
www.aging-us.com 8345 AGING 

INTRODUCTION 
 

Gestational diabetes mellitus (GDM) is a dangerous 

gestational complication affecting 5-20% of pregnant 

women, and its prevalence is on the rise [1]. GDM 
increases the probability of adverse pregnancy 

outcomes, such as preterm birth, fetal malformation, 

and macrosomia [2–4]. It is also associated with 

maternal health problems, including gestational 

hypertension, postpartum hemorrhage, and dystocia  

in mothers [2, 5]. Additionally, offspring of mothers 

with GDM face an elevated risk of diabetes, 

hypertension, obesity, and coronary heart disease  

[3, 6]. Although various mechanisms including  
β-cell dysfunction, chronic insulin resistance, adipose 

tissue inflammation, and oxidative stress have been 

studied, the explicit pathogenesis of GDM remains 

unclear [7, 8]. 
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ABSTRACT 
 

Background: Previous studies have shown that gut microbiota (GM) and gut microbiota-derived metabolites are 
associated with gestational diabetes mellitus (GDM). However, the causal associations need to be treated with 
caution due to confounding factors and reverse causation. 
Methods: This study obtained genetic variants from genome-wide association study including GM (N = 18,340), 
GM-derived metabolites (N = 7,824), and GDM (5,687 cases and 117,89 controls). To examine the causal 
association, several methods were utilized, including inverse variance weighted, maximum likelihood, weighted 
median, MR-Egger, and MR.RAPS. Additionally, reverse Mendelian Randomization (MR) analysis and 
multivariable MR were conducted to confirm the causal direction and account for potential confounders, 
respectively. Furthermore, sensitivity analyses were performed to identify any potential heterogeneity and 
horizontal pleiotropy. 
Results: Greater abundance of Collinsella was detected to increase the risk of GDM. Our study also found 
suggestive associations among Coprobacter, Olsenella, Lachnoclostridium, Prevotella9, Ruminococcus2, 
Oscillibacte, and Methanobrevibacter with GDM. Besides, eight GM-derived metabolites were found to be 
causally associated with GDM. For the phenylalanine metabolism pathway, phenylacetic acid was found to be 
related to the risk of GDM. 
Conclusions: The study first used the MR approach to explore the causal associations among GM, GM-derived 
metabolites, and GDM. Our findings may contribute to the prevention and treatment strategies for GDM by 
targeting GM and metabolites, and offer novel insights into the underlying mechanism of the disease. 
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Gut microbiota (GM) and microbial metabolites play 

important roles in maintaining host physiology and 

homeostasis and have been observed to change 

significantly during gestation. Mounting evidence 

demonstrated the gut microbiota dysbiosis in GDM 

patients [9], however, such findings differed across 

studies. Unlike other findings, Zhong et al. reported that 

Coprococcus decreases in GDM patients [10]. Karlsson 

et al. and Wu et al. found that Clostridium is a risk factor 

[11, 12], while Allin et al. reported the opposite result 

[13]. The interaction between the host and microbiota  

is primarily mediated by GM-derived metabolites. 

Numerous observational studies have indicated  

the association between GM-derived metabolites and 

GDM [14]. However, caution should be exercised in 

interpreting the association due to confounding factors 

and the complex environment of the human intestine, as 

well as the limitations of the observational study design. 

 

Mendelian randomization (MR) is a useful approach to 

detect and quantify the causal effect of exposures on 

outcomes by using genetic variants as instrumental 

variables (IVs) [15]. Since alleles are randomly assigned 

from parents to offspring, freely combined, and 

genotypes remain stable after birth. MR, similar to a 

randomized controlled trial (RCT), can help minimize 

biases caused by traditional confounders (e.g., 

environmental exposures, demographic characteristics, 

and dietary habits) and reverse causation [16, 17]. Many 

studies have used MR analysis to explore the correlation 

among GM, GM-derived metabolites and complex 

human diseases such as metabolic diseases [18], 

neurodegenerative diseases [19], and adverse pregnancy 

outcomes [20]. Therefore, our study conducted 

bidirectional MR analyses using summary statistics from 

genome-wide association studies (GWAS) to investigate 

the causal relationship between GM, GM-derived 

metabolites, and GDM. This analysis may offer new 

insights into the underlying mechanism of GDM. 

 

RESULTS 
 

A total of 7,121 SNPs associated with 119 bacterial 

genera were included for GM instruments, and 9,270 

SNPs associated with 81 traits were identified for GM-

derived metabolite instruments. Details of selected IVs 

in this study were shown in Supplementary Tables 1, 2. 
 

Associations between GM and GDM 
 

Figure 1 shows the results obtained using the IVW 

method at a significance threshold of P < 0.05. We 

identified significant positive associations between 

increases in Collinsella (OR, 1.322; 95%CI, 1.007-

1.735; P < 0.001), Coprobacter (OR, 1.210; 95%CI, 

1.037-1.412; P = 0.015), Olsenella (OR, 1.166; 95%CI, 

1.030-1.321; P = 0.015), Lachnoclostridium (OR, 1.367; 

95%CI, 1.057-1.767; P = 0.017), Prevotella9 (OR, 

1.164; 95%CI, 1.010-1.342; P = 0.036), Ruminococcus2 

(OR, 1.193; 95%CI, 1.003-1.418; P = 0.046) and a 

higher risk of GDM. Conversely, genetically increased 

levels of Oscillibacter (OR, 0.822; 95%CI, 0.706-0.957; 

P = 0.011) and Methanobrevibacter (OR, 0.850; 95%CI, 

0.725-0.995; P = 0.043) were associated with a 

protective effect on GDM. Even after correcting for 

multiple comparisons, we observed a significant causal 

effect of increased Collinsella on the risk of GDM (q = 

0.091). The F-statistics ranged from 20.39 to 336.56 in 

the aforementioned results, excluding the bias from 

weak instrumental variables. Additionally, we identified 

causal associations between GM and GDM risk in more 

than three MR methods, including IVW, MaxLik, WM, 

MR-Egger regression, and MR.RAPS (Table 1 and 

Figure 2). 

 

 
 

Figure 1. Associations of genetically predicted gut microbiota with risk of GDM using IVW method. OR, odds ratio; Cl, 
confidence interval. 
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Table 1. MR analyses of gut microbiota on GDM by different methods. 

Exposure F statistics 

Inverse variance 

weighted 
 Maximum likelihood  Weighted median  MR.RAPS  MR Egger 

OR (95%CI) P  OR (95%CI) P  OR (95%CI) P  OR (95%CI) P  OR (95%CI) P 

Collinsella 28.40  
1.322 

(1.007,1.735) 
<0.001 

 1.337 

(1.023,1.746) 
<0.001 

 1.329 

(0.916,1.928) 
0.010  

 1.373 

(1.082,1.742) 
0.012  

 2.423 

(0.902,6.506) 
0.123  

Oscillibacter 27.30  
0.822 

(0.706,0.957) 
0.011  

 0.819 

(0.701,0.956) 
0.014  

 0.788 

(0.644,0.963) 
0.022  

 0.847 

(0.734,0.976) 
0.022  

 1.068 

(0.603,1.890) 
0.830  

Coprobacter 26.02  
1.210 

(1.037,1.412) 
0.015  

 1.213 

(1.036,1.421) 
0.020  

 1.250 

(1.023,1.527) 
0.030  

 1.170 

(1.014,1.350) 
0.031  

 1.522 

(0.852,2.717) 
0.194  

Olsenella 20.39  
1.166 

(1.029,1.321) 
0.017  

 1.172 

(1.046,1.314) 
0.017  

 1.173 

(1.006,1.367) 
0.041  

 1.172 

(1.042,1.319) 
0.013  

 1.142 

(0.747,1.745) 
0.573  

Lachnoclostridium 24.83  
1.367 

(1.057,1.767) 
0.017  

 1.393 

(1.114,1.741) 
<0.001 

 1.313 

(0.953,1.810) 
0.100  

 1.340 

(1.085,1.655) 
0.010  

 1.485 

(0.596,3.700) 
0.412  

Prevotella9 336.56  
1.164 

(1.010,1.342) 
0.036  

 1.168 

(1.011,1.349) 
0.036  

 1.184 

(0.981,1.430) 
0.081  

 1.162 

(1.013,1.334) 
0.033  

 1.350 

(0.893,2.043) 
0.183  

Methanobrevibacter 27.75  
0.850 

(0.725,0.995) 
0.043  

 0.845 

(0.717,0.995) 
0.040  

 0.889 

(0.718,1.101) 
0.280  

 0.871 

(0.753,1.009) 
0.070  

 0.514 

(0.283,0.933) 
0.301  

Ruminococcus2 21.13  
1.193 

(1.003,1.418) 
0.046  

 1.201 

(1.009,1.428) 
0.045  

 1.114 

(0.865,1.436) 
0.410  

 1.204 

(1.008,1.437) 
0.043  

 1.071 

(0.698,1.643) 
0.760  

OR, odds ratio; CI, confidence interval; P, P value; MR, mendelian randomization; MR.RAPS, mendelian randomization robust 
adjusted profile score; GDM, gestational diabetes mellitus. 

 

 

Figure 2. Scatter plots for the causal association between gut microbiota and GDM. 
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Cochran’s Q statistics showed no significant 

heterogeneity in selected IVs (P > 0.05 in IVW and 

MR-Egger methods, Supplementary Table 3). Both the 

MR-Egger intercept and the MR-PRESSO global test 

confirmed there are no significant directional horizontal 

pleiotropy (P > 0.05, Supplementary Table 3). 

Additionally, the leave-one-out analysis revealed that 

there are no outlier IVs that would have a significant 

impact on the result (Supplementary Figure 1). 

 

All methods in reverse MR analysis showed no  

causal relationship from GDM to GM (P > 0.05, 

Supplementary Table 4). The sensitivity analyses 

including Cochran’s Q statistics, MR-Egger intercept, 

MR-PRESSO global test, and the leave-one-out analysis 

demonstrated the robustness of the reverse MR results 

(Supplementary Table 5 and Supplementary Figure 2). 

 

The MVMR results demonstrated that, even after adjusting 

for confounding factors, including BMI (OR, 1.470; 

95%CI, 1.137-1.901; P = 0.003), alcohol drinking (OR, 

1.486; 95%CI, 1.116-1.980; P = 0.006), smoking (OR, 

1.589; 95%CI, 1.192-2.119; P = 0.001), and hypertension 

(OR, 1.286; 95%CI, 1.034-1.599; P = 0.023), the genus 

Collinsella maintained its causal association with the risk 

of GDM and exhibited a more significant effect compared 

to the univariable MR analysis. Detailed MVMR results 

for other GM on GDM were shown in Table 2. 

 

Associations between GM-derived metabolites and 

GDM 

 

We identified eight GM-derived metabolites that showed 

suggestive associations with GDM (P < 0.05, q > 0.1; 

Figure 3). Specifically, serine (OR, 2.545; 95%CI, 

1.603-3.573; P = 0.001), indoleacetate (OR, 1.766; 

95%CI, 1.054-2.958; P = 0.031), adrenate (OR, 1.859; 

95%CI, 1.024-3.376; P = 0.042), and phenylacetate 

(OR, 1.624; 95%CI, 1.015-2.600; P = 0.043) were 

identified as risk factors for GDM, whereas pyruvate 

(OR, 0.519; 95%CI, 0.290-0.928; P = 0.027), pipecolate 

(OR, 0.531; 95%CI, 0.301-0.937; P = 0.029), 

glycodeoxycholate (OR, 0.780; 95%CI, 0.620-0.981; P 

= 0.034), and carnitine (OR, 0.479; 95%CI, 0.235-

0.975; P = 0.042) were identified as protective factors 

for GDM. The F-statistics ranged from 15.70 to 65.99 in 

the aforementioned results, excluding the bias from 

weak instrumental variables. Furthermore, we explored 

causal associations between the GM-derived metabolites 

and GDM risk using more than three MR methods 

(Table 3 and Supplementary Figure 3). The sensitivity 

analyses demonstrated the robustness of the MR results 

(Supplementary Table 3 and Supplementary Figure 3, 4). 
 

We performed reverse MR analysis to assess whether 

GDM causally affect GM-derived metabolites and  

none of the methods indicated a causal relationship 

(Supplementary Table 6). The Cochran's Q test revealed 

heterogeneity of instrumental variables in serine and 

adrenate. The MR-Egger intercept and the MR-PRESSO 

global test suggested the presence of directional 

horizontal pleiotropy in pyruvate (Supplementary  

Table 5). The leave-one-out analysis confirmed there are 

no outlier IVs that would have a significant impact on the 

result (Supplementary Figure 5). 
 

We performed an MVMR analysis to assess the causal 

effect of GM-derived metabolites on GDM after 

confounding factors adjusted. For the protect factor 

carnitine, after adjusting for BMI (OR, 0.733; 95%CI, 

0.320-1.678; P = 0.462), alcohol drinking (OR, 0.754; 

95%CI, 0.405-1.405; P = 0.374) smoking (OR, 0.725; 

95%CI, 0.393-1.341; P = 0.306), and hypertension (OR, 

0.626; 95%CI, 0.331-1.187; P = 0.152), the causal 

effect was no longer significant. Detailed MVMR 

results for other gut metabolites on GDM were shown 

in Table 4. 
 

The metabolic pathway analysis shown that 

“Phenylalanine metabolism” and “Citrate cycle (TCA 

cycle)” pathways are associated with the risk of GDM 

(Supplementary Table 7). 

 

DISCUSSION 
 

In this bidirectional MR study, we detected causal 

associations between specific bacterial genera and the 

risk of GDM. Accumulating evidence has shown 

significant dysbiosis of the gut microbiota in pregnant 

women with impaired glucose tolerance, which may 

contribute to the development of GDM. The gut bacteria 

associated with increased risk of GDM included 

Collinsella [21], Olsenella [22], Prevotella9 [23], 

Lachnoclostridium [24], and Ruminococcus2 [22]. 

While, beneficial butyrate-producing bacteria, such as 

Oscillibacter [22] and Methanobrevibacter [25] were 

found to have a protective effect on GDM. These results 

from epidemiology were consistent with our study. 

Specifically, our MR analysis found Collinsella is 

positively correlated with GDM. This association 

remained statistically significant even after adjusting for 

multiple comparisons and controlling for covariates such 

as BMI, alcohol drinking, smoking, and hypertension. 

Similar with our results, Zhang et al. and Zhong et al. 

reported an enrichment of Collinsella and its species 

Collinsella intestinalis in fecal samples from GDM 

pregnancies [10, 26]. Interestingly, another case-control 

study demonstrated the enrichment of Collinsella in 

GDM patients last to postpartum, suggesting its potential 
contribution to the long-term risk of type 2 diabetes [22]. 

Meanwhile, population-based studies have consistently 

reported a higher abundance of the Collinsella genus in 
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Table 2. Multivariable MR analyses of gut microbiota on GDM after adjusting confounding factors. 

Exposure 
BMI   Alcohol drinking  Smoking  Hypertension 

OR (95%CI) P  OR (95%CI) P  OR (95%CI) P  OR (95%CI) P 

Collinsella 1.470(1.137,1.901) 0.003   1.486(1.116,1.980) 0.006   1.589(1.192,2.119) 0.001   1.286(1.034,1.599) 0.023  

Oscillibacter 1.265(1.190,1.344) <0.001  1.209(1.093,1.337) <0.001  1.144(1.036,1.265) 0.008   1.217(1.120,1.323) <0.001 

Coprobacter 1.378(0.881,2.154) 0.160   1.330(0.996,1.777) 0.053   1.319(1.029,1.689) 0.029   1.119(0.723,1.732) 0.615  

Olsenella 0.899(0.779,1.039) 0.150   0.838(0.722,0.972) 0.020   0.783(0.604,1.015) 0.065   0.817(0.666,1.002) 0.053  

Lachnoclostridium 1.200(0.974,1.477) 0.086   1.140(0.990,1.313) 0.068   1.175(1.021,1.352) 0.025   1.148(0.978,1.349) 0.092  

Prevotella9 0.798(0.735,0.867) <0.001  0.849(0.756,0.954) 0.006   0.831(0.737,0.937) 0.003   0.814(0.716,0.926) 0.002  

Methanobrevibacter 1.138(1.033,1.255) 0.009   1.167(1.040,1.309) 0.008   1.150(1.042,1.269) 0.006   1.157(1.043,1.283) 0.006  

Ruminococcus2 1.197(0.990,1.447) 0.064   1.263(1.023,1.599) 0.030   1.207(1.022,1.426) 0.027   1.096(0.875,1.374) 0.424  

OR, odds ratio; CI, confidence interval; P, P value; MR, mendelian randomization; GDM, gestational diabetes mellitus; BMI, 
body mass index. 

 

individuals with type 2 diabetes, atherosclerosis, 

rheumatoid arthritis, and overweight individuals [26–28] 

as well as a positive correlation of the Collinsella with 

serum cholesterol was detected by mice model [29].  

In vitro experiments have shown that Collinsella reduces 

the expression of the ZO-1 tight junction protein, 

thereby impairing the integrity of the intestinal barrier 

[28]. Increased gut permeability allows higher levels of 

lipopolysaccharide, produced by gut microbiota, to enter 

the bloodstream [30], which can lead to systemic 

inflammation. This may explain the potential mechanism 

through which Collinsella contributes to the development 

of these diseases [31]. All the evidence above suggests 

that the Collinsella could potentially serve as a novel 

target for the prevention and treatment of the 

aforementioned diseases. However, further functional 

experiments and RCTs are required to support this 

finding. 

Regarding to gut metabolites, in this study, MR results 

showed suggestive evidence of genetically increased 

phenylacetic acid (PA) with a higher risk of GDM as 

well as the metabolic pathway analysis revealed that 

“Phenylalanine metabolism” pathway is closely related 

to GDM. In a nested case-control study involving 105 

women in early pregnancy, it was found that GDM 

patients had significantly higher levels of PA compared 

to the control group [32]. This finding is consistent with 

previous research showing elevated levels of PA in 

patients with impaired fasting glucose, even after 

accounting for traditional risk factors [33]. PA is an 

organic compound primarily produced through 

microbial phenethylamine metabolism by bacteria [34, 

35]. Once absorbed into the portal system, PA can be 

converted by the liver into phenylacetylglutamine 

(PAGln) [36]. A cohort study involving 1,797 female 

twins demonstrated an association between PAGln and 

 

 
 

Figure 3. Associations of genetically predicted gut microbiota-derived metabolites with risk of GDM using IVW method. OR, 
odds ratio; CI, confidence interval. 
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Table 3. MR analyses of gut microbiota-derived metabolites on GDM by different methods. 

Exposure F statistics 

Inverse variance 

weighted 
 Maximum likelihood  Weighted median  MR.RAPS  MR Egger 

OR (95%CI) P  OR (95%CI) P  OR (95%CI) P  OR (95%CI) P  OR (95%CI) P 

Serine 34.57  
2.545 

(1.603,3.573) 
0.001   

2.403 

(1.651,3.013) 
0.001   

2.663 

(0.956,7.419) 
0.062   

2.584 

(1.769,3.262) 
0.003   

1.391 

(0.203,9.546) 
0.741 

Pyruvate 17.55  
0.519 

(0.290,0.928) 
0.027  

0.528 

(0.294,0.947) 
0.032   

0.391 

(0.181,0.845) 
0.022   

0.486 

(0.270,0.886)) 
0.021   

0.179 

(0.033,0.977) 
0.075  

Pipecolate 27.65  
0.531 

(0.301,0.937) 
0.029  

0.537 

(0.297,0.974) 
0.043   

0.840 

(0.380,1.855) 
0.671  

0.605 

(0.358,1.023) 
0.063  

0.552 

(0.099,3.96) 
0.522 

Indoleacetate 43.73  
1.766 

(1.054,2.958) 
0.031  

1.617 

(1.000,2.614) 
0.052  

1.754 

(0.936,3.288) 
0.083  

1.607 

(0.658,3.923) 
0.062  

1.741 

(0.904,3.351) 
0.157 

Glycodeoxycholate 15.70  
0.780 

(0.620,0.981) 
0.034  

0.775 

(0.610,0.985) 
0.056  

0.764 

(0.563,1.037) 
0.081  

0.835 

(0.664,1.051) 
0.124  

0.676 

(0.230,1.982) 
0.512 

Adrenate 32.64  
1.859 

(1.024,3.376) 
0.042  

1.875 

(1.022,3.440) 
0.042   

1.570 

(0.732,3.371) 
0.251   

1.868 

(1.005,3.474) 
0.054   

1.921 

(0.423,8.630) 
0.425 

Carnitine 65.99  
0.479 

(0.235,0.975) 
0.042  

0.480 

(0.241,0.956) 
0.045   

0.515 

(0.160,1.662) 
0.272   

0.522 

(0.267,1.021) 
0.067   

1.026 

(0.109,9.657) 
0.981  

Phenylacetate 24.02 
1.624 

(1.015,2.600) 
0.043  

1.804 

(1.142,2.849) 
0.016  

1.570 

(0.732,3.371) 
0.251  

1.868 

(1.005,3.474) 
0.054  

1.921 

(0.423,8.630) 
0.425 

OR, odds ratio; CI, confidence interval; P, P value; MR, mendelian randomization; MR.RAPS, mendelian randomization robust 
adjusted profile score; GDM, gestational diabetes mellitus. 

 

Table 4. Multivariable MR analyses of gut microbiota-derived metabolites on GDM after adjusting confounding 
factors. 

Exposure 
BMI   Alcohol drinking  Smoking  Hypertension 

OR (95%CI) P  OR (95%CI) P  OR (95%CI) P  OR (95%CI) P 

Serine 5.125(2.142,12.261) <0.001  3.105(1.443,6.680) 0.004   2.324(1.042,5.184) 0.039   3.348(1.581,7.090) 0.002  

Pyruvate 0.424(0.214,0.839) 0.014   0.466(0.294,0.740) 0.001   0.678(0.352,1.309) 0.247   0.492(0.292,0.830) 0.008  

Pipecolate 0.542(0.327,0.899) 0.018   0.698(0.423,1.151) 0.159   0.669(0.398,1.123) 0.128   0.648(0.376,1.116) 0.118  

Indoleacetate 1.961(0.923,4.164) 0.080   1.684(1.047,2.708) 0.032   1.710(1.029,2.842) 0.039   1.813(1.144,2.875) 0.011  

Glycodeoxycholate 0.810(0.551,1.192) 0.285   1.058(0.770,1.454) 0.727   0.893(0.721,1.105) 0.297   0.623(0.556,0.699) <0.001 

Adrenate 2,277(1.686,3.076) <0.001  1.851(1.270,2.699) 0.001   1.878(1.310,2.692) 0.001   1.829(1.212,2.760) 0.004  

Carnitine 0.733(0.320,1.678) 0.462   0.754(0.405,1.405) 0.374   0.725(0.393,1.341) 0.306   0.626(0.331,1.187) 0.152  

Phenylacetate 1.184(0.637,2.202) 0.594   1.072(0.647,1.773) 0.778   1,791(1.372,2.339) 0.000   1.596(1.154,2.208) 0.005  

OR, odds ratio; CI, confidence interval; P, P value; MR, mendelian randomization; GDM, gestational diabetes mellitus; BMI, 
body mass index. 

 

the expression of the cell death activator CIDE-C, 

which plays a role in regulating insulin resistance  

in adipose tissue [37]. The expression of microbial 

PAGln-synthesis related enzyme genes was positively 

correlated with the absolute count of neutrophils, 

indicating systemic inflammation [38], and evidence 

indicated that inflammation status can trigger the  

onset of hyperglycemia [39]. Collectively, these 

findings provided evidence that PA and the 

"Phenylalanine metabolism" pathway may play a 

significant role in the pathogenesis of GDM. 

Additionally, we found a positive association between 
indole acetate and GDM. Zhu et al. developed a multi-

metabolite model that accurately predicted the risk of 

GDM, including indole acetate [40], which supported 

our result. 

Carnitine, a quaternary ammonium compound abundant 

in red meat [41] can be converted into trimethylamine-

N-oxide (TMAO) through a microbiota-dependent 

mechanism [42]. Cellular and in vivo experiments 

supported the role of TMAO in inhibiting 

gluconeogenesis and increasing blood glucose by 

blocking the hepatic insulin signaling pathway  

[43, 44]. However, evidence from human studies is not 

always consistent. Several observational studies have 

suggested an increased risk of diabetes with elevated 

TMAO levels [45, 46], whereas cohort study and MR 

analysis indicated no association [19, 47]. Interestingly, 
we identified a protective effect of carnitine on GDM, 

which is supported by a prospective cohort study in 

China. This study found an inverse relationship between 

the concentration of L-carnitine and the risk of GDM, 
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with a clear threshold effect [48]. However, in a birth 

cohort study conducted in Boston, the concentration of 

carnitine and other precursors of TMAO showed no 

association with GDM [49]. Additionally, our further 

multivariable MR analysis found no direct causal effect 

between carnitine and GDM after confounders adjusted. 

Considering the unclear mechanism, inconsistent 

results, and potential confounding factors, the causal 

relationship between carnitine and the risk of GDM 

should be interpreted with caution. 

 

Our study has several strengths. Firstly, it is the first 

MR analysis to explore the possible causal associations 

among GM, GM-derived metabolites, and GDM. 

Secondly, the exposure and outcome data are derived 

from the largest GWAS conducted to date. Furthermore, 

we employed bidirectional MR, multivariable MR, and 

several sensitivity analyses, which enhance the 

robustness of our findings. Thirdly, confounding 

variables and reverse causation are less likely to have an 

impact on the causal associations. Therefore, our study 

may offer potential gut biomarkers that can be further 

investigated in functional studies related to GDM. 

 

Apparently, there are still some limitations. Firstly, we 

set the significance threshold of exposure instrumental 

variables (IVs) at 1e-05 due to the limited number of 

IVs meeting genome-wide significance criteria. 

However, we tested the F-statistics to avoid the weak 

instrumental bias. Secondly, the original GWAS 

population is predominantly of European descent, thus 

limiting the generalizability of our findings to other 

ethnicities. Thirdly, due to the limited resolution of 16S 

rRNA sequencing, our MR analyses were performed at 

the bacterial genus level rather than at a more specific 

species level. Finally, although GM and GM-derived 

metabolites may be influenced by dietary habits, we 

were unable to account for these confounding factors in 

the multivariable MR analysis due to the lack of 

publicly available GWAS on dietary habits. 

 

In conclusion, our study employed bidirectional MR 

analyses on GWAS summary data to comprehensively 

investigate the causal effects of gut microbiota and gut 

microbiota-derived metabolites on GDM. Our findings 

offer valuable insights into the mechanisms of GDM and 

may contribute to the development of prevention and 

treatment strategies targeting gut biomarkers. However, 

further studies are needed to validate these results. 

 

MATERIALS AND METHODS 
 

Data sources 

 

The GM dataset conducted by the Microbiome Genome 

(MiBioGen) consortium consists of 24 multiple ancestry 

cohorts including 18,340 subjects [50]. After extracting 

DNA from fecal samples, data was generated by the 

Illumina platform. Setting SILVA database as the 

reference, 16S rRNA gene sequencing pipeline was 

conducted to profile the microbial composition [51], 

with the annotation to genus and higher level. 

 

Genetic variants for gut metabolites were collected from 

a pooled dataset of 7,824 European ancestry participants 

(TwinsUK and KORA cohorts), which tested 486 

metabolite concentrations after sex and age corrected 

[52]. Then we manually checked HMDB database to 

obtain a list of 81 GM-derived metabolites (i.e., butyric 

acid, choline, glutamate, kynurenine, tyrosine) from all 

the quantified metabolites in the GWAS which includes 

summary data [53]. 

 

GWAS summary statistics for GDM was extracted from 

the FinnGen consortium included 123,579 female 

subjects (5,687 cases and 117,892 controls) [54]. These 

individuals were genotyped using Illumina and 

Affymetrix chips arrays, and 16,379,784 variants were 

analyzed in total. Association analysis was conducted 

with sex, age, genotyping batch, and 10 principal 

components as covariates. Details of GM, GM-derived 

metabolites, and GDM GWAS datasets used in this 

study were listed in Supplementary Table 8. 

 

Instrumental variables 

 

Five steps were applied to select the optimal IVs: (1) 

SNPs under a locus-wide significance threshold of  

P < 1e-05 were obtained as potential IVs related to each 

exposure traits, respectively [18]. (2) Linkage 

disequilibrium (LD) based clumping was performed to 

ensure the potential IVs are independent (r2 < 0.001, 

window size = 10,000 kb) [55]. (3) SNPs with minor 

allele frequency < 0.01 and palindromic SNPs were 

excluded. (4) The proxy SNPs (r2 > 0.8) were selected 

based on European population data in the 1000 Genome 

project after removing the SNPs closely related to the 

outcome phenotype (P < 5e-08) [56]. (5) SNPs with F-

statistics < 10 were excluded to avoid the weak 

instrumental bias [57]. 

 

Statistical analyses 

 

We used the inverse-variance weighted (IVW) method as 

the primary MR analysis to detect the causal association 

between exposure (GM, GM-derived metabolites) and 

outcome (GDM). The IVW method calculates the total 

causal effect by using the weighted linear regression 

model combined with the weight coefficient, under the 
condition that the intercept is zero [58]. IVW results were 

corrected for multiple comparisons applying the q-value 

procedure (q < 0.1), while P < 0.05 but q > 0.1 was 
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considered to have a suggestive association [59]. After 

IVW analysis, GM and metabolites that were found to be 

causally related to GDM would be selected for further 

analyses. 

 

Several MR methods including maximum Likelihood 

(MaxLik), weighted median (WM), MR-Egger 

regression and MR robust adjusted profile score 

(MR.RAPS) were also conducted to test the robustness 

of our study. MaxLik estimates the parameter values that 

have the greatest likelihood of leading to a particular 

outcome by using the known sample. Its standard error 

would be lower than IVW when heterogeneity and 

horizontal pleiotropy do not exist [60]. WM improves 

the power of causality detection based on the assumption 

that up to 50% IVs are valid [61]. MR-Egger regression 

method could identify and correct pleiotropy, but the 

estimation accuracy will be very low unless using a 

larger sample size [62]. MR.RAPS applies robust 

estimates to correct for systematic and idiosyncratic 

pleiotropy, the results of which are unbiased even 

though weak IVs exist [63]. 

 

Cochran’s IVW Q statistics and leave-one-out analysis 

were used to identify potential heterogeneous IVs. MR-

Egger intercept and MR Pleiotropy RESidual Sum and 

Outlier (MR-PRESSO) global test were conducted to 

test whether directional horizontal pleiotropy is driving 

the results of MR analyses [64, 65]. 

 

Reverse MR analysis was used to confirm the direction 

of causality. The methods were similar to forward  

MR, except for setting GDM as the exposure and  

GM or GM-derived metabolites as the outcomes. 

Finally, we conducted multivariable MR (MVMR) 

analysis, taking into account potential confounders that 

might influence the outcome. Specifically, four 

confounders including BMI, alcohol drinking, 

smoking, and hypertension were adjusted in MVMR, 

respectively. 

 

For GM-derived metabolites that achieved the 

significant threshold of P < 0.05 by IVW method, we 

used MetaboAnlyst software to conduct the metabolic 

pathway analysis [66]. 

 

Flowchart of this study was shown in Figure 4. All 

MR analyses were performed by the packages 

“TwoSampleMR”, “MRPRESSO”, and “qvalue” in R 

software. 

 

 
 

Figure 4. Flowchart of this study. GWAS, genome-wide association study; GDM, gestational diabetes mellitus; IVW, inverse-variance 
weighted; MaxLik, maximum likelihood; WM, weighted median; MR.RAPS, mendelian randomization robust adjusted profile score; MR-
PRESSO, mendelian randomization pleiotropy residual sum and outlier; BMI, body mass index. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Leave-one-out plots for the causal association between gut microbiota and GDM in forward MR 
analyses. 
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Supplementary Figure 2. Leave-one-out plots for the causal association between GDM and gut microbiota in reverse MR 
analyses. 
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Supplementary Figure 3. Scatter plots for the causal association between gut microbiota-derived metabolites and GDM. 
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Supplementary Figure 4. Leave-one-out plots for the causal association between gut microbiota-derived metabolites and 
GDM in forward MR analyses. 
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Supplementary Figure 5. Leave-one-out plots for the causal association between gut microbiota-derived metabolites and 
GDM in reverse MR analyses. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1, 2. 

 

Supplementary Table 1. Genome-wide significant and independent SNPs that were used as instruments for gut 
microbiota. 

 

Supplementary Table 2. Genome-wide significant and independent SNPs that were used as instruments for gut 
metabolites. 

 

Supplementary Table 3. Tests for detecting horizontal and directional pleiotropy in forward MR analysis. 

Exposure 

MR-PRESSO global test  MR-Egger intercept pEgger  Cochran’s Q test 

MR-PRESSO 

RSSobs 
P value   

Egger-

intercept 

Standard 

Error 
P value   

IVW 

(P) 

MR-Egger 

(P) 

Gut microbiota 

Collinsella 11.512  0.409   -0.044  0.035  0.252   0.341  0.391  

Oscillibacter 7.355  0.905   -0.025  0.027  0.372   0.903  0.910  

Coprobacter 3.576  0.960   -0.025  0.031  0.445   0.969  0.973  

Olsenella 13.639  0.315   0.003  0.029  0.921   0.261  0.190  

Lachnoclostridium 20.241  0.167   -0.005  0.031  0.855   0.138  0.101  

Prevotella9 6.633  0.977   -0.015  0.021  0.467   0.973  0.972  

Methanobrevibacter 6.006  0.568   0.074  0.043  0.162   0.950  0.901  

Ruminococcus2 17.376  0.363   0.009  0.017  0.597   0.363  0.314  

Gut metabolite 

Serine 27.181  0.651   0.011  0.012  0.362   0.589  0.583  

Pyruvate 9.313  0.802   0.027  0.021  0.218   0.808  0.874  

Pipecolate 7.775  0.802   -0.001  0.023  0.962   0.807  0.731  

Indoleacetate 25.269  0.175   -0.011  0.011  0.314   0.128  0.137  

Glycodeoxycholate 3.880  0.751   0.013  0.048  0.803   0.758  0.636  

Adrenate 3.852  0.957   -0.001  0.021  0.963   0.954  0.919  

Carnitine 168.085  0.185   -0.004  0.005  0.483   0.174  0.167  

Phenylacetate 5.637  0.803    -0.005  0.017  0.776    0.869  0.798  

 

Supplementary Table 4. Reverse MR analyses of GDM on gut microbiota by different methods. 

Outcome 

Inverse variance 

weighted 
 Maximum likelihood  Weighted median  MR.RAPS  MR Egger 

β(95%CI) P   β(95%CI) P   β(95%CI) P   β(95%CI) P   β(95%CI) P 

Collinsella 
-0.022 

(-0.103,0.058) 
0.592   -0.023 

(-0.102,0.057) 
0.581   0.004 

(-0.100,0.107) 
0.941   -0.035 

(-0.089,0.019) 
0.203   -0.38 

(-0.431,0.355) 
0.872  

Oscillibacter 
-0.004 

(-0.116,0.111) 
0.951   -0.04 

(-0.118,0.111) 
0.950   -0.014 

(-0.157,0.128) 
0.842   0.049 

(-0.029,0.127) 
0.221   0.033 

(-0.466,0.533) 
0.913  

Coprobacter 
-0.037 

(-0,107,0.033) 
0.302   -0.038 

(-0.109,0.033) 
0.290   -0.023 

(-0.109,0.063) 
0.600   -0.009 

(-0.058,0.039) 
0.700   0.153 

(0.126,0.433) 
0.390  

Olsenella 
0.068 

(-0.090,0.225) 
0.401   0.068 

(-0.09,0.226) 
0.400   0.005 

(-0.183,0.193) 
0.962   0.055 

(-0.053,0.162) 
0.320   0.048 

(-0.579,0.676) 
0.890  

Lachnoclostridium 
0.097 

(-0.058,0.252) 
0.222   0.096 

(-0.058,0.253) 
0.221   0.077 

(-0.107,0.261) 
0.410   0.008 

(-0.098,0.114) 
0.881   0.126 

(-0.490,0.742) 
0.731  

Prevotella9 
0.032 

(-0.076,0.139) 
0.564   0.032 

(-0.069,0.133) 
0.532   0.016 

(-0.104,0.135) 
0.798   0.002 

(-0.066,0.070) 
0.964   0.260 

(-0.150,0.670) 
0.340  

Methanobrevibacter 
0.006 

(-0.119,0.131) 
0.920   0.007 

(-0.087,0.100) 
0.893   0.020 

(-0.102,0.142) 
0.753   0.027 

(-0.036,0.090) 
0.403   -0.086 

(-0.684,0.511) 
0.800  

Ruminococcus2 
0.018 

(-0.078,0.113) 
0.710    

0.018 

(-0.058,0.046) 
0.642    

-0.021 

(-0.119,0.077) 
0.680    

-0.006 

(-0.058,0.046) 
0.826    

0.111 

(-0.337,0.558) 
0.676  
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Supplementary Table 5. Tests for detecting horizontal and directional pleiotropy in reverse MR analysis. 

Exposure 

MR-PRESSO global test  MR-Egger intercept pEgger  Cochran's Q test 

MR-PRESSO 

RSSobs 
P value   Egger-intercept 

Standard 

error 
P value   IVW (P) MR-Egger (P) 

Gut microbiota 

Collinsella 7.280  0.377   0.003  0.037  0.943   0.366  0.206  

Oscillibacter 5.403  0.432   -0.043  0.038  0.377   0.324  0.348  

Coprobacter 5.260  0.512   -0.007  0.047  0.895   0.485  0.298  

Olsenella 0.794  0.935   -0.005  0.058  0.934   0.932  0.807  

Lachnoclostridium 4.161  0.564   -0.036  0.026  0.301   0.503  0.802  

Prevotella9 12.033  0.235   0.017  0.056  0.783   0.136  0.071  

Methanobrevibacter 2.462  0.730   0.003  0.059  0.956   0.736  0.531  

Ruminococcus2 9.898  0.266   -0.017  0.042  0.715   0.189  0.112  

Gut metabolite 

Serine 306.675  0.049   0.009  0.006  0.217   0.002  0.026  

Pyruvate -29.025  0.001   -0.022  0.005  0.028   0.001  0.714  

Pipecolate 1.836  0.882   0.004  0.006  0.548   0.873  0.856  

Indoleacetate 1.764  0.887   0.003  0.005  0.635   0.852  0.783  

Glycodeoxycholate 6.721  0.446   -0.024  0.023  0.357   0.279  0.302  

Adrenate 15.901  0.172   -0.001  0.009  0.973   0.034  0.015  

Carnitine 37.744  0.076   -0.005  0.002  0.115   0.061  0.073  

Phenylacetate 11.931  0.257    0.011  0.007  0.208    0.137  0.287  

 

Supplementary Table 6. Reverse MR analyses of GDM on gut metabolites by different methods. 

Outcome 
Inverse variance weighted  Maximum likelihood  Weighted median  MR.RAPS  MR Egger 

β(95%CI) P   β(95%CI) P   β(95%CI) P   β(95%CI) P   β(95%CI) P 

Serine 
0.004 

(-0.019,0.027) 
0.711   0.005 

(-0.007,0.016) 
0.438   0.001 

(-0.012.0.013) 
0.934   0.005 

(-0.007,0.016) 
0.430   -0.034 

(-0.085,0.018) 
0.290  

Pyruvate 
-0.016 

(-0.058,0.027) 
0.470   -0.017 

(-0.037,0.004) 
0.120   -0.002 

(-0.026,0.022) 
0.880   -0.017 

(-0.036,0.003) 
0.107   0.080 

(0.029,0.132) 
0.054  

Pipecolate 
0.003 

(-0.017,0.023) 
0.790   0.003 

(-0.017,0.023) 
0.790   -0.001 

(-0.023,0.022) 
0.960   0.003 

(-0.017,0.023) 
0.790   -0.014 

(-0.066,0.038) 
0.640  

Indoleacetate 
-0.002 

(-0.020,0.016) 
0.810   -0.002 

(-0.020,0.016) 
0.810   -0.001 

(-0.021,0.019) 
0.930   -0.002 

(-0.020,0.016) 
0.820   -0.014 

(-0.061,0.033) 
0.610  

Glycodeoxycholate 
-0.058 

(-0.138,0.023) 
0.160   -0.058 

(-0.130,0.014) 
0.113   -0.052 

(-0.132,0.027) 
0.200   -0.058 

(-0.131,0.015) 
0.117   0.042 

(-0.155,0.240) 
0.703  

Adrenate 
-0.019 

(-0.048,0.009) 
0.177   -0.020 

(-0.038,-0.002) 
0.029   -0.023 

(-0.044,-0.003) 
0.026   -0.020 

(-0.042,0.001) 
0.057   -0.018 

(-0.104,0.068) 
0.708  

Carnitine 
-0.006 

(-0.018,0.007) 
0.390   -0.006 

(-0.012,0.000) 
0.059   -0.003 

(-0.011,0.005) 
0.495   -0.006 

(-60.766,90.754) 
0.053   0.016 

(-0.005,0.037) 
0.236  

Phenylacetate 
-0.015 

(-0.043,0.013) 
0.300    

-0.015 

(-0.036,0.006) 
0.170    

-0.020 

(-0.048,0.007) 
0.150    

-0.015 

(-0.037,0.007) 
0.170    

-0.063 

(-0.126,0.001) 
0.150  
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Supplementary Table 7. Metabolic pathway associated with GDM. 

Metabolic pathway Involved metabolites P value Database 

Phenylalanine metabolism Phenylacetic acid 0.026 KEGG SMP 

Citrate cycle (TCA cycle) Pyruvate 0.041 KEGG SMP 

Pyruvate metabolism Pyruvate 0.056 KEGG SMP 

Lysine degradation L-Pipecolate 0.063 KEGG SMP 

Glycolysis / Gluconeogenesis Pyruvate 0.065 KEGG SMP SMP 

Alanine, aspartate and glutamate metabolism Pyruvate 0.070 KEGG SMP SMP SMP 

Glyoxylate and dicarboxylate metabolism Pyruvate 0.080 KEGG 

Glycine, serine and threonine metabolism Pyruvate 0.083 KEGG SMP 

Cysteine and methionine metabolism Pyruvate 0.083 KEGG SMP SMP 

Arginine and proline metabolism Pyruvate 0.095 KEGG SMP 

Tryptophan metabolism Indole-3-acetate 0.102 KEGG SMP 

Tyrosine metabolism Pyruvate 0.104 KEGG SMP SMP 
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Supplementary Table 8. Detailed information for genome-wide association studies involved in the present 
Mendelian randomization study. 

Variable  Consortium or study Sample size Journal Year Cohort Nation of cohort Number of samples 

Gut microbiota MiBioGen 18,340 Nat Genet. 2021 

BSPSPC Germany 721 

CARDIAw USA 257 

COPSAC Denmark 380 

DanFunD16 Denmark 2,396 

FGFP Belgian 2,259 

FOCUS Germany 960 

GEM_HCE_v12 Canada 378 

GEM_HCE_v24 Canada 203 

GEM_ICHIP_HCE Canada 662 

GenR The Netherlands 1,328 

HCHS/SOL USA 1,097 

KSCS South Korea 811 

LLD The Netherlands 875 

METSIM Finland 522 

MIBS The Netherlands 80 

NGRC USA 77 

NTR The Netherlands 279 

PNP Israel 481 

POPCOL Sweden 134 

RS3 The Netherlands 1,220 

SHIP Germany 996 

SHIP-TREND Germany 905 

TwinsUK UK 1,205 

Gut metabolites TwinsUK, KORA F4 7,824 Nat Genet. 2017 
KORA F4 Germany 1,768 

TwinsUK UK 6,056 

BMI UK Biobank 461,460  2018 UK Biobank European 461,460 

alchol drinking UK Biobank 462,346  2018 UK Biobank European 462,346 

smoking GSCAN 607,291  2019 GSCAN European 

311,629 

cases/321,173 

controls 

hypertension UK Biobank 462,346  2018 UK Biobank European 462,346 

GDM FinnGen 123,579  2021 FinnGen European 
5,687 cases/117,892 

controls 

 


