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ABSTRACT

Recent advances in single-cell RNA sequencing (scRNA-seq) have endowed researchers with the ability to detect
and analyze the transcriptomes of individual cancer cells. In the present study, 16,128 tumor cells from EGFR
wild-type and EGFRvIII mutant cells were profiled by scRNA-seq. Analyses of scRNA-seq data from both U87MG
and U87MG-EGFRuvIII libraries revealed inherent heterogeneity in gene expression and biological processes. The
cells stably expressing EGFRvIll showed enhanced transcriptional activities and a relatively homogeneous
pattern, which manifested as less diverse distributions, gene expression levels and functional annotations
compared with those of cells expressing the nonmutated version. Moreover, the differentially expressed genes
between the U87MG and U87MG-EGFRvIIl groups were mainly enriched in DNA replication, DNA repair and
angiogenesis. We compared scRNA-seq data with bulk RNA-seq and EGFRvlll xenograft RNA-seq data.
RAD51AP1 was shown to be upregulated in all three databases. Further analysis of RAD51AP1 revealed that it is
an independent prognostic factor of glioma. Knocking down RAD51AP1 significantly inhibited tumor volume in
an intracranial EGFRvllI-positive GBM model and prolonged survival time. Collectively, our microfluidic-based
scRNA-seq driven by a single genetic event revealed a previously unappreciated implication of EGFRvIIIl in the
heterogeneity of GBM and identified RAD51AP1 as an oncogene in glioma.

INTRODUCTION

Glioblastoma (GBM; World Health Organization grade
IV) is the most common and devastating primary tumor
in the central nervous system [1, 2]. Despite multimodal
treatments involving surgery, radio- and chemotherapy,
patients with GBM have an average survival time of

only slightly more than one year [1, 2]. Extensive
investigations have suggested that the dismal prognosis
of GBM is largely attributed to inevitable therapeutic
resistance and tumor relapse, while heterogeneity has
been described as the root cause of multiple cancer types
[3, 4]. Therefore, an improved understanding of GBM
heterogeneity has important implications for not only
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clinical diagnoses but also for the design of better
therapies and avoidance of tumor recurrence [5, 6].

Previous efforts with a focus on bulk tissue have revealed
a remarkably heterogeneous pattern among individual
patients. Receptor tyrosine kinases (RTKs), especially the
epidermal growth factor receptor (EGFR), are crucial
regulators of cellular proliferation, angiogenesis,
metabolism and survival [7, 8]. Importantly, the deletion
of exons 2-7 of EGFR (EGFRVIII) is a common genetic
alteration, accounting for nearly 30% of GBM cases [8].
EGFRVIII, which lacks the extracellular ligand-binding
domain, could constitutively activate the EGFR signaling
pathway, leading to the malignant progression of tumor
cells and modulation of the tumor microenvironment [9].
While this alteration can drive gliomagenesis, tumors
harboring EGFRVIII are heterogenecous [10, 11].
However, conventional methods failed to adequately
reflect intratumoral composition.

DNA damage is a high risk factor that leads to replication
errors, cell cycle arrest, cell death and human disease.
RAD51-mediated homologous recombination is an
important method for repairing DNA double-stranded
breaks (DSBs). RAD51AP1 (RAD51-associated protein
1), first identified as a RADS51-interacting protein [12],
stimulates joint molecule formation and is required for
cellular protection against DSB-inducing agents [13, 14].
Because of the importance of DSBs, chemotherapies that
induce DSBs are widely employed in cancer treatment.
Thus, molecules involved in DSB repair could influence
chemotherapeutic drug effectiveness [15]. Although
reported in ovarian cancer, lung cancer and melanoma,
RADS51AP1 is still a rarely studied protein [16, 17], and
its role in glioma is unknown.

The development of single-cell RNA sequencing
(scRNA-seq) techniques has enabled transcriptomic
analysis within individual cells. Using scRNA-seq
libraries, an increasing number of studies have attempted
to dissect lineage identity, tracking dynamic cellular
changes and depicting the interplay between intrinsic
tumor cells and the microenvironment, thereby
uncovering the intratumoral heterogeneity in glioma [18—
20]. In the present study, we used microfluidic-based
scRNA-seq techniques to profile single cells from
U87MG and EGFRvlll-expressing US7MG cell lines,
which we found to exhibit inherently variable gene
expression and biological functions. We also observed
enhanced transcriptional activity and decreased
heterogeneity caused by the EGFRvIIl mutation. By
comparing the two scRNA-seq libraries, we showed that
EGFRVIII could induce a phenotypic transition to
enhance DNA division, DNA repair and angiogenesis.
We combined the scRNA-seq data with bulk U87/U87-
EGFRvIII RNA-seq data and EGFRVIII xenograft RNA-

seq data under accession number GSE46028 and found
RADS51AP1 to be upregulated in three of the databases.
Furthermore, we showed that RAD51AP1 was a GBM
oncogene by bioinformatics analysis, generated an
intracranial mouse glioma model and performed clinical
multiple spot samplings. Therefore, our study reveals the
impact of EGFRVIII on the dynamic alterations of glioma
cells at single-cell resolution, further elucidating the exact
mechanism of EGFRVIII in glioma and identifying the
role of RAD51AP1 in GBM.

RESULTS

scRNA-seq analysis of U§7MG and US7MG-EGFRVIII
cells

U87MG is a GBM cell line that is widely used in
experimental investigations. To evaluate the effects of
EGFRVIII mutation on GBM, U87MG cells were
transfected with lentivirus containing EGFRVIII cDNA.
Then, U87MG and US7MG-EGFRvVIII cells were
subjected to scRNA-seq analysis using microfluidic-
based approaches with the 10x Genomics® platform
[21]. A total of 9,365 cells and 20,033 UMIs per cell
were estimated to exist in the US7MG library (Table
1). Although the number of loaded cells was less
than that in the U87MG library (6763 cells), the
median UMI counts and genes per cell were 26,811
and 4238, respectively, in the US87MG-EGFRVIII
library, and these numbers were higher those in its
counterpart (Table 1). This augmentation of UMI
counts and genes within individual cells was indicative
of a reinforcement of EGFRVIII on whole-genome
transcriptomic activities.

Next, K-means clustering analysis was conducted to
examine cellular heterogeneity. Overall, ten distinct cell
clusters were identified and visualized by the two-
dimensional projection of t-distributed stochastic
neighbor embedding (t-SNE, Figure 1A and 1B) [22].
Interestingly, when k was equal to two, the majority of
U87MG-EGFRUVIII cells belonged to the same cluster
(Figure 1C). In addition, automated clustering revealed
an attenuated heterogeneity of U87MG-EGFRVIII at
k=4, 6, 8 and 10 (Figure 1C). The top 100 differential
expression genes (Supplementary Table 1) were picked
up, and clustered in all the 16128 cells. From the
heatmap we can see that U87-EGFRVIII cells are more
homogeneous than U87 cells (Figure 1D).

The percentage of each cluster ranged from 1% to 19%,
and the top three clusters occupied a 49% proportion in
US7MG cells. GO analyses of the cluster-specific genes
revealed distinct biological subtypes. Briefly, clusters
two and seven were enriched in DNA repair, the cell
cycle and DNA replication; cluster ten was enriched in
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Table 1. Summary of 10 x Genomics Single-cell RNA Sequencing.

Summary of barcodes and sequencing parameters USTMG US7TMG-EGFRvIII
Estimated number of cells 9,365 6,763
Fraction reads in cells 80.9% 75.9%
Mean reads per cell 56,095 92,544
Median genes per cell 3,890 4,238
Total genes detected 16,094 15,874
Median UMI counts per cell 20,033 26,811
Reads mapped confidently to the transcriptome 66.6% 69.5%
Reads mapped confidently to exonic regions 70.8% 73.5%
Reads mapped confidently to intronic regions 13.2% 10.5%
Reads mapped confidently to intergenic regions 5.8% 4.5%
Reads mapped antisense to the gene 52% 5.0%

immune and inflammatory responses; and clusters four,
six and eight were associated with cell adhesion and
angiogenesis (Supplementary Figure 1). Notably, clusters
one, three and nine showed too few differentially
regulated genes to perform GO analysis. For US7MG-
EGFRVIII cells, only clusters 1, 4, 6 and 8 showed
enough cluster-specific genes for GO analyses
(Supplementary Figure 2).

Comparison of U§7MG and US87MG-EGFRvIII
scRNA-seq

To further explore the transcriptomic differences
between U87MG and US7MG-EGFRVIII cells, we
subjected both libraries to the LOUPE browser
simultaneously. As expected, the two populations of
cells showed distinct distribution patterns (Figure 2A,
2B). The upregulated genes in US7MG-EGFRVIII cells
were mainly enriched in the DNA damage response, cell
division and angiogenesis processes, which was
consistent with the TCGA results (Figure 2C and
Supplementary Figure 2). Graph-based clustering
analysis further identified 15 different subgroups with
cluster-specific genes and biological processes (Figure
2D-2F). The U87MG-EGFRVIII cells were mainly
distributed in cluster one (1397, 71.42%), cluster three
(1108, 74.11%), cluster six (1173, 91.00%) and cluster
eleven (775, 96.75%), while U87MG cells were
observed in the other eleven clusters (Supplementary
Figure 3), which further indicated that the heterogeneity
is stronger in U87MG cells. Consistently, the biological
annotations revealed that the cluster-specific biological
processes in US7MG-EGFRUVIII cells are associated with
angiogenesis (cluster 1), DNA repair and cell division
(Figure 3).

RADS1AP1 is closely correlated with EGFRvIII

To further profile the differential genes associated
with EGFRVIII expression, we employed GSE46028, a
xenograft GBM RNA-seq database, and the RNA-seq
results of US7MG vs US7MG-EGFRVIII cells. In total,
1880 upregulated genes and 1582 downregulated genes
were observed in the EGFRVIII group in the GSE46028
database (Figure 4A), 228 upregulated genes and 1290
downregulated genes were observed in EGFRVIII-
positive cells (Figure 4B), and 385 upregulated genes
and 269 downregulated genes were observed in the
RNA-seq results (Figure 4C). We combined these data
and found that two upregulated genes and four
downregulated genes coincided in the three datasets
(Figure 4D, 4E). Among them, RADS51AP1 was
positively correlated with the EGFRVIII mutation.
Moreover, both the protein expression of RADS1AP1
and the proliferative index Ki-67 were higher in
EGFRvIII mutant specimens than in EGFR wild-type
samples (Figure 4F).

The oncogenic role of RAD51AP1 in GBM

While RAD51AP1 is known to promote RADSI-
mediated homologous recombination [13], the role of
RAD51AP1 in glioma has rarely been studied.
Bioinformatic analyses revealed that RADS1AP1 is
significantly enriched in high-grade gliomas in the
CGGA, TCGA and GSE16011 datasets (Figure SA—5D).
Kaplan-Meier survival analysis confirmed the poor
outcomes of patients with both low- and high-grade
gliomas expressing high levels of RAD51AP1 (Figure
SE-5H). Uni- and multivariable Cox analyses further
indicated that RADS1AP1 is an independent prognostic
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Figure 1. Single-cell analyses of U87MG and U87MG-EGFRuvIII cells. U87MG-EGFRuvIII cells were less heterogeneous than
U87MG cells. (A) Clustering analyses reveal ten subsets with cluster-specific genes and functions. The pie chart shows the percentage of
each cluster. (B) The clustering results of U87MG-EGFRvIII cells (k=10) and the percentage of each cluster. (C) The clustering results with k
values from two to ten. (D) The heatmap shows the gene expression of every single cell.
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factor of clinical and molecular pathological parameters
in the CGGA and TCGA databases (Figure 6A and 6B
and Supplementary Figure 4). Notably, the RAD51AP1
positively associated genes were mainly enriched in
DNA repair and cell cycle-related biological processes
and KEGG pathways in both the CGGA and TCGA
databases (Figure 6C and Supplementary Figure 5).

To investigate the role of RAD51AP1, we constructed
intracranial mouse models using U87MG-EGFRvIII

A U87 MG

cells transfected with a negative control (N.C.) or si-
RADS51AP1 lentivirus. In vivo imaging analysis at days
7, 14 and 21 revealed that knocking down RADS51AP1
significantly inhibited the tumor volume compared to
that in the Lenti-N.C. group (Figure 7A). Low
RADS1AP1 expression was strongly associated with
longer survival times in mice (Figure 7B). Furthermore,
immunohistochemistry (IHC) analysis indicated that the
CD34 and Ki-67 expression levels were reduced in the
RADS51AP1 knockdown group (Figure 7C).
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Figure 2. Comparison of single-cell libraries from U87MG and U87MG-EGFRvIII cells. (A) The distribution of U87MG cells. (B) The
distribution of U87MG-EGFRVIII cells. (C) The biological process annotations of differential genes that were upregulated in EGFRvIII cells.
(D) Graph-based clustering revealed 15 clusters in 16,128 cells. (E) Distributions of each cluster in the U87MG and U87MG-EGFRVIII libraries.

(F) The expression levels of cluster-specific genes.
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Figure 3. Gene Ontology (GO) analysis of EGFRvlll-related cluster-specific genes and biological processes (cluster 1, cluster 3,

and cluster 6).
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Altogether, these results demonstrated that RADS51AP1
is an oncogene in glioma and is highly associated with
EGFRVIIL

DISCUSSION

GBM is a complex entity composed of cells with various
phenotypes and genotypes. Molecular profiling of bulk
tumor tissues suggests an intertumoral diversity by
dividing patients into discrete subpopulations [23, 32],
while multiregional sampling and single-cell sequencing
reveal the spatial heterogeneity within individual tumors
[24, 25]. Uncovering this heterogeneity in GBM will
provide better insights into the mechanism underlying

tumor cell behavior. In the present study, U87MG cells,
a widely used experimental cell line, exhibited varied
gene transcript levels and several biological processes.
For instance, clusters two and seven, which accounted
for 23% of all the detected cells, were enriched in cell
cycle transition, DNA replication, cell division and DNA
repair, thus potentially contributing to the variation in
therapeutic responses of tumor cells observed under the
same conditions.

Our preliminary investigations shown that mutations in
EGFRVIII affect exosome formation, proliferation, the
cytoskeleton and several malignant cellular processes by
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regulatory mechanisms [26-30]. Based on these works,
we attempted to further map the EGFRvIII-induced cell
identity from single-cell gene expression profiles.
ScRNA-seq analysis of EGFRvIIl mutant cells
demonstrated increased numbers of mean reads, mean
genes and median UMI counts per cell, indicating a
higher transcriptional activity conferred by EGFRVIII
than by the nonmutated version. This result is consistent
with pioneering investigations demonstrating that EGFR
mutation remodels the activated enhancer landscape
through epigenetic reprogramming by promoting GBM
tumorigenesis in vitro and in vivo [31]. Although the
crosstalk between malignant and nonmalignant GBM
cells is complex and heterogeneous, the tumor cells
driven by the EGFRvVIII mutation showed a relatively
uniform pattern of distribution and gene expression. The
biology of EGFRVIII has been studied extensively, and
EGFRVIII has been shown to be a strong oncogene that
can drive a more aggressive phenotype. Moreover, the
cells stably expressing EGFRVIII showed enhanced
malignancies of angiogenesis, DNA repair and
DNA replication, which verified the consequence
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proposed by bulk tissue sequencing and experimental
investigations [10, 11].

To the best of our knowledge, we herein identify
RADS51AP1 as an oncogene in glioma for the first time.
Temozolomide (TMZ) is the only chemotherapeutic drug
used to treat GBM and functions by inducing DNA
damage in tumor cells. Unfortunately, the average
survival time of glioma patients is only 15 months
because patients become resistant to the drug TMZ [1].
Thus, our work provides a new possibility of combining
TMZ and RADS51AP1, which might enhance the DNA
damaging effect of TMZ.

In conclusion, heterogeneity poses a substantial challenge
to the treatment of glioma patients. Using scRNA-seq
and quantitative methods, we delineated transcriptomic
and functional variations in U887MG and U87MG-
EGFRUVIII cells, emphasized the importance of EGFRVIII
mutations for tumor cell aggressive behavior and
heterogeneity, and identified RAD51AP1 as an oncogene
in glioma for the first time.
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Figure 7. Target knocking down RAD51AP1 inhibited the progression of the EGFRvlll-positive intracranial GBM model. (A) The
tumor volumes at the indicated times were evaluated by bioluminescence imaging. (B) Survival rates of mice bearing U87-EGFRvIII and
EGFRvIII-siRAD51AP1 tumors. (€C) Immunohistochemistry analysis was performed to detect Ki-67 and CD34 expression.
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MATERIALS AND METHODS
Cell culture and lentivirus infection

The human GBM cell line US7MG was obtained from
American Type Culture Collection (ATCC). The cells
were cultured in complete DMEM supplemented with
100 units/ml penicillin and 50 pg/ml streptomycin.
Lentivirus containing EGFRVIII ¢cDNA was purchased
from GENECHEM (Shanghai, China), and cells were
infected with the virus according to the manufacturer’s
instructions. US7MG cells (U87MG-EGFRVIII cells) that
stably expressed EGFRvVIII were used for subsequent
experiments.

RNA sequence analysis

Clinical characteristics, transcriptome sequencing data
and molecular data were downloaded from The
Cancer Genome Atlas (TCGA) as a wvalidation set
(https://cancergenome.nih.gov/)  [32].  Differentially
expressed genes were screened using a significant
analysis of microarray (SAM) algorithm. Genes with an
adjusted P value < 0.05 were regarded as candidate
differential genes and subjected to Gene Ontology (GO)
analysis using the online tool Database for Annotation,
Visualization, and Integrated Discovery (DAVID,
https://david.nciferf.gov/) [33]. The GO results were
visualized with the BINGO plugin imbedded in
Cytoscape software (version 3.7.1).

Single-cell RNA-seq

Briefly, cells were trypsinized and resuspended in
a phosphate buffer solution containing 0.04%
weight/volume bovine serum albumin (BSA). Barcoded
single-cell gel beads in emulsion (GEMs) were created
by 10x Genomics® Chromium™ and then reverse
transcribed to generate single-cell RNA-seq libraries.
Unique molecular identifiers (UMIs), which were
incorporated into the 5’ end of cDNA during reverse
transcription, were used to quantify the exact number of
transcripts in a cell. The single-cell transcriptome
analyses were conducted using the LOUPE cell
browser. To identify cluster-specific genes, we
calculated the expression difference of each gene
between that cluster and the average of the rest of
clusters. The candidate genes with a fold change > 2
and an adjusted P value < 0.05 were used for DAVID
analyses.

Intracranial mouse model
Five-week-old female nude mice were purchased from

the Chinese Academy of Medical Science Cancer
Institute and randomly divided into two groups. U87-

EGFRVIII and U87-EGFRVIII si-RADS51AP1 cells were
prepared. A total of 500,000 cells were injected into
each mouse under the guidance of a stereotactic
instrument. Intracranial tumor growth was measured by
bioluminescence imaging on days 7, 14 and 21, and
Kaplan-Meier survival curves were plotted to show the
survival time.

Immunohistochemical staining

Immunohistochemistry was performed on mouse
intracranial tumors by subjecting 5-um paraffin sections
to a three-step process and a DAB staining kit (ZSGB-
BIO). Ki-67 and CD34 primary antibodies were
purchased from ZSGB-BIO.
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Supplementary Figure 1. Gene Ontology (GO) analysis of each subset using cluster-specific genes in U87MG cells.
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Supplementary Figure 2. Gene Ontology (GO) analysis of each subset using cluster-specific genes in U87MG-EGFRvIII cells.
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Supplementary Figure 3. The distributions and percentages of U87MG and U87MG-EGFRuvIII cells in each cluster.
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Supplementary Figure 4. Uni- and multivariable Cox analyses were performed to evaluate the role of RAD51AP1 in gliomas

in the TCGA database.
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Supplementary Figure 5. GO and KEGG analyses were employed to profile the pathways of RAD51AP1-related genes in the

CGGA database.
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Supplementary Table
Please browse Full Text version to see the data of Supplementary Table 1.

Supplementary Table 1. Top 100 differential expression genes in single cell clusters.
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