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INTRODUCTION 
 

Nearly 80% of primary malignant brain tumors are 

gliomas [1]. Glioma is divided into four types by the 

World Health Organization, with glioblastoma (WHO 

IV) accounting for 56.6% of all cases and possessing 

poor clinical prognosis, with only 41.4% relative 

survival rates in 1-year and 5.4% in 5-years, 

respectively. There are no specific diagnostic tools for 

glioma, which are mainly based on CT and MRI, and 

the final pathological diagnosis is made by tumour 

resection and biopsy. The treatment is mainly surgical, 

combined with radiotherapy and chemotherapy, but the 

treatment is usually not effective and is prone to 

recurrence, with a short prognosis for survival [2]. 

Furthermore, individuals using Immune Checkpoint 

Inhibitors (ICIs) have varying therapeutic efficacy, and 

in some circumstances, a poor therapeutic respondent 

has hampered their practical application [3]. Recent, 

Prognostic and predictive markers are crucial in medical 

practice for determining prognosis and selecting 

suitable therapy. That’s also especially significant in 

gliomas because of their potential complexity and 

diversity as well as the possibility of so-called pseudo-

progression in MRI [4]. As a result, it is critical to 

identify effective molecular targets that might benefit to 

tailored treatment and better prognosis for glioma 

patients. 
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ABSTRACT 
 

Glioma is the most common primary intracranial tumor in the central nervous system, with a high degree of 
malignancy and poor prognosis, easy to recur, difficult to cure. The mutation of Retinitis Pigmentosa 2 (RP2) 
can cause retinitis pigmentosa, it is a prognostic factor of osteosarcoma, however, its role in glioma remains 
unclear. Based on the data from TCGA and GTEx, we identified RP2 as the most related gene for glioma by 
WGCNA, and used a series of bioinformatics analyses including LinkedOmics, GSCA, CTD, and so on, to explore 
the expression of RP2 in glioma and the biological functions it is involved in. The results showed that RP2 was 
highly expressed in glioma, and its overexpression could lead to poor prognosis. In addition, the results of 
enrichment analysis showed that RP2 was highly correlated with cell proliferation and immune response. And 
then, we found significant enrichment of Macrophages among immune cells. Furthermore, our experiments 
have confirmed that Macrophages can promote the development of glioma by secreting or influencing the 
secretion of some cytokines. Moreover, we investigated the influence of RP2 on the immunotherapy of glioma 
and the role of m6A modification in the influence of RP2 on glioma. Ultimately, we determined that RP2 is an 
independent prognostic factor that is mainly closely related to immune for glioma. 
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RP2 (retinitis pigmentosa 2) is a protein-coding gene 

consisting of five exons encoding a 350 amino acid 

predicted protein whose related pathways include 

ciliopathy and organelle biogenesis and maintenance 

[5]. RP2 is associated with GTP binding and GTPase 

activator activity [6]. RP2 has been reported to activate 

ARL3, which in turn leads to severe X-linked retinitis 

pigmentosa [7]. In addition, RP2 plays a role in 

tumorigenesis. RP2 has been proved to be significantly 

associated with immune infiltration of KIRC [6], which 

in turn affects the progression of KIRC. However, the 

role of RP2 in glioma is unclear. 

 

The TCGA and GTEx are the two primary sources of 

the research data used in this work. In this study, we 

screened RP2 through a series of bioinformatics 

analyses dominated by WGCNA, examined the 

association between clinicopathological characteristics 

and RP2 mRNA expression in glioma. What’s more, the 

correlation between RP2 expression level and glioma 

prognosis was evaluated. In addition, we have 

investigated the mechanism of RP2 high expression in 

glioma and the relationship with the cell cycle and 

tumour-infiltrating immune cells. We also investigated 

the correlation between RP2 and Cytokines, TMB, as 

well as the impact of high RP2 expression on glioma 

immunotherapy. This study’s significance and 

uniqueness stem from the discovery of RP2 as a new, 

glioma-independent predictive factor that is intimately 

connected to cell proliferation and immune infiltration. 

 

MATERIALS AND METHODS 
 

Data sourcing and processing 

 

Glioma mRNA expression data and clinical samples 

was collected from the TCGA Database 

(https://portal.gdc.cancer.gov/) and GTEx Database 

(https://commonfund.nih.gov) [8]. This study comprised 

1158 normal samples and 706 GBMLGG samples for 

the gene expression profile. Clinical data from 599 

GBM patients and 516 LGG patients were collected. 

 

Cell culture 

 

Glioma U251 cell line was purchased from the Chinese 

Academy of Science (Shanghai, China). U251 cells 

were cultured in RPMI-1640 medium, and other cell 

lines were cultured in DMEM supplemented with 10% 

FBS and 1% penicillin-streptomycin. All cells were 

incubated in a 37°C incubator with 5% CO2. 

 

Weighted gene co-expression network analysis 

 

WGCNA is an R package that can be used to find 

clusters of highly correlated genes [9], and the optimal 

soft threshold β was determined in order to achieve the 

condition of a scale-free network. In addition, modules 

were identified using a dynamic tree cutting method. 

Correlations between Eigengenes and clinical traits 

were analyzed to determine the modules that were 

significantly correlated with clinical traits. Gene 

connectivity was measured by the absolute value of 

Pearson correlation. Genes with high within-module 

connectivity were identified as the central genes of the 

module. 

 

TIMER database analysis 

 

The TIMER (https://cistrome.shinyapps.io/timer/) is a 

collection of tools for systematically analyzing immune 

infiltrations in various cancer types [10]. The “Gene” 

and “scna” modules were used to predict the correlation 

among the infiltration of immune cells in each tumor 

sample and RP2 mRNA expression and copy number 

variation data in GBMLGG. And analyse the 

relationship between immune cell gene markers and 

other important contents with the help of the 

“Correlation” module. We also investigated the 

relationship between RP2 in pan-cancer and different 

immune cell infiltration. 

 

SMART 

 

SMART (Shiny Methylation Analysis Resource Tool) 

(http://www.bioinfo-zs.com/smartapp), an easy-to-use 

website based on data from TCGA, focuses on the 

correlation analysis of DNA methylation [11]. We used 

it to achieve CpG visualization of RP2 on the 

chromosomes. 

 

MethSurv 

 

MethSurv (https://biit.cs.ut.ee/methsurv/) is a web 

application that uses DNA methylation data to do 

variable survival analysis. The prognostic value of 

hypomethylation at some CpG sites in LGG and GBM 

were explored. 

 

LinkedOmics 

 

LinkedOmics (http://www.linkedomics.org/login.php), 

an online analysis site on the basis of TCGA tumor 

samples, designed to analyze multidimensional data of 

32 kinds of tumors [12]. Using the “LinkFinder 

module”, the co-expressed genes linked to RP2 in the 

TCGA-GBMLGG database were visualized with 

volcano plots and heat maps. In addition, the effect of 

RP2 mRNA high expression on prognosis of glioma 

patients was analyzed in the same module. What’s more, 

we made Gene Ontology (GO) and Kyoto Encyclopedia 

of Genes and Genomes (KEGG) analysis in 

https://portal.gdc.cancer.gov/
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“LinkInterpreter module”, to seek functional enrichment 

of co-expressed genes mentioned above. Pathways with 

FDR <0.05 were considered as meaningful. 

 

GlioVis 

 

The GlioVis (http://gliovis.bioinfo.cnio.es/) is an online 

platform used by us for data visualization and analysis to 

explore a wide range of information on the clinico-

pathological features and prognosis of gliomas [13]. 

 

Gene set enrichment analysis  

 

GESA is a method for interpreting gene expression 

data, embodied in a software package together with a 

database of 1,325 gene sets. Relevant RNA-seq data of 

GBMLGG were downloaded from Genomic Data 

Commons (https://portal.gdc.cancer.gov/) [14]. The 

samples were divided into two groups according to the 

expression of RP2, and using this method we analyzed 

the enrichment of gene set in which RP2 is located. The 

parameters were established such as: gene set database: 

h. All. V7.4 Symbols. gmt (Hallmarks); number of 

permutations: 1,000. P value < 0.05 and FDR < 0.05 

were considered as meaningful. 

 

PPI network construction 

 

STRING (https://string-db.org/) is usually adopted for 

exploring physical interactions or functional 

associations between proteins. With the help of it, we 

built a Protein-Protein Interaction Network (PPI) with 

the top 500 genes most closely related to RP2 from 

volcano plots. We studied the connection among these 

genes. The parameter of medium confidence was set at 

0.9. Then, the top 500 genes were evaluated by 

Cytoscape 3.9.1, and a functional cluster analysis were 

performed with MCODE. The selection criteria are as 

follows: Max depth = 100, node score cutoff = 0.2, K-

core = 2. 

 

GeneMANIA analysis 

 

GeneMANIA (http://www.genemania.org) [15], is a 

truly powerful online resource for gene function and 

lists analyses. We used it to draw an interactive 

functional network of RP2, mainly to find proteins with 

strong physical interaction with RP2. In the network, we 

used lines in various thickness and colors to show the 

functional relationship and correlation strength between 

the two connected ends. 

 

cBioPortal analysis 

 

The cBioPortal for Cancer Genomics (https://www. 

cbioportal.org/) is a resource for discovering, visua-

lizing, and analyzing multidimensional genomics data 

[16]. “Mutations” module was utilized to found out RP2 

and its physical interaction protein in glioma. 

 

Protein structure and docking analysis 

 

RCSB Protein Data Bank (https://www.rcsb.org/) 

enables breakthroughs in exploration of 3D protein 

structure. The structure of Retinitis Pigmentosa 2 (RP2) 

was obtained from PDB ID: 2BX6; the structure of 

ARL3 was obtained from PDB ID: 4GOJ; the structure 

of WDR83 was obtained from PDB ID: Q9BRX9. The 

binding patterns between RP2 and ARL3 and between 

RP2 and WDR83 were studied by docking through  

the Z DOCK web server (https://zlab.umassmed.edu/ 

zdock/index.shtml) and visualized, analyzed and plotted 

using PYMOL. 

 

TISIDB 

 

TISIDB (http://cis.Hku.hk/TISIDB/) offers a wealth of 

information about tumor immunity and makes it 

possible to do thorough research on tumor-immune 

interactions [17]. There, we looked for a relationship 

between RP2 and six aspects of the immune system in 

gliomas (lymphocytes, immunomodulators, chemo-

kines, etc.). 

 

GSCA analysis 

 

GSCA (http://bioinfo.life.hust.edu.cn/GSCA) is an 

integrated platform for genomic, pharmacogenomics and 

immunogenomic genomic gene set cancer analysis [18]. 

Combining clinical information and small molecule 

drugs, users can mine candidate biomarkers and valuable 

drugs for better experimental design and further clinical 

trials. We used it to uncover the drug sensitivity of 

ARL3, SLC44A2, WDR83, RP2 and OSTF1. 

 

CTD 

 

The Comparative Toxicogenomics Database (CTD, 

http://ctdbase.org/) is a digital resource that facilitates 

the study of novel links in the molecular mechanisms by 

which chemical substances affect health outcomes. We 

have used this database to query and visualize the 

interacting drugs or small molecules of RP2. 

 

Quantitative RT-PCR analysis 

 

Total RNAs were extracted using the QIAGEN RNeasy 

mini kit, and reverse transcription reactions were 

performed using the ABI Taqman Reverse Trans-
cription Reagents. After mixing the generated cDNA 

templates with primers/probes and ABI Taqman Fast 

Universal PCR Master Mix, reactions were performed 

http://gliovis.bioinfo.cnio.es/
https://portal.gdc.cancer.gov/
https://string-db.org/
http://www.genemania.org/
https://www.cbioportal.org/
https://www.cbioportal.org/
https://www.rcsb.org/
https://zlab.umassmed.edu/zdock/index.shtml
https://zlab.umassmed.edu/zdock/index.shtml
http://cis.hku.hk/TISIDB/
http://bioinfo.life.hust.edu.cn/GSCA
http://ctdbase.org/
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with the ABI-7900 Fast Real-time PCR system and 

SYBR green qPCR Mastermix from Agilent 

Technologies Stratagene. This technique was adopted in 

our study to examine the relative mRNA expression of 

TGF-β and IL-10. 
 

Statistical analysis 
 

R software (version 4.2.1) was used to conduct all 

statistical analysis in this research. The different 

expression of RP2 was detected by rank-sum test, 

meanwhile, the “limma” and “beeswarm” packages were 

driven. Multivariate Cox regression analysis screened 

factors significantly related to prognosis (p < 0.05) (Cox 

model uses the “survival” and “survminer” packages of 

“R”). SurvivalROC (version 1.0.3) was used to produce 

the ROC curve for evaluating the ability of RP2 

expression level to predict 1-year, 3-year, or 5-year 

survival. We used the “Survival” and “SurvMiner” 

packages to produce the survival scene of RP2 in pan 

cancer. The R software package MAfTools (version 

2.8.05) was used to calculate the TMB (Tumor mutation 

burden) of each Tumor by TMB function. The correlation 

between RP2 expression and immune checkpoint-related 

genes using R software (“pheatmap” packages). The 

particular status of the tumor mutation load was shown 

by log transformation after we combined the TMB and 

gene expression data of samples. 

 

Data availability statement 
 

Publicly available datasets were analyzed in this study. 

The data are accessible in TCGA and GTEx databases. 

Further inquiries can be directed to the corresponding 

author. 

 

RESULTS 
 

Weighted gene coexpression network analysis was 

used to identify the key gene in glioma 
 

To identify pivotal genes in glioma, we first discovered 

that 8762 genes were upregulated, while 6964 were 

downregulated in glioma tissue (Figure 1A). Following 

that, β = 12 was selected as the soft threshold for 

implementing a scale-free network (Figure 1B). Using 

the dynamic tree cutting package, 7 modules were 

defined (Figure 1C). It should be noted that the 

correlation heatmap for module traits revealed that the 

turquoise module had the highest association with 

glioma (Figure 1D). The gene distribution results in the 

turquoise module displayed that glioma and Module 

membership (MM) were highly associated, suggested 

that genes in this module were highly significantly 

correlated with glioma (Figure 1E). Furthermore, Venn 

diagram showing 10 intersecting genes, which were 

most associated with glioma, screened by the WGCNA 

method combined with Multivariate Analysis, ROC and 

survival curves (Figure 1F). What’s more, RP2 

expression was significantly higher in GBMLGG, 

founded in the TIMER database (Figure 1G). Finally, 

by inquiring background information, we selected RP2, 

which has not been reported in glioma and has the best 

results, as our research target. 

 

Association of RP2 expression and clinicopathological 

characteristics in glioma 

 

In order to determine the relevance of RP2 expression 

to clinicopathological characteristics, we used R 

software to analyse. We noticed that RP2 mRNA 

expression was upregulated in patients above 60, with 

higher tumour grade, unmutated group of IDH and in 

the non-coding 1P/19Q (Figure 2A–2D). Furthermore, 

we discovered that the mRNA expression of RP2 was 

most pronounced in glioblastoma among all histological 

types (Figure 2E). These outcomes conferred that the 

RP2 expression was intimately associated with the 

clinicopathological characteristics. 

 

Over-expression of RP2 was associated with awful 

prognosis of glioma patients 

 

To further find the underlying mechanism of RP2 over-

expression in glioma patients, we analyzed the effects of 

RP2 over-expression in TCGA databases on overall 

survival (OS), disease-free survival (DSS), and 

progression-free survival (PFS) of glioma patients and 

plotted survival curves. The findings showed that patients 

with high RP2 expression had proportionately lower OS, 

DSS, and PFS times than the low expression group, 

demonstrating that high RP2 expression was correlated 

with worse prognosis (Figure 3A–3C). Overall survival 

was also examined using LinkedOmics to further 

demonstrate the link between RP2 expression and glioma 

patient prognosis (Supplementary Figure 1A), and the 

high and low RP2 expression groups were differentiated 

by the GlioVis in another way, and both results indicated 

that the high RP2 expression group had a worse survival 

expectation than the low RP2 expression group 

(Supplementary Figure 1B–1D). Besides, in order to 

forecast the overall survival of glioma patients in the 

TCGA cohort, we developed a nomogram. The WHO 

grade for the malignancy, IDH status, 1p/19q codeletion, 

and RP2 were included in the nomogram as prognostic 

variables. (Figure 3D). And the calibration curve 

displayed that the nomogram was credible in predicting 

possibility of 1-, 3-, 5-years overall survival in glioma 

(Figure 3E). In conclusion, our data suggested that a 

worse prognosis for glioma patients is frequently linked 

to increased RP2 expression. 
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Correlation between RP2 hypomethylation and 

prognosis in LGG and GBM 

 

Although we were aware that RP2 was expressed 

significantly more frequently in gliomas and that this 

may result in a bad prognosis [19], we didn’t know 

what was causing it. DNA methylation affects glioma 

development by altering the expression of key genes 

[20]. Therefore, we will investigate RP2 related DNA 

methylation. In LGG, we found a negative correlation 

 

 
 

Figure 1. Identification of the key gene modules in WGCNA. (A) Volcano map showed differentially expressed genes. (B) 

Determination of the soft-thresholding power. (C) Dendrogram of differentially expressed genes clustered based on a dissimilarity measure 
(1-TOM). (D) The correlation of gene modules with clinical traits. (E) Gene correlation scatter plot of the turquoise module. (F) The Venn 
diagram showed WGCNA combined genetic features to screen out 10 genes. (G) The expression of RP2 in 34 kinds of cancers. 
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of methylation values of cg24511534, cg04586456 and 

other 7 methylation probes and RP2 expression levels 

(Figure 4A). In GBM, there was a negative association 

between the methylation values of the methylation 

probes cg00433220, cg00347850, and other 10 

methylation probes and the expression levels of RP2 

(Figure 4B). We further explored how the hypo-

methylation of these sites would affect the prognosis of 

glioma with MethSurv, the result of which showed that 

patients with lower RP2 methylation had worse OS than 

those with higher RP2 methylation (P < 0.05) (Figure 

4C, 4D). Besides, we also visualized the distribution 

landscape of methylation probes for RP2 on the 

chromosome, with cg04586456, cg25366157 and 

 

 
 

Figure 2. The box plot showed the association of RP2 expression with clinicopathological characteristics. (A) Age, (B) grade, 

(C) IDH status, (D) 1p/19q codeletion, (E) histological type. 
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other 8 methylation probes on island, cg22522912 and 

cg14091713 on N_ Shore, and cg00433220 on S_Shore 

(Figure 4E, 4F). 

 

In summary, there was a negative association between 

the expression of RP2 and its methylation level. It can 

be concluded that High RP2 expression in gliomas is 

caused by diminished RP2 methylation, which 

ultimately results in a bad prognosis for glioma patients. 

 

RP2-associated functional enrichment pathway 

 

Since RP2 presents a clear value in terms of patient 

prognosis, we produced a landscape of RP2-related 

genes to further investigate its functional regulatory 

pathways. The results came out that among the 20119 

correlated genes identified, 7081 genes were positively 

associated (red dots) and 6743 genes were negatively 

associated (dark green dots) with RP2 expression (FDR 

<0.01) (Figure 5A). Therefore, we individually took out 

the top 50 positively and negatively linked genes to 

make a correlation heat map (Figure 5B, 5C). Gene 

ontology (GO) showed that RP2 may be involved in 

processes related to T cell activation, cell cycle, G1/S 

phase transition, and interferon production (Figure 5D). 

Kyoto Encyclopedia of Genes and Genomes (KEGG) 

pathway analysis displayed that RP2 was positively 

associated with processes such as antigen processing 

presentation and cell cycle (Figure 5E). Additionally, 

GSEA displayed that RP2 was closely related to protein 

export, proteasome, and RNA degradation, and so on 

(Figure 6A–6E). These findings suggested that RP2 may 

be engaged in processes related to cell cycle and 

organismal immunity. To further understand the 

mechanism of RP2 regulatory function, we selected 

genes with RP2 correlation located in the top 500 to 

produce clusters of RP2-related protein interactions. The 

clusters of proteins most associated with RP2 are shown 

by Figure 6F (yellow). We selected them to visualize 

them individually (Figure 6G), and the results showed 

that RP2 had protein interactions with ITGA4 and 

CDC42, among others, and verified that these proteins 

show correlation with immune response and metastatic 

spread of tumor cells, confirming our speculation 

 

 
 

Figure 3. Relationship between RP2 and prognosis of glioma patients. Glioma patients with lower expression level of RP2 had 

favorable (A) OS (HR = 2.37, p < 0.001), (B) DSS (HR = 2.54, p < 0.001), (C) PFS (HR = 1.98, p < 0.001). (D) Nomograms and (E) calibration curves. 
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about the function of RP2. We speculated that RP2 is 

associated with the cell cycle and immune infiltration. 

 

Structural and physical interactions of proteins 

 

Proteins often need to dock several tertiary structures to 

each other to form quaternary structures for biological 

functions and metabolic reactions [21]. To investigate 

the potential mechanisms of protein physical 

interactions, we first selected RP2 to construct a network 

of proteins with which it can interact (Supplementary 

Figure 2A). The results showed that RP2 and proteins 

such as ARL3 and WDR83 can form strong physical 

interactions. The secondary structures of RP2, ARL3, 

 

 
 

Figure 4. Correlation between RP2 hypomethylation, and prognosis in GBM and LGG. (A, B) The visualization between the 

methylation level and the RP2 expression. (C, D) The Kaplan–Meier survival of the promoter methylation of RP2. (E, F) The distribution 
landscape of methylation probes. 
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and WDR83, as well as their possible chemical 

modifications, such as phosphorylation and ubiquitination 

were visualized (Supplementary Figure 2B–2D). Besides, 

the peptide chain encoded by RP2 coiled and folded with 

ARL3 and WDR83 form a quaternary structure as shown 

in Supplementary Figure 2E, 2F. We speculate that these 

two structures may be a form of RP2 involved in the 

regulation of cell cycle and immunity. 

 

 
 

Figure 5. Potential biological processes that RP2 involved in. (A) Differential gene expression in GBMLGG. (B, C) The heat map 

respectively displayed the top 50 positively correlated and negatively correlated genes of RP2 in GBMLGG. (D, E) GO and KEGG enrichment 
analysis in GBMLGG of RP2. 
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RP2 expression is correlated with immune 

infiltration in glioma tissues 

 

To investigate the part played by RP2 in influencing 

tumor immune microenvironment during tumor 

development, the Immune score (P = 2.5e-18, r = 0.33) 

and Estimate score (P = 3.5E-19, r = 0.34) of glioma 

samples have been analyzed. Both showed a clear 

correlation with RP2 expression (Figure 7A, 7B). 

Infiltration of six different types of immune cells were 

shown to be correlated with RP2 expression in glioma. 

The findings displayed that RP2 expression was 

 

 
 

Figure 6. RP2-associated (A–E) pathways and (F) protein interaction networks as well as (G) the most correlated clusters. 
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definitely correlated with tumor purity in LGG and 

GBM, and showed an up-regulated relationship. In 

addition, we analyzed correlations between RP2 

expression and multiple gene markers of immune cells 

in GBM and LGG (Tables 1, 2). As a result, we found 

RP2 was positively associated with the infiltration of 

Neutrophils, CD4+T cells, B cells, Dendritic cells, and 

Macrophages in glioma (Figure 7C, 7D). Since copy 

 

 
 

Figure 7. RP2 is associated with tumor immune microenvironment in LGG and GBM. (A, B) Correlation between RP2 and 

immune score and estimated score. (C, D) Correlation between tumor infiltrating immune cells and RP2 expression. (E, F) Correlation 
between CNV of RP2 and the degree of immune cell infiltration in LGG and GBM. 
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Table 1. Correlation analysis of RP2 with gene markers of different types of immune cells in GBM. 

Description Gene markers 

GBM 

None Purity 

Cor p-value Cor p-value 

B cell 
CD19 −0.090419353 0.266339351 −0.081611178 0.343096609 

CD79A 0.024337451 0.765235249 0.073576658 0.392849699 

T cell (general) 

CD3D −0.094950688 0.24301526 −0.001144837 0.98940664 

CD3E −0.086157908 0.289277078 −0.001880643 0.982598966 

CD2 −0.026768124 0.742303068 0.086923807 0.312491425 

CD8+ T cell 
CD8A 0.027766609 0.733047762 0.077404037 0.3686316 

CD8B −0.019694959 0.808856352 0.063096332 0.463871307 

Monocyte 
CD86 0.16528621 0.041274574 0.359953427 1.56E-05 

CSF1R 0.038176993 0.639055482 0.172026967 0.044422116 

TAM 

CCL2 0.008738424 0.914542108 0.113109156 0.188172112 

CD68 0.063758996 0.433212831 0.228203155 0.007317004 

IL10 0.020571164 0.80073866 0.180025202 0.035285698 

M1 
IRF5 −0.06442242 0.428434587 0.07994462 0.353074915 

PTGS2 0.146147454 0.071486262 0.224269972 0.008423422 

M2 

CD163 0.123738491 0.127449105 0.238567878 0.004993773 

VSIG4 0.125591385 0.12181493 0.311147239 0.00021491 

MS4A4A 0.143858979 0.076075412 0.327287916 9.47E-05 

Neutrophils 

CEACAM8 −0.048071507 0.555139227 −0.088884232 0.301661565 

ITGAM 0.009234316 0.909711622 0.13203481 0.124046351 

CCR7 0.079795076 0.326469493 0.171939882 0.044531541 

Natural killer cell 

KIR2DL1 −0.060250959 0.459406844 −0.032733417 0.704148747 

KIR2DL3 −0.204171782 0.011358253 −0.184354042 0.031040173 

KIR2DL4 −0.05070954 0.533613697 −0.062601865 0.467388003 

KIR3DL1 −0.121644174 0.134163332 −0.124808831 0.146181251 

KIR3DL2 −0.090673359 0.264992888 −0.083555575 0.331682395 

KIR3DL3 −0.09533997 0.241079987 −0.073218624 0.395162941 

Dendritic cell 

HLA-DPB1 0.031599721 0.697884216 0.167805498 0.049991329 

HLA-DQB1 0.126596572 0.118840339 0.204033154 0.016780654 

HLA-DRA 0.073345128 0.367182618 0.210153278 0.013707693 

HLA-DPA1 0.075613499 0.352519837 0.184992372 0.030452392 

CD1C 0.130238068 0.108584788 0.283530556 0.00078678 

NRP1 0.142793481 0.078292002 0.211580737 0.013066048 

ITGAX −0.071187327 3.81E-01 0.020870859 8.09E-01 

Bold value indicates p-values < 0.05. 

 

Table 2. Correlation analysis of RP2 with gene markers of different types of immune cells in LGG. 

Description Gene markers 

LGG 

None Purity 

Cor p-value Cor p-value 

B cell 
CD19 0.151886892 0.000536286 0.167434524 0.000235936 

CD79A 0.077067327 0.080292842 0.083721496 0.067423557 

T cell (general) 
CD3D 0.177874653 4.84E-05 0.229552378 3.91E-07 

CD3E 0.186633881 1.98E-05 0.227573857 4.94E-07 
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CD2 0.237797138 4.57E-08 0.27442394 1.05E-09 

CD8+ T cell 
CD8A −0.021539371 0.625443246 0.057386561 0.210423486 

CD8B 0.000579921 0.989515032 0.066657509 0.14562765 

Monocyte 
CD86 0.316800179 1.71E-13 0.412813708 4.28E-21 

CSF1R 0.237370457 4.84E-08 0.340230953 2.03E-14 

TAM 

CCL2 0.161849437 0.000222528 0.188819729 3.26E-05 

CD68 0.335041646 5.31E-15 0.392430536 4.77E-19 

IL10 0.264132504 1.10E-09 0.301153302 1.77E-11 

M1 
IRF5 0.2140266 9.25E-07 0.307452655 6.36E-12 

PTGS2 0.038916097 0.377671837 0.081023883 0.076774661 

M2 

CD163 0.27763733 1.38E-10 0.274652309 1.02E-09 

VSIG4 0.293663888 1.01E-11 0.35192554 2.21E-15 

MS4A4A 0.329120718 1.68E-14 0.348584637 4.20E-15 

Neutrophils 

CEACAM8 0.020992456 0.634250433 0.003218873 0.944041782 

ITGAM 0.272448913 3.11E-10 0.382404366 4.31E-18 

CCR7 0.182880293 2.92E-05 0.206942113 5.07E-06 

Natural killer cell 

KIR2DL1 0.098570827 0.025147857 0.107527954 0.01869423 

KIR2DL3 0.062212078 0.15820727 0.08136311 0.075543763 

KIR2DL4 0.202981691 3.35E-06 0.215437993 2.00E-06 

KIR3DL1 0.058714717 0.182973108 0.063539606 0.165458709 

KIR3DL2 0.094267072 0.032281099 0.108426563 0.017723668 

KIR3DL3 −0.001209509 0.978134213 0.008571398 0.85173036 

Dendritic cell 

HLA-DPB1 0.211510827 1.25E-06 0.249897344 3.07E-08 

HLA-DQB1 0.164678863 0.000171691 0.192138822 2.34E-05 

HLA-DRA 0.29123131 1.52E-11 0.335926839 4.50E-14 

HLA-DPA1 0.279018153 1.11E-10 0.319752121 7.99E-13 

CD1C 0.221116942 3.90E-07 0.22655268 5.57E-07 

NRP1 0.441753138 4.64E-26 0.412266256 4.88E-21 

ITGAX 0.169488294 1.09E-04 0.243918473 6.64E-08 

Bold value indicates p-values < 0.05. 

 

number variation (CNV) affects the degree of immune 

cell infiltration in gliomas [22], we looked into how 

copy number variation affects immune cell infiltration 

in LGG and GBM. Our results showed that high 

amplification notably promoted CD4+ T cell infiltration 

in LGG, however, in GBM, deep deletion, arm-level 

deletion and arm-level gain all reduced CD8+ T cell, 

neutrophil and dendritic cell infiltration to varying 

degrees (Figure 7E, 7F). In conclusion, our results 

showed an association between RP2 and tumor cell 

infiltration in glioma. 

 

Infiltration of some immune subtypes under the 

condition of high RP2 expression 

 

With the purpose of further exploring which immune 
cells the high expression of RP2 had the highest 

correlation with and the expression of RP2 in the 

TME, we performed the following analysis. The 

TIMER2.0 database was utilized to display the 

landscapes in which RP2 linked with diverse immune 

cell infiltrations in malignancies done on several 

quantitative immune infiltration platforms. The 

findings reveal that RP2 is associated with the immune 

infiltration of a wide spectrum of infiltrating cells, 

including CD4+ T cells, CD8+ T cells, Myeloid 

dendritic cells, Monocyte, Macrophage, and 

Neutrophil. Similarly, we found that in LGG and 

GBM, RP2 is negatively correlated with CD4+ T cells 

and positively correlated with Monocytes and 

Macrophages when highly expressed (Figure 8A). 

After that, to further investigate RP2 expression in the 

tumor microenvironment of gliomas, we carried out 

single-cell level analysis. We analysed seven single cell 

sequencing datasets, including glioma_GSE103224, 

through the TISCH website, and showed that RP2 is 
highly expressed in immune cells, particularly in M1 

macrophages, M2 Macrophages, and Monocyte cells 

(Figure 8B, 8C). In conclusion, we discovered that 

immunosuppressive cell infiltration was positively 
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connected with high RP2 expression in gliomas and was 

negatively correlated with immune helper cell 

infiltration. Furthermore, RP2 was significantly and 

relatively highly expressed in immunosuppressive cells, 

like M2 Macrophages, in TME. 

The dynamics of macrophage cells during glioma 

progression 

 

To describe the landscape of various cellular presence 

in the tumor microenvironment, we selected single-gene 

 

 
 

Figure 8. The correlations of RP2 expression and the infiltration levels of immune cells. (A) The correlations of RP2 expression 

and the infiltration levels of CD4+ T cells, CD8+ T cells, Myeloid dendritic cells, Monocyte, Macrophage and Neutrophil in cancers. Positive 
correlation in red and negative correlation in purple. (B, C) Single cell sequencing showed the expression of RP2 in different types of cells. 
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transcriptomes for clustering analysis, and after quality 

control to filter out irrelevant cells, Linear dimen-

sionality reduction were used and visualization by t-

distributed stochastic neighbor embedding (t-SNE) 

method. Cells from tumor and normal tissues were 

divided into 15 clusters (Figure 9A, 9B), and then 

clustered into six main categories according to the 

genetic characteristics of different subclusters: 

 

 
 

Figure 9. Macrophage dynamics in glioma progression. (A, B) Quality control removal of low-quality cells (C) tSNE cell cluster analysis 

differentiating cell types in the tumor microenvironment. (D) Tumor cells were divided into 13 clusters showing RP2 expression sites in the 
tumor microenvironment. (E) Cell reclustering was performed by UAMP method, and macrophage types were analyzed. (F) expression of 
RP2 was shown in the reclustering cells. (G) Evolutionary tracks of all kinds of cells after dimension reduction (H) expression of RP2 changes 
with pseudo time (I) differentiation tracks of macrophages in glioma, with cluster color code. 
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astrocytes, macrophages, monocytes, natural killer cells, 

T cells, and B cells, with monocytes and macrophages 

accounting for a large proportion of the tumor 

microenvironment. Meanwhile, we found that RP2 was 

mainly expressed in monocytes and macrophages 

(Figure 9C–9F). 

 

We analyzed macrophages by downscaling, 

unsupervised clustering and trajectory analysis, and 

found that they could be further identified as 

Intermediate monocytes and Myeloid dendritic cells 

(Figure 9G), and the expression of RP2 did not show 

significant differences among these two types of cells 

(Figure 9H). The dynamic cellular states in the tumor 

microenvironment were visualized by our Monocle 

algorithm, and pseudo-temporal trajectory analysis 

showed that Intermediate monocytes tend to be depleted 

in a trajectory with tumor progression, while RP2 would 

show low expression in the early stages of cell 

development and higher expression over time, while 

expression was gradually downregulated after the node 

(Figure 9I). The above results suggested that the degree 

of RP2 gene expression influences the progression of 

the glioma tumor microenvironment and it might play 

an important part in the evolution of tumor 

microenvironment in glioma patients. 

 

Chemokines associated with glioma 

 

Macrophages can secrete many cytokines, which play a 

key role in the tumor microenvironment and 

development of glioma. To investigate the key effect 

made by various cytokines produced by macrophages in 

TME, we visualized the contribution of different types 

of it in heat map form, and the results showed that: 

immune inhibitor factors such as TGFBR1 and IL10; 

MHC molecules such as B2M and HLA-A; 

immunostimulatory factors such as CD28 and CD48; 

lymphokines such as Act CD8 and Act CD4 had a 

positive correlation with RP2 in both GBM and LGG 

(Figure 10A–10D), Noteworthily, it is conformed that 

Macrophages may promote the progression of glioma 

through secrete cytokines like IL10 and TGF-β. We 

analyzed the correlation between RP2 and these two 

(Figure 10E, 10F), and found that they were positively 

correlated. In addition, we also verified them with 

experiments (Figure 10G, 10H). In conclusion, we 

speculated that macrophages may cause the poor 

prognosis of glioma by secreting these cytokines or 

influenced by them. 

 

Effect of over-expression RP2 on immunosuppression 

and immunotherapy of glioma 

 

In order to further investigate the impact of RP2 upon 

this immune escape microenvironment and immuno-

therapy in glioma, we also analyzed the correlation 

between RP2 and immune checkpoint and the 

associated TMB, and TIDE. The findings demonstrated 

a favorable correlation between the expression of most 

cell checkpoints and the expression of RP2 in 

GBMLGG, demonstrating that RP2 overexpression 

might disturb the normal cell cycle and promote the 

proliferation of glioma (Figure 11A). We also analyzed 

the relationship between the expression of some classic 

immune checkpoints and RP2 in glioma, and found that 

the expression of immune checkpoints increased when 

RP2 was high, indicating enhanced immune escape 

(Supplementary Figure 3). The expression of RP2 in 

GBMLGG was positively related with TMB, 

suggesting that high expression of RP2 may promote 

the development of cancer by affecting gene mutations 

in glioma, meanwhile, a low mutation rate is not 

conducive to immunotherapy (Figure 11B). Finally, 

TIDE score was analyzed and it was found that the 

treatment of the high RP2 group was not sensitive  

to immune checkpoint blockade (ICB) and the 

therapeutic effect was poor (Figure 11C). In 

conclusion, we known that high RP2 expression was 

conducive to immune escape of glioma, but not 

conducive to immunotherapy. 

 

Gene-drug interactions and drug sensitivity analysis 

 

To explore the drug sensitivity of RP2 and genes highly 

associated with it, we conducted drug sensitivity 

analysis using the GDSC database, which showed that 

RP2 exhibited tolerance to 19 drugs or small molecules 

when highly expressed. And it showed sensitivity to 

Trametinib (Figure 12A). To explore the interaction 

between the pivotal gene and the available therapeutic 

agents for cancer, we used the CTD database to produce 

the interaction network between RP2 and drugs, and the 

results showed that cobaltous chloride and jinfukang 

were able to inhibit the gene expression of RP2, while 

six drugs or small molecules such as Methotrexate and 

Cisplatin were able to promote the expression of RP2 

(Figure 12B). We compared three databases, cgp2016, 

CTD and GDSC, and concluded that Methotrexate was 

present in all three databases to regulate RP2 at the 

same time (Figure 12C). Patients are not sensitive to 

this drug when RP2 is highly expressed and it has been 

shown to increase RP2 expression, so this drug would 

not be the preferred option in treatment. 

 

The relationship between RP2 expression and m6A 

modification 

 

In several cancer types, the effect of N6-
methyladenosine (m6A) RNA modification has been 

proven [23]. By examining the TCGA-GBMLGG 

dataset, we explored the relationship among RP2 and 
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the expression of 20 m6A-related genes in GBMLGG. 

RP2 expression was shown to be strongly and positively 

linked with 20 regulatory factors except FTO and 

IGF2BP2 (Supplementary Figure 4A, P < 0.05). We 

sought to find out if 20 distinct variables expressed 

differentially in glioma cells with high and low RP2 

expression. The findings revealed that 20 variables 

expressed themselves more strongly in the “High RP2” 

group as compared to the “Low RP2” group 

(Supplementary Figure 4B). Meanwhile, based on RP2 

 

 
 

Figure 10. The expression of various cytokines when RP2 is highly expressed in LGG and GBM. (A) Immunoinhibitor. (B) MHC 

molecule. (C) Immunostimulator. (D) Lymphocyte. (E, F) RP2 was associated with the expression of TGF-β and IL-10. (G, H) RP2 was 
positively correlated with TGF-β and IL-10 mRNA expression. 
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expression levels, we separate samples into groups with 

high and low expression. M6A regulator networks 

depict a comprehensive picture of the correlation 

between the expression of m6A regulatory factors and 

the effect of regulatory factors on the prognosis of 

glioma. We found significant correlations in expression 

and prognosis not only between m6A regulatory factors 

of the same functional class, but also between writers, 

erasers and readers (Supplementary Figure 4C, 4D, 

Table 3). According to these findings, RP2 may be 

correlated with m6A modification in glioma, and the 

combined effect of METTL14, VIRMA, ALKBH5, 

YTHDC2 and METTL3 may eventually affect the 

progression and poor prognosis of glioma. 
 

DISCUSSION 
 

Glioma is the most frequent primary intracranial tumor 

of the central nervous system, with a high degree of 

malignancy, few diagnostic and therapeutic potions, a 

 

 
 

Figure 11. RP2 and immunotherapy. (A) Correlation between RP2 and various cell checkpoints. (B) TMB was low when RP2 was highly 

expressed. (C) TIDE score was high when RP2 expression was high which led to a poor immunotherapy effect. 
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dismal prognosis, a propensity for recurrence and 

challenge in cure [24]. At present, there are many new 

directions for the treatment of glioma, such as electric 

field therapy, laser interstitial hyperthermia LITT 

technology and so on, and targeted therapy and 

molecular immunotherapy are the hot cutting-edge 

treatment technologies [25–27]. Some existing 

molecular biomarkers, such as GFAP, IDH1 and Ki-67 

antigen [28–31], are helpful for the diagnosis of 

molecular subtypes, individualized treatment and 

clinical prognosis of glioma, but their sensitivity and 

accuracy are still lacking. Therefore, it is imperative to 

identify a more effective biomarker for glioma patients’ 

diagnosis, therapy, and prognosis assessment. In this 

study, a series of extensive and rigorous bioinformatic 

analyses and experimental validation were conducted to 

identify a new and powerful potential prognostic factor 

and therapeutic target for glioma. 

 

 
 

Figure 12. Gene-drug interaction and drug sensitivity analysis. (A) Relationship between RP2 expression and drug sensitivity in the 

GSCA database. (B) CTD showed the network of action between RP2 and drugs or small molecules. (C) Drug susceptibility results from three 
databases were displayed. 
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Table 3. Prognostic impact of m6A gene in the case of high or low expression of RP2. 

High RP2 p-value Low RP2 p-value 

IGF2BP3 4.42E-23 METTL14 0.982063538 

IGF2BP2 3.02E-22 YTHDF3 0.960606816 

FTO 3.08E-15 METTL3 0.747635881 

YTHDC1 1.49E-14 RBM15B 0.685309729 

WTAP 1.98E-14 YTHDC2 0.637349611 

ZC3H13 3.67E-14 RBMX 0.535317235 

YTHDF2 9.42E-11 VIRMA 0.489728754 

METTL14 7.31E-08 HNRNPC 0.425883752 

IGF2BP1 2.24E-05 RBM15 0.114137498 

VIRMA 6.21E-05 ALKBH5 0.072041983 

ALKBH5 0.002190185 IGF2BP1 0.045061783 

YTHDC2 0.004426155 FTO 0.026184137 

METTL3 0.006933739 YTHDC1 0.003886155 

HNRNPC 0.059620271 HNRNPA2B1 0.002008863 

RBM15 0.174862774 ZC3H13 0.001319473 

RBMX 0.202804513 YTHDF1 0.000567207 

HNRNPA2B1 0.47095038 YTHDF2 1.24E-05 

RBM15B 0.53264432 WTAP 5.76E-07 

YTHDF3 0.6137567 IGF2BP2 4.12E-19 

YTHDF1 0.664356478 IGF2BP3 8.13E-22 

Bold value indicates p-values < 0.05. 

 

In this study, we selected TCGA and GTEx datasets, 

combined with bioinformatics analysis, including 

differential gene analysis, Weighted correlation network 

analysis (WGCNA), multivariate analysis, survival 

analysis, and ROC analysis. Finally, RP2 was identified 

as a potential independent prognostic factor for glioma. 

One of the most crucial filtering steps in our research 

involved the flexible application of WGCNA, a systems 

biological approach to describe patterns of gene 

association between various samples. WGCNA is 

typically used to identify candidate biomarker genes or 

therapeutic targets based on association within gene sets 

and association between gene sets and phenotypes [9]. 

It enabled us to categorize genes into various modules 

and then choose the module that most closely correlated 

with the occurrence and development of glioma. After 

that, we could continue to use some other bio-

informatics, like the survival analysis, multivariate 

analysis, and ROC, to further analyzed and finally 

screened RP2 as our research target, which is significant 

positive correlation with the occurrence and develop-

ment of glioma. 

 

We know that hypermethylation leading to silencing of 

gene expression has been shown to be a widespread 

tumor epigenetic phenomenon, and some evidence also 

suggest that it is reasonable and well documented that in 

certain settings, decreased the level of promoter 

methylation is directly associated with increased gene 

expression. For example, it has been reported that DNA 

hypomethylation may be the reason for the up-

regulation of YTHDF2 in LGG, which increases the 

expression of YTHDF2 by regulating the transcription 

process of YTHDF2 and leads to poor prognosis of 

glioma patients. Another research reported that CD133 

overexpression in BTSCs due to P2 hypomethylation 

underlies glioma recurrence. It is evident that not all 

genes are affected by methylation in the same way and 

that the contribution of epigenetics to transcriptional 

regulation may occur in a more complex and dynamic 

manner. In our study, RP2 expression was upregulated 

in glioma and the RP2 promoter was hypomethylated in 

glioma. Based on the current state of research, the 

following pathways may exist: under specific 

circumstances, promoter hypomethylation may provide 

mechanical blockage of DNA-repressor interactions, 

thereby promoting active gene transcription, or 

promoter hypomethylation can induce synergistic 

effects of distal regulatory elements to promote gene 

activation mechanisms. 

 
Considering that RP2 is a potential prognostic factor of 

glioma, we were eager to know what biological 

processes does RP2 participate in glioma. We know that 



www.aging-us.com 8175 AGING 

malignant cell proliferation is the main cause of glioma, 

and abnormal immune infiltration is also an important 

factor affecting tumorigenesis and development of 

glioma [32, 33]. It has been reported that FOXD2-AS1 

can promote cell proliferation in glioma through 

regulating FOXD2-AS1/miR-31/CDK1 axis [34]. In 

addition, glioma cells express immunosuppressive cell 

surface molecules like HLA-G or release soluble 

immunosuppressive substances like TGF-β to inhibit 

anti-tumor immune responses and promote cancer 

progression [35]. And in our research, through the GO 

analysis, we found that RP2 is closely correlated with 

the biological processes related to cell proliferation, 

such as G1/S phase transition of cell cycle, DNA 

replication, mitotic cell cycle phase transition, 

chromosome protein localization, as well as the 

biological processes related to immune responses, such 

as T cell activation, leukocytosis, leukocyte-cell 

adhesion, and granulocyte activation. KEGG enrich-

ment analysis also showed that RP2 is enriched in 

pathways related to cell cycle, DNA replication, antigen 

processing and presentation, and the occurrence and 

development of many autoimmune diseases and various 

types of inflammation. Besides, our corresponding 

experimental results also demonstrated that over-

expression of RP2 contributes to cell proliferation in 

glioma. Based on the above information, it could be 

speculated that RP2 could promote the progression of 

glioma through influencing cell proliferation and 

immune infiltration. 

 

Functional analysis of RP2-related genes also confirmed 

our speculation about the functions that RP2 involved in. 

In our study, we identified ARL3 and WDR83 as the 

most associated with RP2 in physical interaction, 

analyzed their secondary structures respectively, and 

visualized their binding to RP2 with vivid images. By 

checking the background information, we found that 

ARL3 can directly bind to RP2, and RP2 can act as the 

GTP-enzyme activating protein of ARL3, thus affecting 

intracellular microtubule regulation and protein 

transport, which can cause diseases such as retinitis 

pigmentosa [36–38]. At the same time, another article 

have confirmed that ARL3 is a prognostic biomarker for 

glioma, and its low expression predicts poor prognosis. 

RP2 can induce the hydrolysis of GTP ARL3. Therefore, 

we speculated that overexpression of RP2 may also 

affect the progression of glioma through the interaction 

with ARL3. As for WDR83, it is closely related to 

extracellular signal-regulated kinase (ERK) that is able 

to regulate many signal transduction pathways like Ras-

Raf-MAPK signaling pathway [39]. And it has been 

reported that Ras can induce nuclear transcription by 
regulating the Raf-MEK-MAPK signaling pathways, 

thus promoting the cell proliferation of glioma [40, 41]. 

Based on the above, we conjectured that RP2 may also 

affect the progression of glioma via affecting these 

signaling pathways through WDR83. Physical inter-

actions between proteins can often lead to connections in 

biological functions. So, the exploration of RP2 

interacting proteins provides us a new angle and a new 

proof to study the specific mechanism of glioma, even if 

the precise process behind this is yet unknown, we will 

clarify it in further research. 

 

Glioma is a rare immunologically cold tumor. Due to 

the specificity of its site, immunosuppression and anti-

inflammation mechanisms suppress and counteract 

immune activity physiologically to limit the damage in 

brain tissue caused by immune responses [34]. Glioma 

utilizes the blood-brain barrier and the unique 

immunosuppressive microenvironment, resulting in a 

lack of tumor-infiltrating lymphocytes (TILs) and a 

relatively large number of immunosuppressive cells, 

which will lead to a poor immunotherapeutic outcome. 

According to reports, the immune infiltration in the 

TME is closely connected with the high expression of 

RP2. For example, the high expression of RP2 in KIRC 

is positively associated with the infiltration of a variety 

of immune cells, while it is highly negatively correlated 

with some immunosuppressive cells such as 

CD56brightCD16-NK and Treg cells [42]. In this paper, 

we found that the high expression of RP2 was positively 

correlated with many immunosuppressive cells, such as 

M2 Macrophages and Dendritic cells. What’s more, we 

also observed that RP2 was especially highly expressed 

in Monocytes and M2 Macrophages in the TME. 

Considering the immunosuppressive microenvironment 

in glioma, we chose Macrophages, which are rich in 

immunosuppressive background, for further study. It 

has been reported that tumor-associated macrophages 

(TAMs) are closely related to treatment failure and poor 

prognosis of glioma patients [6]. There is an article 

confirms that DHX9 can increase TAM infiltration in 

glioma by regulating the TCF12/CSF1 axis, and then 

promote its polarization into M2 Macrophage, which 

finally promote the progression of GBM [43]. And 

according to recent studies, glioma can be treated by 

obstructing the recruitment of Macrophages in TME, 

reducing the activity of TAMs or reshaping the 

phenotype of TAMs from M2 to M1 [44]. Other reports 

have also proved that in glioma, M2 Macrophages 

promote angiogenesis, while M1 Macrophages inhibit 

angiogenesis. Therefore, it is a good idea to treat glioma 

with anti-angiogenic therapy through regulation of TME 

[45]. So, combined with our results, we can speculate 

that high RP2 expression may promote the progression 

of glioma by influencing the infiltration and 

polarization of Macrophages. 
 

Some studies have shown that CD8+ T cells can kill 

tumor cells, and TAM will help tumor cells to 
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participate in immune escape. In our study, we found 

that when RP2 was highly expressed, CD8+T cell 

infiltration was slightly inhibited in LGG, but the 

degree of infiltration did not change significantly in 

GBM. Therefore, we speculated that CD8+T cells could 

not play its role in killing tumor cells when RP2 was 

highly expressed. Meanwhile, the degree of TAM 

infiltration was also significantly increased when RP2 

was highly expressed. Besides, according to Figure8B 

and C, we could know that RP2 is mainly highly 

expressed in M2 Macrophages, and Figure9 also proved 

this result. So, we can speculate the immune escape 

effect supported by TAM is stronger than the killing 

effect to tumor cell of CD8+T cell in gliomas. 

 

By modulating immunological response, cell 

proliferation, and other processes, cytokines also play 

significant and essential roles in the development of 

glioma [46, 47]. Meanwhile, it is also known that 

Macrophages can secrete a variety of cytokines to 

promote the development of glioma [48, 49]. So, we 

explored the expression of cytokines, especially 

cytokines secreted by Macrophages, at high RP2 

expression. According to reports, M2 Macrophages in 

glioma can directly suppress the immune response by 

secreting IL-10, TGF-β, and other immunosuppressive 

molecules [50]. And our results did confirm that the 

high expression of RP2 is positively associated with IL-

10, TGF-β in glioma. Therefore, we hypothesized that 

high RP2 expression could cause poor prognosis in 

glioma by affecting the infiltration of Macrophages and 

the secretion of IL-10 and TGF-β by Macrophages. At 

the same time, we think that this provides a clear 

direction for us to study the precise targeted 

Immunotherapy of glioma [51]. It has been proved that 

modulating the chemokine/chemokine receptor axis has 

also become a new therapeutic direction for glioma. A 

pre-clinical study showed that fused cytokines and 

antibodies could work together to motivate the immune 

system to attack tumors more strongly, leading to a 

qualitative leap in effectiveness [50, 52]. In addition, 

the “immune score” predicts the interaction of immune 

and non-immune factors and has been shown to be an 

independent marker of therapeutic efficacy before and 

after immunotherapy (PD-1/PD-L1, CTLA4) [53, 54]. 

Simultaneously, the high expression of immune 

checkpoints in RP2 overexpressed cancer tissues 

predicts a strong immune evasion ability of tumor 

tissues compared to normal cells. Nowadays, it has been 

demonstrated that CD5 protein on dendritic cells largely 

determines individual differences in the effect of 

immunotherapy [55], meanwhile, the effect of immune 

checkpoint blockade therapy often accompanied with a 

complex combination of molecular mechanisms. In 

brief, our results indicated the inapplicability of 

immunotherapy in the presence of RP2 overexpression 

and are informative for exploring the molecular 

mechanisms and clinical treatments associated with 

RP2. Moreover, our TIDE results also displayed that the 

effect of glioma immunotherapy was awful in the case 

of high RP2 expression, which just confirmed the above 

theory, and also suggested us that effective inhibition of 

RP2 overexpression in glioma is likely to improve the 

effect of immunotherapy and increase the survival hope 

of patients. 
 

To the best of our knowledge, this is the first 

bioinformatics research of RP2 in glioma. In this paper, 

we identified a brand-new independent prognostic 

factor for glioma that is strongly immuno-related, and 

provides a new direction for the diagnosis and treatment 

of glioma in the future. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Survival analysis validation from the other web sites (A) Overall survival was also examined using LinkedOmics. 

(B–D) Survival analysis examined via GlioVis. 
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Supplementary Figure 2. Structural and physical interactions of RP2. (A) Physical interacting proteins of RP2. (B–D) Secondary 

structure and mutation sites of RP2, ARL3 and WDR83. (E, F) Structure diagram of physical interaction between RP2 and ARL3 and RP2 and 
WDR83. 
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Supplementary Figure 3. Analysis of the correlation of some classical immune checkpoints and RP2 in expression. (A) Heatmap, 

(B) box diagram. 
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Supplementary Figure 4. (A) Heatmap of the correlation between RP2 and m6A-related genes in glioma. (B) The differential expression 

of m6A related genes between high and low RP2 expression groups in glioma samples. (C, D) Effects of m6A regulators on prognosis of 
glioma with different expression of RP2. 

 

 


