptome 
analyses were conducted using the LOUPE cell 
browser. To identify cluster-specific genes, we 
calculated the expression difference of each gene 
between that cluster and the average of the rest of 
clusters. The candidate genes with a fold change > 2 
and an adjusted P value < 0.05 were used for DAVID 
analyses. 
 
Intracranial mouse model 
 
Five-week-old female nude mice were purchased from 
the Chinese Academy of Medical Science Cancer 
Institute and randomly divided into two groups. U87-

EGFRvIII and U87-EGFRvIII si-RAD51AP1 cells were 
prepared. A total of 500,000 cells were injected into  
each mouse under the guidance of a stereotactic 
instrument. Intracranial tumor growth was measured by 
bioluminescence imaging on days 7, 14 and 21, and 
Kaplan-Meier survival curves were plotted to show the 
survival time. 
 
Immunohistochemical staining 
 
Immunohistochemistry was performed on mouse 
intracranial tumors by subjecting 5-µm paraffin sections 
to a three-step process and a DAB staining kit (ZSGB-
BIO). Ki-67 and CD34 primary antibodies were 
purchased from ZSGB-BIO. 
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SUPPLEMENTARY MATERIALS 
 
Supplementary Figures 
 
 

 
 

Supplementary Figure 1. Gene Ontology (GO) analysis of each subset using cluster-specific genes in U87MG cells. 
 

 
 

Supplementary Figure 2. Gene Ontology (GO) analysis of each subset using cluster-specific genes in U87MG-EGFRvIII cells. 
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Supplementary Figure 3. The distributions and percentages of U87MG and U87MG-EGFRvIII cells in each cluster. 
 

 
 

Supplementary Figure 4. Uni- and multivariable Cox analyses were performed to evaluate the role of RAD51AP1 in gliomas 
in the TCGA database. 
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Supplementary Figure 5. GO and KEGG analyses were employed to profile the pathways of RAD51AP1-related genes in the 
CGGA database. 
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Supplementary Table 
 
Please browse Full Text version to see the data of Supplementary Table 1. 
 
Supplementary Table 1. Top 100 differential expression genes in single cell clusters. 


