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INTRODUCTION 
 

Hepatocellular carcinoma (HCC) accounts for most 

primary liver cancers and ranks sixth in cancer incident 

cases worldwide [1, 2]. Hepatectomy and liver 

transplantation are considered as potentially curative 

treatments for early-stage HCC patients [3, 4]. As HCC is 

difficult to detect in the early stage and the growth rate is 

fast, more than half of HCC patients lose the surgery 

opportunity [5, 6]. Even though systemic therapies such as 

targeted and immune therapy are rapidly changing, the 

prognosis is far from satisfactory for patients with 

advanced HCC [7–10]. The 5-year survival rate for HCC 

is less than 20% [11]. Therefore, finding novel biomarkers 

and constructing an accurate model to improve prognostic 

stratification are crucial for HCC patients. 
 

Tryptophan (Trp) is an essential amino acid [12]. Trp and 

its metabolites play a critical role in different biological 

processes, including maintaining cell growth and 
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ABSTRACT 
 

Tryptophan metabolism is associated with tumorigenesis and tumor immune response in various cancers. Liver is 
the main place where tryptophan catabolism is performed. However, the role of tryptophan metabolism in 
hepatocellular carcinoma (HCC) has not been well clarified. In the present study, we described the mutations of 42 
tryptophan metabolism-related genes (TRPGs) in HCC cohorts. Then, HCC patients were well distributed into two 
subtypes based on the expression profiles of the 42 TRPGs. The clinicopathological characteristics and tumor 
microenvironmental landscape of the two subtypes were profiled. We also established a TRPGs scoring system and 
identified four hallmark TRPGs, including ACSL3, ADH1B, ALDH2, and HADHA. Univariate and multivariate Cox 
regression analysis revealed that the TRPG signature was an independent prognostic indicator for HCC patients. 
Besides, the predictive accuracy of the TRPG signature was assessed by the receiver operating characteristic curve 
(ROC) analysis. These results showed that the TRPG risk model had an excellent capability in predicting survival in 
both TCGA and GEO HCC cohorts. Moreover, we discovered that the TRPG signature was significantly related  
to the different immune infiltration and therapeutic drug sensitivity. The functional experiments and 
immunohistochemistry staining analysis also validated the results above. Our comprehensive analysis enhanced 
our understanding of TRPGs in HCC. A novel predictive model based on TRPGs was built, which may be considered 
as a beneficial tool for predicting the clinical outcomes of HCC patients. 

mailto:tjn1995@whu.edu.cn
mailto:wfengtang@163.com
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/


www.aging-us.com 7594 AGING 

proliferation [13]. Trp is a cornerstone that mediates 

human physiological reactions to the environment, and its 

metabolites act as neurotransmitters and signaling 

molecules [14, 15]. The Trp metabolism process mainly 

occurs in the liver. Previous studies demonstrated the 

pathogenesis of colon cancer was associated with a faulty 

Trp mechanism [16]. In addition, a growing number of 

findings supported that Trp metabolites served a crucial 

role in immune regulation and inflammatory response 

[17]. Emerging studies also indicated that Trp 

metabolism was involved closely in the oncogenesis of 

HCC [18, 19]. 

 

Liver is proverbially regarded as a distinct immuno-

logical environment [20]. HCC is associated with the 

underlying immune process and influenced by the 

tumor microenvironment (TME) constituency [7]. 

TME is vital in the progress of HCC [21]. The 

immunological landscape of liver cancer is notably 

unique. A mass of immune cells and tumor cells 

constitute TME [22]. Therefore, immunotherapy is 

promising for the treatment of HCC. What’s more, 

aberrant activation of Trp metabolites resulted in the 

suppression of antitumor immunity since they modified 

the function of the immune cells [23, 24]. Trp 

metabolism was an essential regulator of tumor immune 

evasion [25]. However, few studies focused on crosstalk 

between Trp metabolism-related genes (TRPGs) and the 

TME of HCC. Therefore, profiling the characteristics of 

TME cell infiltration might provide a comprehensive 

view of HCC tumorigenesis and improve treatment 

strategy.  

 

In this work, we analyzed the TRPGs alterations and 

TME of the HCC datasets from The Cancer Genome 

Atlas (TCGA) and Gene Expression Omnibus (GEO) 

database. 371 HCC patients were enrolled and classified 

into two groups by the levels of the TRPGs expression. 

Furthermore, we built a TRPGs model to predict the 

prognosis for HCC patients. We also profiled the 

immune landscape of HCC. Compared to the traditional 

clinicopathologic risk factors, the TRPGs signature was 

identified to be a potential prognostic model for HCC 

patients.  

 

RESULTS 
 

Alteration and expression analysis of TRPGs in 

HCC 

 

In this study, we identified 42 TRPGs in the HCC 

databases. In all 364 samples, 14.84% (54/364) of 

patients occurred the alteration of TRPGs. Of the 42 

TRPGs, ACAT2 and CYP4A22 harbored the highest 

mutation rate, followed by HADHB, ADH1B, ADH4, 

and EHHADH. The missense mutation was the most 

frequent variant type. Besides, C > T, C > A and T> C 

were the most frequent Single Nucleotide Variation 

(SNV) types (Figure 1A). Furthermore, we analyzed the 

somatic copy number variations (CNVs) in 42 TRPGs 

(Figure 1B). ALDH9A1, ACOX1, and ECI2 ranked the 

top with CNVs gain, while ACSL1, ACAT2, ACADVL 

and ADH1B ranked the top with CNVs loss. We also 

profiled the location of CNV alterations of TRPGs on 

chromosomes. Additionally, the expression of TRGs 

was investigated between the HCC tumor tissue and 

their corresponding normal tissues. As shown in Figure 

1D, significantly differential expression was observed 

in these TRPGs.  

 

Identification of tryptophan metabolism subtypes in 

HCC 

 

To investigate the predictive value of TRPGs in HCC, 

we sorted HCC patients through the consensus 

clustering according to the expression of TRPGs. We 

found k = 2 was the best categorical measure to divide 

the entire cohort into two subtypes (Figure 2A). The 

principal component analysis (PCA) revealed that HCC 

patients were well distributed into two subtypes (Figure 

2B). Subsequently, we analyzed the prognosis between 

the two clusters. The results showed that Cluster A had 

a better disease-specific survival (DSS) (p =0.038) and 

disease-free interval (DFI) (p =0.042) than Cluster B. 

There were no significant differences in the overall 

survival (OS) and disease-free interval (DFI) between 

the two subtypes (Figure 2C–2F).  

 

Next, we analyzed the clinicopathological characteristic 

and TRPGs expression between the two clusters. As 

shown in Figure 3A, most TRPGs were highly expressed 

in cluster A. Moreover, Figure 3B presented the results 

of GSVA enrichment analysis. KEGG enrichment 

analysis indicated TRPGs closely correlated with 

Herpes simplex virus 1 infection and nervous system 

disease (Figure 3C). The biological process (BP) 

showed that the TRPGs enriched their function in the 

ribonucleoprotein complex biogenesis, ncRNA 

metabolic process, and RNA splicing. The cellular 

component (CC) demonstrated that the TRPGs were 

primarily associated with the mitochondrial matrix, 

spindle, and chromosomal region. The TRPGs were 

mainly enriched in the transcription coregulator activity, 

catalytic activity, and acting on RNA cadherin binding 

for the molecular function (MF) (Figure 3D). Besides, 

the genetic alterations were compared between the two 

subtypes. The mutation frequency of two clusters were 

82.44% and 85.78%, respectively. In Cluster A, 

CTNNB1(40%), TTN (24%) and TP53 (17%) had the 
top mutation frequency. In Cluster B, TP53(34%), TTN 

(24%), and CTNNB1(16%) had the top mutation 

frequency (Figure 3E, 3F).  
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Immune cell profile and TME of the two subtypes in 

HCC 
 

To understand the influences of TRPGs on the TME in 

HCC, we explored the most common human immune cell 

subsets profile in the two clusters of HCC by using the 

ssGSEA method. The results demonstrated obvious 

differences of the immune microenvironment between the 

two groups (Figure 4A, 4B). Furthermore, the landscape 

of immune checkpoints was investigated between the two 

subgroups (Figure 4C). We found the expression of most 

immune checkpoints was different between the two 

clusters, including CD274, PDCD1 and CTLA4. 

Meanwhile, we also evaluated the TME score in the 

Figure 4D. For the TME score, the stromal or immune 

scores represented the content of stromal or immune cells 

in the TME, and the ESTIMATE scores implied 

aggregation of immune or stromal scores in the TME.  

 

Construction and validation of TRPGs risk model 

 

We enrolled the all 42 TRPGs to identify prognostic 

genes in the training set. Based on the optimal cut-off of 

each gene, all HCC patient was stratified into the two 

groups. As presented in Supplementary Figure 1A, we 

identified that 24 TRPGs were closely associated with 

the OS. There are 2 TRPGs were related with poor OS. 

The others were associated with a favorable OS in HCC 

patients. At the same time, similar results were found in 

the DSS, DFI, and PFI (Supplementary Figure 1B–1D). 

Then, a Lasso-penalized Cox analysis with 10-fold 

cross-validation was performed to narrow the genes. 14 

genes were identified for the prediction of the OS. Next, 

a stepwise multivariate Cox regression analysis was 

performed, and four genes were finally identified as 

prognostic genes to construct a predictive model (Figure 

5A, 5B). We then build a four-gene signature with two 

high-risk genes (ACSL3 and HADHA) and two low-

risk genes (ADH1B and ALDH2). The risk score of 

each HCC patient was calculated according to the 

following formula: Risk score = (0.18* expression of 

ACSL3) + (0.15* expression of HADHA) + (−0.2* 

expression of ADH1B) + (−0.22* expression of 

HADHA). Subsequently, HCC patients were sorted into 

a high-risk group and a low-risk group based on the best 

cut-off of the risk score. The high-risk group had a 

significantly poorer OS (p < .001; Figure 5C), DSS  

(p <.001; Figure 5D), DFI (p = .030; Figure 5E) 

 

 
 

Figure 1. The genetic alterations and transcriptional expression of TRPGs in HCC. (A) The mutation frequencies and distribution of 

42 TRPGs in the TCGA HCC cohort. (B) Frequencies of CNV alterations of TRPGs in HCC. (C) Locations of CNV alterations in TRPGs on 
chromosomes. (D) Expression distributions of 42 TRPGs between HCC tumor and normal tissues. *p<0.05, **p < 0.01, ***p < 0.001. TRPGs, 
tryptophan metabolism-related genes; HCC, hepatocellular carcinoma; TCGA, The Cancer Genome Atlas; CNV, copy number variation. 
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Figure 2. Features of two TRPGs clusters. (A) Consensus heatmap matrix and correlations areas of two clusters (k=2). (B) PCA analysis 
found the difference between the two clusters. Univariate analysis showed 42 TRPGs related to the OS (C), the DSS (D), the DFI (E), and the 
PFI (F). OS, overall survival; DSS, disease-specific survival; DFI, disease-free interval; DFI, progression-free interval. 
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Figure 3. Clinicopathological features, enrichment analysis and mutation landscape of two TRPGs clusters. (A) Differences in 
clinicopathologic characteristics and expression levels of TRPGs between the two subtypes. (B) GSVA of biological pathways between two 
subtypes. (C) GO enrichment analysis showing the BP, CC, and MF of two TRGs subtypes. (D) The bubble plot depicted the KEGG pathway 
enrichment analysis of the two clusters. (E) Mutation landscape of TRPGs cluster A. (F) Mutation landscape of TRPGs cluster B. GSVA, gene set 
variation analysis; GO, gene ontology; BP, biological process; CC, cellular component; MF, molecular function; KEGG, Kyoto Encyclopedia of 
Genes and Genomes; TRPGs, tryptophan metabolism-related genes. 
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and PFI (p = .003; Figure 5F) compared with the low-

risk group. Meanwhile, we established the time-

dependent receiver operating characteristic (ROC) curve 

analysis. The ROC area of 1-, 3-, and 5-year survival 

rates of OS-related prognostic subgroups were 0.812, 

0.818, and 0.753, respectively (Figure 5G). And similar 

results for DSS, DFI, and PFI were presented in Figure 

5H–5J. Furthermore, we validated the TRPGs model in 

the validation set (GSE14520). Kaplan–Meier’s survival 

analysis showed similar results. ROC curve analysis 

also indicated the excellent performance of the TRPGs 

model in predicting the prognosis (Figure 6A–6D).  

In addition, the univariate and multivariate Cox 

proportional hazards regression analyses were used to 

assess the importance of TRPGs signature in prognosis. 

We enrolled clinicopathologic factors, including age, 

gender, and tumor stages, in the analyses. Results 

(Figure 7A–7H) demonstrated that TRPGs were a 

significant predictive factor for OS and RFS both in 

univariate and multivariate analysis (p<0.05).  

 

Evaluation of TME and immune checkpoints in 

TRPGs risk models 

 

In this section, we analyzed the immune cell 

distribution and expression of checkpoints between the 

two TRPG risk groups. We also performed the GSVA 

enrichment analysis to explore the abnormal pathways.

 

 
 

Figure 4. Associations between tumor immune cell microenvironments and two HCC subtypes. (A) Heatmap of the tumor-
infiltrating cells and clinical features in two HCC subtypes. (B) Expression abundance of 23 infiltrating immune cell types in the two HCC 
subtypes. (C) Immune checkpoints heatmap between the two subtypes. (D) Correlations between the TME score and the two HCC subtypes. 
HCC, hepatocellular carcinoma; TME, tumor microenvironment. 
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Figure 5. Construction of tryptophan metabolism-related genes predictive model in the training set. (A) LASSO coefficient 
profiles of the 42 TRPGs. A vertical line was drawn at the value chosen by 10‐fold cross‐validation (B) Ten‐time cross‐validation for tuning 
parameter selection in the lasso model. Kaplan‐Meier survival analysis of the two risk subtypes according to the OS (C), DSS (D), DFI (E), and 
PFI (F) (log-rank tests, p < 0.01). ROC curves to predict the sensitivity and specificity of 1-, 3-, 5-year survival rates according to the risk score 
based on the OS (G), DSS (H), DFI (I), and PFI (J). LASSO, least absolute shrinkage and selection operator; OS, overall survival; DSS, disease-
specific survival; DFI, disease-free interval; DFI, progression-free interval; ROC, receiver operating characteristic. 



www.aging-us.com 7600 AGING 

The results indicated that the functional enrichment was 

individual of each subtype. The high-risk group was 

enriched in pathways including FC Gamma R mediated 

phagocytosis and pathogenic Escherichia coli infection. 

In contrast, the low-risk group was associated with 

amino acid metabolism pathways (Figure 8A). Besides, 

we explored the relationship between the TRPGs risk 

model and the TME signature (Figure 8B, 8C). The 

infiltration level of activated CD4 T cells, activated 

dendritic cells, CD56dim natural killer cells, gamma 

delta T cells, immature B cells, immature dendritic 

cells, MDSCs, macrophages, monocytes, natural killer 

T cells, neutrophils, plasmacytoid dendritic cells, 

regulatory T cells, T follicular helper cells, type 17 T 

helper cells and type 2 T helper cells were obviously 

increased in the high-risk group. The infiltration level of 

eosinophils reduced in the high-risk group. 

Furthermore, the TME score was investigated in the two 

risk groups. However, the immune score, the stromal 

score, and ESTIMATE score were not significantly 

different between the two groups (Figure 8D–8F). Next, 

the profile of immune checkpoints was explored 

between the two subtypes. As shown in Figure 8G, 

PDCD1 and CTLA4 were highly expressed in the high-

risk group. 

 

Analysis and validation of the four TRPGs used for 

the prognostic signature 

 

We further analyzed the expression levels of four 

prognostic TRPGs in HCC patients. The results  

(Figure 9A, 9B) indicated that ACSL3, ADH1B, 

 

 
 

Figure 6. Validation of prognostic model based on TRPGs. Kaplan-Meier survival analysis of high- and low-risk groups in validation 
dataset GSE14520 (A), OS. (B), RFS (log-rank tests, p < .001). The receiver operating characteristic curve for predicting 1-year, 3-year, and  
5-year OS (C) and RFS (D) of HCC patients in GSE14520. TRPGs, tryptophan metabolism-related genes; HCC, hepatocellular carcinoma. 



www.aging-us.com 7601 AGING 

 
 

Figure 7. Independent prognosis analyses of TRPGs risk model in TCGA and GES14520 HCC cohorts. (A, B) Univariate and 
Multivariate Cox regression of risk score based on OS in TCGA HCC cohort. (C, D) Univariate and Multivariate Cox regression of risk score 
based on RFS in TCGA HCC cohort. (E, F) Univariate and Multivariate Cox regression of risk score based on OS in GSE14520 HCC cohort.  
(G, H) Univariate and Multivariate Cox regression of risk score based on RFS in GSE14520 HCC cohort. TRPGs, tryptophan metabolism-related 
genes; HCC, hepatocellular carcinoma; TCGA, The Cancer Genome Atlas; OS, overall survival; DSS, disease-specific survival; RFS, relapse-free 
survival. 
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Figure 8. Correlations of tumor immune cell microenvironments and two TRPGs prognostic subtypes. (A) GSVA of biological 
pathways between two risk groups, in which red represent activated and blue inhibited pathways, respectively. (B) Heatmap of the 
clinicopathologic characteristics and tumor-infiltrating cells in the two risk groups. (C) Expression abundance of 23 infiltrating immune cell 
types in the two risk subtypes. (D–F) Correlations between the TME score and the two risk subtypes. (G) Expression of immune checkpoints 
between the two risk subtypes. *p<0.05, **p < 0.01, ***p < 0.001. TRPGs, tryptophan metabolism-related genes; GSVA, gene set variation 
analysis; TME, tumor microenvironment. 
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ALDH2, and HADHA had strongly associated with the 

tumor grade. Significantly, ACSL3 and HADHA were 

upregulated in advanced tumor grade. In contrast, 

ADH1B and ALDH2 were upregulated in the early stage 

of tumor grade. We then evaluated the correlation 

between TME score and the four TRPGs. It was 

presented that ADH1B, ALDH2, and HADHA were 

negatively correlated with the TME scores (Figure 9C). 

 

 
 

Figure 9. Analysis of four TRPGs for the prognostic signature, and their correlations of tumor immune infiltrating cells and 
therapeutic drugs. (A)The boxplot showed the relationship among ACSL3, ADH1B, ALDH2, and HADHA expression and grade stratification. 
(B) The boxplot depicts the correlation of ACSL3, ADH1B, ALDH2, and HADHA expression and T stage. (C) The correlation of five TRPGs and 
TME score. (D) The relationship between five TRPGs and 23 activated immune cells. (E) The correlation of four TRPGs and immune 
checkpoints. (F) The relationship between four TRPGs and common therapeutic drugs for HCC. *p<0.05, **p < 0.01. TRPGs, tryptophan 
metabolism-related genes; TME, tumor microenvironment. 
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Besides, the relationship between the four TRPGs and 

immune infiltrating cells was analyzed. As shown in 

Figure 9D, HADHA, ALDH2 and ADH1B were almost 

negatively associated with most immune cells, except 

for eosinophils. On the contrary, ACSL3 was positively 

correlated with various immune cells. Similarly, 

ADH1B, and ALDH2 were negatively associated with 

many of immune checkpoints. ACSL3 were positively 

related to a great proportion of immune checkpoints, 

except for IDO2 (Figure 9E). Moreover, the relationship 

of four prognostic TRPGs with the sensitivity of 

common therapy drugs was explored (Figure 9F). We 

surprisingly discovered that ALDH2 was positively 

correlated to the response of LOXO-101. ACSL3 was 

negatively correlated to the therapeutic effect of 

fluorouracil, indicating that the TRPGs may influence 

the therapeutic efficacy of some certain drugs in HCC.  

 

In addition, we validated the biological functions of 

four prognostic TRPGs in HCC cell line. We used the 

western blotting analysis to indicate the knockdown 

effect of the siRNAs of ACSL3, ADH1B, ALDH2, and 

HADHA (Supplementary Figure 2A). The colony 

formation assay exhibited that depletion of ACSL3 and 

HADHA suppressed proliferation capacity of LM3 cells, 

while depletion of ALDH2 promoted the colony 

formation ability. The depletion of ADH1B didn’t 

influence the colony formation ability remarkably. 

Consistently, the similar results showed in cancer cell 

migration (Figure 10A). Meanwhile, we performed IHC 

analysis in 77 HCC patients (Supplementary Figure 

2B). Results of IHC analysis demonstrated that ACSL3, 

and HADHA were highly expressed in HCC tissues. On 

the contrary, ADH1B and ALDH2 were highly 

expressed in adjacent normal tissues (Figure 10B). 

Survival analysis indicated that high ACSL3 protein 

levels and low ADH1B or ALDH2 protein levels were 

associated with poor prognosis (Figure 10C).  

 

DISCUSSION 
 

HCC was a highly aggressive tumor which is induced 

by muti-factors [26]. It occurred in patients with 

underlying liver disease, mainly caused by hepatitis 

virus infection or alcohol abuse [27]. However, the 

prevalence of nonalcoholic fatty liver disease 

(NAFLD), which in conjunction with metabolic 

syndrome and obesity significantly increases the risk of 

NAFLD, was poised to become a leading cause of 

hepatocellular carcinoma worldwide [28, 29]. Trp 

metabolism played a vital role in substance catabolism. 

Recently, many research have reported on the diverse 

functions of Trp metabolites in neurophysiology and 

immunology [12, 30]. Moreover, a growing number of 

studies indicated disturbance of Trp metabolites 

involved deeply in disease development and tumori-

genesis [31]. Therefore, profiling the molecular features 

of TRPGs and their influences on the tumor immune 

environment was crucial in HCC. 

 

In this study, a landscape of TRPGs and TME 

characteristics in HCC by using high-throughput 

expression profilin was constructed. We had further 

classified the samples into two distinct molecular 

subtypes based on the expression levels of 42 TRPGs. 

The two molecular subtypes showed different immune 

characteristics of TME. Patients of Cluster A had a 

better prognosis. Besides, we established an effective 

prognostic TRPGs risk model that included four TRPGs 

(ACSL3, ADH1B, ALDH2, and HADHA). Our results 

revealed that the risk model achieved a good 

discrimination performance. Meanwhile, the multi-

variate Cox analysis indicated this TRPG-related 

signature was an independent risk factor along with 

tumor size and tumor stage for HCC prognosis. 

Moreover, we analyzed the association between four 

TRPGs and TME. The results showed a close 

correlation between the four TRPGs and immune cell 

infiltration as well as immune checkpoints in HCC. Our 

TRPG prognostic model may offer new insights for 

targeted and immune therapy.  

 

Currently, the prognosis of HCC is still far from 

satisfactory. Thereby, constructing an accurate model 

to identify the HCC patients with high risk was 

necessary. Metabolic syndrome was closely involved 

in the occurrence of HCC [32]. In the present study, 

HCC patients were clearly stratified into low- or high-

risk clusters via the expression of TRPGs. This model 

facilitated the identification of high-risk groups  

for hepatocellular carcinoma (HCC) and enabled 

prompt implementation of effective personalized 

interventions by clinicians. Meanwhile, our model 

demonstrated high accuracy and sensitivity in both the 

training and validation cohorts, indicating its robust 

representativeness and stability. Our TRPG-related 

signature provided a brand-new perspective for 

predicting the HCC prognosis, especially in the 

traditional biomarkers such as APF or des-gamma-

carboxy prothrombin (DCP) were negative [33].  

 

In addition, immunotherapy and targeted therapy had 

changed conventional HCC treatment [34]. However, 

only 15-20% of HCC patients had benefited 

significantly from single-agent immune checkpoint 

inhibitors, and biomarkers had yet to identify this group 

[35, 36]. The current study also revealed the landscape 

of TME and immune checkpoints in TRPGs risk 

models. Hence, our findings might identify the  
patients who have response to the immune therapies. 

What’s more, ALDH2 had been found to have a  

positive correlation with the response of LOXO-101. 
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Figure 10. Validation of the four prognostic genes in functional analysis and clinical data. (A) The colony formation and migration 

analysis of LM3 cell depletion with ACSL3, ADH1B, ALDH2, and HADHA. (B) Immunohistochemistry analysis of ACSL3, ADH1B, ALDH2, and 
HADHA in HCC tissues. (C) The high expression level of ACSL3 and the low expression level of ALDH2 and HADHA were associated with a poor 
prognosis. The Cox proportion hazards model was used to understand the significance between the two groups. 



www.aging-us.com 7606 AGING 

Furthermore, there was a negative correlation between 

ACSL3 and the therapeutic efficacy of fluorouracil. 

LOXO-101 also known as Larotrectinib [37]. Recent 

studies demonstrated that Larotrectinib had impressive 

therapeutic effects to some tumor [38, 39]. Fluorouracil 

is a common chemotherapy drug. The latest Phase III 

Trial found that the combination of Oxaliplatin Plus 

Fluorouracil was widely used in interventional hepatic 

arterial infusion chemotherapy (HAIC). The treatment 

showed better survival results than sorafenib for 

advanced HCC, even with a high tumor burden [40]. 

The two-prognostic signature TRPGs were a good 

guidance for patients who need receive HAIC with 

Fluorouracil or targeted drug therapy. And it had good 

potential to optimize the cost-effective of drugs.  

 

Amounts of research revealed that TME played a vital 

role in the treatment and prognosis of tumors [41, 42]. 

In this study, we discovered that the two TRPGs 

subtypes had different TME features. The immune score 

of subtype B exhibited a statistically significant increase 

compared to that of subtype A. The prognosis of the 

two subtypes was significantly different between two 

clusters. Above findings proved that TME was crucial 

in the immunotherapy of HCC. Trp and its metabolites 

were an essential part of diverse physiological processes 

[43, 44]. The enzymatic conversion closely associated 

with IDO1, IDO2 and TDO was the rate-limiting step in 

the tryptophan metabolism process [12]. In tumor, 

aberrant activation of IDO1 and TDO leads to the 

inhibition of anti-tumor immunity. In autoimmunity, 

IDO1 and TDO impaired T cells and antigen-presenting 

cells [24, 25, 45, 46].  

 

In our study, ACSL3, ALDH2 and HADHA were 

identified as high-risk genes for HCC. Long-chain fatty 

acyl CoA synthetases (ACSLs) facilitates intracellular 

metabolism by activating fatty acids [47]. Recent 

studies indicated that ACSL3 was increased in tumor 

tissue compared with normal liver [48]. Meanwhile, the 

molecular target of peroxisome proliferator-activated 

receptor delta in HepG2 hepatoma cells was considered 

to be ACSL3 [49]. Aldehyde Dehydrogenase 2 Family 

Member (ALDH2) is an important member of the 

aldehyde dehydrogenase family [50]. Some findings 

stated that ALDH2 mutations were critical in the 

activation of hepatocellular carcinoma carcinogenic 

pathways and related to immune characteristics in HCC 

[51]. Hydroxyacyl-CoA dehydrogenase alpha subunit 

(HADHA) is a crucial lipid metabolic enzyme which 

plays an important role in carcinogenesis [52]. Yang  

et al. stated that HADHA mediated lipid reprogramming 

to promote HCC [53]. The ADH1B (Alcohol 
Dehydrogenase 1B (class I) has been explored in many 

studies, which is closely associated with alcohol 

metabolism, liver function and cancer [54]. A large 

cohort analysis stated that the alteration of ADH1B 

increases the risk of hepatocellular carcinoma [55]. Our 

findings were in line with the previous study, which 

suggests that these factors play a significant role in 

HCC development. Our risk model demonstrated a 

robust capability in predicting HCC prognosis and 

evaluating immunogenicity. 

 

However, it was important to note that this study still 

had several limitations. Firstly, this study was a 

retrospective study. All the subjects included were from 

a public database, so there was inevitable selection bias. 

Secondly, we only constructed the TRPGs risk model 

and lacked real-world large sample data for verification. 

Finally, some crucial clinical data to validate the key 

prognostic features of this model, such as the evaluation 

of the response to immunotherapy and chemotherapy, 

was lacked. Therefore, a large-scale, meticulously 

designed and prospective study was imperative to 

validate our findings. 

 

In summary, our study profiled the molecular signature 

of TRPGs and identified four TRPGs to construct a 

robust predicting model in HCC. The four prognostic 

genes (ACSL3, ADH1B, ALDH2, and HADHA) were 

strongly correlated with immune cell infiltration and 

prognosis of HCC patients. These findings had 

improved our comprehension of the tumor immune 

microenvironment and presented a novel advantageous 

tool for prognosticating the clinical outcomes of HCC 

patients. 

 

MATERIALS AND METHODS 
 

HCC data acquisition and processing 

 

Gene expression data, somatic mutation data, copy 

number variation, and the matching clinical information 

of HCC were retrieved from the TCGA database and 

GEO database. Gene expression of 424 samples (50 

normal and 374 tumor samples) from 371 patients and 

RNA sequencing (RNA-seq) data were derived from 

TCGA. Gene expression data from different samples 

were combined into genomicMatrix; all data was then 

log2 transformed. The RNA expression data was 

normalized using an average standard deviation of 1. 

The clinicopathological information of the 371 patients 

with HCC was described in Supplementary Table 1.  

 

Consensus clustering analysis of TRPGs  

 

All TRPGs were retrieved from the MSigDB (KEGG- 

TRYPTOPHAN-METABOLISM). After unsupervised 

consensus clustering of TRPGs, the patients were 

divided into distinct molecular subtypes by using the R 

package “ConsensusClusterPlus”. To perform the 
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clustering, the following criteria were observed: First, 

the cumulative distribution function (CDF) curve 

exhibited a gradual and smooth increase initially. 

Furthermore, none of the groups had insufficient sample 

sizes. Lastly, the intra-group correlation was found to 

increase, while the inter-group correlation decreased 

following clustering. 

 

Functional enrichment analysis and construction of 

a TRPGs-based prognostic model  

 

To compare biological processes between the two 

TRPG clusters, we conducted Gene Ontology (GO) 

enrichment and Kyoto Encyclopedia of Genes and 

Genomes (KEGG) pathway analysis using the 

“clusterprofler” R package. Next, we used the “surv 

cutpoint” function from the “survminer” R package to 

identify critical TRPGs in HCC specimens through 

optimal survival cut-off analysis. The detailed 

procedures of the functional enrichment analysis and 

model construction were described in our previous 

study [56]. 

 

Characterization of the immune signature of HCC 

 

We used the ESTIMATE algorithm to calculate 

immune cell abundance in high-risk and low-risk 

groups based on TCGA data. Additionally, we 

employed the ssGSEA algorithm [57] to profile the 

extent of immune cell infiltration within the HCC TME. 

 

Moreover, we calculated the TME score for both 

subtypes using ESTIMATE (Estimation of Stromal and 

Immune cells in Malignant Tumor tissues using 

Expression Data). 

 

RNA inference, colony formation and migration 

analysis 

 

Small interfering RNA was used to knock down the 

expression of ACSL3, ADH1B, ALDH2 and HADHA. 

The details of SiRNAs are in Supplementary Table 2. 

Besides, SiRNA transfection was performed using 

Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA) 

following the manufacturer’s instructions. The LM3 

cells were used in colony formation and migration 

assays. The assays were performed as previously 

described [56]. 

 

Immunohistochemistry staining for HCC samples 

 

We collected HCC tumor tissue from 77 patients at the 

Xiangya Hospital. All patients provided written 
informed consent to participate in this study. The study 

was approved by the Ethics Committee of Xiangya 

Hospital affiliated to Central South University (No. 

201703377). Immunohistochemistry staining was 

performed following standard procedures. The primary 

antibodies were described in Supplementary Table 2. 

The expression of ACSL3, ADH1B, ALDH2, and 

HADHA was blindly quantified by two pathologists 

using histochemical score (H-score).  

 

Statistical analysis 

 

We performed a Chi-Square test to analyze the 

differences between the two groups. By using a two-

tailed log-rank test and the Kaplan-Meier curve 

analysis, the prognostic significance was assessed for 

OS, DSS, DFI, and PFI. Multivariate Cox regression 

analysis was performed to assess the contribution of the 

score associated with Trp metabolism to the predictive 

model of HCC by using the R package “survival”. We 

used the ‘survivalROC’ R package to assess the 

predictive accuracy of the TRPGs-related model 

through ROC analysis. A significance level of P < 0.05 

was adopted and all tests were two-tailed. All statistical 

analyses were performed using R software (version 

4.1.2). 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. The overall predictive value of 42 TRPGs in HCC patients. Univariate Cox regression analysis of 42 TRPGs 

associated with OS (A), DSS (B), DFI (C), and PFI (D) in HCC patients. TRPGs, tryptophan metabolism-related genes; HCC, hepatocellular 
carcinoma; OS, overall survival; DSS, disease-specific survival; DFI, disease-free interval; DFI, progression-free interval.  
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Supplementary Figure 2. (A) Knockdown efficiency of ASCL3, ADH1B, ALDH2 and HADHA in HCC cells. (B) IHC score of ASCL3, ADH1B, 

ALDH2 and HADHA in tumor and normal tissues. 
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Supplementary Tables 
 

Supplementary Table 1. Clinicopathologic 
characteristics of HCC patients (n=371). 

Age at diagnosis (years)  

≤ 50 81 

> 50 290 

Gender  

Male 121 

Female 250 

T  

T1 181 

T2 94 

T3 80 

T4 13 

TX 3 

N  

N0 252 

N1 4 

NX 115 

M  

M0 266 

M1 4 

MX 101 

Grade  

G1 55 

G2 177 

G3 122 

G4 12 

unknown 5 

Vital status  

Alive 240 

Dead 130 

Median follow-up (Months) 19.4 

HCC, hepatocellular carcinoma. 
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Supplementary Table 2. siRNAs and antibodies used in the study. 

SiRNAs  

ACSL3 Ruibo Biotechnology Co., Ltd. 

(Guangzhou, China) 

siG000002181A-1-5 

ADH1B Ruibo Biotechnology Co., Ltd. 

(Guangzhou, China) 

siG1452893545-1-5 

ALDH2 Ruibo Biotechnology Co., Ltd. 

(Guangzhou, China) 

siG000000217A-1-5 

HADHA Ruibo Biotechnology Co., Ltd. 

(Guangzhou, China) 

siG000003030A-1-5 

Antibodies   

ACSL3 Proteintech, Wuhan, China 20710-1-AP 

ADH1B Proteintech, Wuhan, China 17165-1-AP 

ALDH2 Proteintech, Wuhan, China 15310-1-AP 

HADHA Proteintech, Wuhan, China  10758-1-AP 

HCC, hepatocellular carcinoma. 

 


