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INTRODUCTION 
 

Breast cancer (BRCA) is a frequently diagnosed 

malignancy that affects both sexes and remains the 
leading cause of cancer-related deaths in females [1]. It 

is projected by the American Cancer Society that by 

2023, the United States will see 290,560 new cases of 

breast cancer and 43,780 fatalities [2]. BRCA can be 

classified into four molecular subtypes based on the 

hormone receptor (HR) and human epidermal growth 

factor receptor 2 (HER2) status: HR+/HER2-, 

HR+/HER2+, HR-/HER2+, and TNBC (HR-/HER2-). 
Each subtype exhibits distinct biological features, with 

HR+/HER2- BRCA being the most common subtype 

that can be managed using endocrine therapy [3]. 

However, despite the high sensitivity of HR+/HER2- 
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ABSTRACT 
 

Exosomes play crucial roles in intercellular communication and are involved in the onset and progression of 
various types of cancers, including breast cancer. However, the RNA composition of breast cancer-derived 
exosomes has not been comprehensively explored. We conducted microarray assays on exosomes isolated 
from breast cancer and healthy breast epithelial cells from three patients with hormone receptor (HR) +/ 
human epidermal growth factor receptor (HER2) - breast cancer and identified 817 differentially expressed 
genes (DEGs). Among these, 315 upregulated tumor-derived exosome genes (UTEGs) were used to classify 
HR+/HER2- breast cancers into two categories, revealing a difference in survival rates between the groups. We 
developed and validated a novel prognostic exosome score (ES) model consisting of four UTEGs that provides a 
refined prognosis prediction in HR+/HER2-breast cancer. ES reflects various immune-related features, including 
somatic variation, immunogenicity, and tumor immune infiltrate composition. Our findings indicate a 
considerable positive correlation between the ES and drug sensitivity values for vincristine, paclitaxel, and 
docetaxel. However, ES was remarkably higher in the endocrine therapy non-responder group than in the 
responder group. Immunohistochemistry confirmed the remarkable expression of the four model genes in 
tumor tissues, and their expression in MCF-7 cell exosomes was higher than that in MCF10A cells, as verified via 
qPCR. In summary, tumor-derived exosome genes provide novel insights into the subtyping, prognosis, and 
treatment of HR+/HER2-breast cancer. 
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BRCA to endocrine therapies, a considerable proportion 

of patients develop resistance to these interventions, 

with disease recurrence occurring during or after 

treatment [4]. 

 

In the 1970s, Johnstone initially characterized exosomes 

as 30-150 nm vesicles composed of a phospholipid 

bilayer membrane. Exosomes vehicles (EVs) arise 

through inward invagination of the endosomal 

membrane, enabling them to transfer information from 

their originating cells. These vesicles contain an array of 

molecular elements, such as DNA, RNA, proteins, lipids, 

and metabolites, which reflect the cell types from which 

they are derived. Exosomes have been implicated in drug 

resistance, cancer progression, and metastasis. Campos  

et al. reported the presence of Caveolin-1 in EVs from 

the metastatic breast cancer cell line MDA-MB-231, 

promoting the in vitro migration and invasion of the same 

cells, as well as a non-metastatic breast cancer cell line 

[5]. Furthermore, Semina et al. showed that co-culturing 

sensitive MCF-7 cells with exosomes from drug-resistant 

cells for 14 days induced sensitivity to antiestrogen drugs 

[6]. Exosomes have drawn increasing attention since they 

emerged as critical players in the initiation, progression, 

and metastasis of breast cancer [7]. Nonetheless, there are 

still inadequate data regarding the RNA content of breast 

cancer-derived exosomes. 

 

In our study, we recruited patients who had been 

diagnosed with HR+/HER2- BRCA. Exosomes were 

extracted from primary cultured healthy and cancerous 

breast epithelial cells, and their gene expression was 

scrutinized via microarray. Differentially expressed 

genes (DEGs) were identified via bioinformatics 

analysis, and we formulated predictive models and 

exosome scores (ES) for patients with breast cancer 

based on the expression of four genes, phospho-

inositide-dependent protein kinase 1 (PDPK1), WD 

Repeat and SOCS Box Containing 2 (WSB2), pirin 

(PIR), and Methylenetetrahydrofolate Dehydrogenase 2 

(MTHFD2). Furthermore, it was discovered that the ES 

not only exhibited a correlation with survival but also 

mirrored the status of diverse immune-related traits and 

the effectiveness of endocrine therapy in patients with 

breast cancer (Figure 1). 

 

MATERIALS AND METHODS 
 

Tissue collection and public data sets 

 

From February to March 2022, a cohort of consecutive 

patients with early-stage breast cancer was enrolled at the 

Tangshan People’s Hospital. These patients were 

required to meet all the following inclusion criteria:1)  

age between 55 and 65 years with no prior history of 

breast cancer or other malignancy and without any past 

chemotherapy treatment, 2) confirmed diagnosis of breast 

cancer through needle biopsy histology, and 3) no history 

of medical intervention for breast cancer prior to surgical 

resection. The following exclusion criteria were applied: 

inflammatory breast cancer, hypertension (blood pressure 

> 140/90 mmHg), hyperlipidemia (triglyceride > 1.7 

mmol/L, total cholesterol > 6.0 mmol/L), diabetes, and 

tumors with a diameter larger than 5 cm. 

 

Carcinoma and healthy tissue samples were obtained 

from surgical specimens immediately after surgery. 

Fresh tissues were used to prepare single-cell 

suspensions and subsequent primary cultures, which 

were then frozen and stored at -80° C for later analysis. 

 

In The Cancer Genome Atlas (TCGA) Breast Cancer 

(BRCA) project, masked copy number segments, 

RNASeq expression (STAR – Counts), and clinical data 

were downloaded using the TGCAbiolinks R package 

[8]. The TCGA RNA sequencing FPKM data extracted 

from “STAR – Counts” files were transformed into log2 

(FPKM + 1). Survival data and breast cancer subtypes 

were compiled from clinical data and a total of 532 

patients with HR+/HER2-breast cancer with a follow-up 

time of >30 days were selected (Supplementary Table 4). 

 

The Gene Expression Omnibus (GEO) dataset 

GSE25066 [9], which includes 292 patients with 

HR+/HER2- breast cancer with distant relapse-free 

survival (DRFS) data (Supplementary Table 5), was 

used for validation. 

 

Dataset GSE145325 [10] contains RNA-seq data of 

patients with ER+ breast cancer treated with letrozole, 

and SRR files (SRP249306) were downloaded from 

Sequence Read Archive (SRA) stores and converted to 

FASTQ format using the SRAtoolkit. 

 

Cell lines and cell culture 

 

The human breast epithelial cell line MCF10A was 

procured from the Peking Union Medical College Cell 

Resource Center (PUMCCRC) in Beijing, China. The 

MCF-7 human breast cancer cell line was obtained from 

the Shanghai Cell Bank of the Chinese Academy of 

Sciences (CAS). Cells were cultured according to the 

cell instructions respectively. 

 

Exosomes isolation 

 

Exosomes present in the supernatants of breast cancer 

cell cultures were purified using differential ultra-

centrifugation. Briefly, the cells were grown in cell 
culture medium supplemented with 10% Fetal Bovine 

Serum (FBS)-exosomes depleted (SBI, USA) for  

48 h. Thereafter, the cell culture supernatant was collected 
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Figure 1. Strategy for identifying upregulated tumor-derived exosomes genes and exosomes score in this study. 
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and subjected to centrifugation at 2× 103 g for 20 min at 

4° C to eliminate cells. A subsequent centrifugation at  

1× 104 g for 30 min at 4° C was performed to remove 

cellular debris. The resulting supernatant was sieved 

using 0.2 μm filters (Millipore, USA) and subsequently 

ultra-centrifuged at 1× 105 g for 1h at 4° C. The pellets 

were resuspended in phosphate-buffered saline (PBS) 

and once again subjected to ultra-centrifugation at 1× 105 

g for 1h at 4° C. 

 

Purified exosomes transmission electron microscopy 

 

A volume of 10 µl of exosomes was administered onto 

copper transmission electron microscopy grids, 

measuring 3.05 mm with 200 mesh, and left to rest for 

5 min. The grids were rinsed with PBS and coated 

with 2% uranyl acetate for 3 min. Exosome images 

were captured using a transmission electron 

microscope (Tecnai G2 Spirit Biotwin; FEI Company, 

USA). 

 

RNA isolation and qRT-PCR 

 

Cells total RNA was extracted using Trizol Reagent 

(Invitrogen) according to the manufacturer’ protocol. 

Subsequently, 1 µg of RNA was subjected to reverse 

transcription using the PrimeScript™ RT Master Mix 

kit (Takara, China). The SYBR premix Ex TaqTM II 

kit (Takara, China) was used to detect the expression 

levels of the specified genes, and the results were 

analyzed using the Stratagene Mx 3000P software 

(Agilent Technologies, USA). The 2–ΔΔCt method was 

used to calculate the relative expression levels of 

mRNA. Primer sequences used in this analysis are 

listed in Supplementary Table 1. All  

qRT-PCR experiments were repeated in triplicate,  

and each group had three technical replicates. 

Statistical analyses were performed using GraphPad 

Prism 8.0. The outcomes of the experiments were 

expressed as the mean ± SD, and a two-tailed 

Student’s t-test was employed to compute the p-value. 

Statistical significance was considered when p-values 

were <0.05. 

 

Microarray analysis and data processing 

 

RNA quantity and quality were measured using a 

NanoDrop ND-1000. RNA integrity was assessed via 

standard denaturing agarose gel electrophoresis or an 

Agilent 2100 Bioanalyzer. 

 

Sample labeling and array hybridization were 

performed according to the Agilent One-Color 
Microarray-based Gene Expression Analysis protocol 

(Agilent Technologies). The Agilent Feature Extraction 

software (version 11.0.1.1) was used to analyze the 

acquired array images. Long non-coding (lnc) RNAs 

and mRNAs that were flagged at least in three out of six 

samples as Present or Marginal (“All Targets Value”) 

were chosen for further data analysis. 

 

Microarray probes re-annotation 

 

The Human reference sequence (GRCh38.d1.vd1) and 

annotation file (GDC.h38 GENCODE v36 GTF) were 

downloaded from The Genomic Data Commons (GDC) 

database (https://gdc.cancer.gov/about-data/gdc-data-

processing/gdc-reference-files). 

 

We mapped the probe sequences to the human genome 

(GRCh38.d1.vd1.fa.tar.gz) using the SeqMap software 

(http://www-personal.umich.edu/~jianghui/seqmap/). 

Using an annotation file (gencode.v22.annotation.gtf.gz), 

we reannotated the probes for the two chips and removed 

those corresponding to multiple genes. 

 

Identification of prognostic genes and construction 

of a risk model 

 

Univariate Cox regression analysis was performed to 

explore the correlation between genes and OS in TCGA 

dataset. DEGs with p <0.05 were considered candidate 

genes. 

 

Random forest analysis was used to reduce the scope 

of the gene screening. Finally, the coefficient for each 

gene was obtained through multivariate Cox 

regression, and the exosome score (ES) = sum of 

coefficient × expression level of the gene was 

calculated. 

 

Immune-related features and tumor 

microenvironment data 

 

Thorsson conducted an extensive immunogenic study of 

more than 10,000 tumors containing 33 different types 

of cancer using data collected from TCGA [11]. We 

used Thorsson’s outcomes to investigate the association 

between ES and immune-related features. Similarly, 

Tamborero et al. [12] provided data on immune 

infiltration patterns, which we used to investigate the 

association between the ES and tumor immune 

microenvironment. All data were numerical and 

transformed into standardized z-scores for statistical 

analysis and presentation. 

 

Data availability 

 

Microarray data is available in the Gene Expression 
Omnibus: GSE207304 Source code for model 

construction is available at https://github.com/QZhou-

Ch/BC-Exosomes. 

https://gdc.cancer.gov/about-data/gdc-data-processing/gdc-reference-files
https://gdc.cancer.gov/about-data/gdc-data-processing/gdc-reference-files
http://www-personal.umich.edu/~jianghui/seqmap/
https://github.com/QZhou-Ch/BC-Exosomes
https://github.com/QZhou-Ch/BC-Exosomes
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Statistical analysis 

 

Most statistical analyses were performed using R 

(version 4.2.0) with default arguments unless mentioned 

otherwise. The Shapiro–Wilk test was used to test data 

normality. The Wilcox test was performed to verify the 

statistical significance between two groups, whereas the 

Kruskal–Wallis test was applied to test for multiple 

groups. 

 

Differential expression analysis was performed using 

the R package DESeq2 [13]. Survival and survminer 

packages were used for survival analysis, and the  

time-dependent receiver operating characteristic 

(ROC) and area under the curve (AUC) were 

determined using the R package survival ROC.  

P-values were two-sided and adjusted for multiple 

testing using the Benjamini–Hochberg False 

Discovery Rate (FDR), and statistical significance was 

set at p < 0.05 or FDR < 0.1. 

 

RESULTS 
 

Differential gene expression in exosomes of luminal 

breast cancer cells and healthy breast cells 

 

Three pairs of breast cancer and healthy breast tissues 

were collected at the Tangshan People’s Hospital to 

establish primary cultures (Supplementary Table 2). 

Subsequently, the supernatant of the cell culture 

medium was collected, and exosomes were extracted 

via differential ultracentrifugation (Figure 2A). Total 

RNA was extracted from exosomes and used to 

determine gene expression patterns using microarrays. 

Background correction was performed with the 

backgroundCorrect function using the “normexp” 

method, and normalization was performed with the 

normalizeBetweenArrays function using the “normexp” 

method. When a gene contained multiple probes, the 

maximum value was considered as the gene expression 

value. Differential expression analysis was performed 

using the R Bioconductor package, limma. DEGs were 

selected using a fold-change cut-off of >1.5 or < -1.5 

and a p-value < 0.05. In total, 817 DEGs were identified 

in cancer vs. healthy exosomes, including 315 

upregulated tumor-derived exosomes genes (UTEGs) 

and 502 downregulated tumor-derived exosomes genes 

(Figure 2B, 2C). 

 

UTEGs cluster analysis 

 

We used the 315 UTEGs in patients with HR+/HER2- 

BRCA from TCGA to perform a consensus cluster 

analysis (maxK = 10, reps = 1000, clusterAlg = “km,” 

distance=“euclidean”) and the proportion of ambiguous 

clustering (PAC) score showed an optimal K of two 

(Figure 2D, 2E). The 532 patients with breast cancer 

were divided into two categories according to the 

optimal K value: ExoA and ExoB, with 244 and 288 

cases, respectively. Kaplan–Meier survival curves 

(Figure 2F) revealed that patients in the ExoA group 

had poorer survival than those in the ExoB group (HR, 

0.286; 95% CI, 0.136-0.600; log-rank p = 0.33 e-03). 

Therefore, we believe that this new type of cluster 

classification will be beneficial for accurate clinical 

diagnosis and treatment. 

 

Development and evaluation of ES in TCGA cohort 

 

To meet the cross-platform availability of the model, 

we hope that it can be applied to the Affymetrix 

Human Genome U133A Array platform because it is 

the most widely used chip with the largest amount of 

data available. After Univariate Cox analysis of the 

TCGA dataset, five UTAGs genes were eventually 

included in the candidate model. Feature importance 

was determined via random forest survival analysis  

(Figure 3A, 3B) with default parameters (ntree = 

5000), and we used four genes to construct the final 

model: PDPK1, WSB2, PIR, and MTHFD2 (details in 

Supplementary Table 3). 

 

The patients in the TCGA set were split into two 

groups, high- and low-score groups, according to the 

median ES. The survival curves (Kaplan–Meier 

estimates) revealed that the OS in the low-score group 

was significantly higher than that in the high-score 

group (HR, 0.170; 95% CI, 0.081–0.359; log-rank p = 

0.380e-04) (Figure 3C). The AUC of ES for OS were 

0.754 at 3 years, 0.739 at 5 years, and 0.783 at 7 years 

(Figure 3D). 

 

Moreover, to evaluate the independent prognostic effect 

of ES, we used a multivariate COX regression model to 

adjust for other factors, including age and TNM stage. 

Results indicate that ES remained a significant and 

independent prognostic indicator in TCGA cohort 

(Figure 3E). 

 

Prognostic power evaluation of ES in the GEO 

cohort 

 

To validate the robustness of the risk signature, the  

ES for each patient with HR+/HER2- BRCA in the 

GEO cohort was also evaluated. The median ES was 

used to divide patients into high- and low-score 

groups. Kaplan–Meier survival curves revealed that 

DRFS was significantly prolonged in the low-scoring 

group (HR, 0.4594778; 95% CI, 0.241–0.877; log-
rank p = 0.020) (Figure 3F). The AUC of IS were 

0.634 and 0.683 at three and five years, respectively 

(Figure 3G). 
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Figure 2. Differentially expressed genes from exosomes. (A) Exosomes were observed using transmission electron microscopy. Scale 
bar, 200 nm. (B) Heatmap of Different Gene Expression in exosomes. (C) Volcano plot of Different Gene Expression in exosomes.  
(D) Consensus clustering matrix for k = 2. (E) Consensus clustering CDF for k = 2–10. (F) Kaplan–Meier survival curves of OS according to two 
clusters in TCGA cohort. CDF, cumulative distribution function; OS, overall survival; TCGA, The Cancer Genome Atlas. 
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Different immune-related features between high- 

and low score patients in TCGA cohort 

 

First, we examined the distribution of ES in five 

immune types in patients with breast cancer. A 

substantial difference was observed between the five 

immune subtypes of the Kruskal–Wallis test (p = 

0.016), as shown in Figure 4A. Furthermore, patients 

with type C3 (Lymphocyte Depleted) had a lower ES 

than type C2 (IFN-γ Dominant) and type C4 

(Lymphocyte Depleted) subtypes. 

 

In the following analysis, we explored the differences 

in the composition of the tumor immune infiltrate, 

somatic variation, immunogenicity, and genomic state 

between the ES-based subtypes of the TCGA dataset 

(Figure 4B). 

 

The high-score group had higher proliferation, altered 

fraction, silent and non-silent mutation rates, as well as 

a reduced stromal fraction than the low-score group. 

 

Potential factors that presented tumor somatic or 

germline mutations, including homologous recombina-

tion defects, intratumor heterogeneity, number of 

segments, aneuploidy score, non-silent silent mutation 

rates, were compared between the high- and low-score 

groups. The median values for the variables of the high-

score group were substantially higher than those of the 

low-score group. 

 

Finally, given the differences in tumor immune infiltrates 

between the low- and high-score groups, we analyzed the 

immune microenvironments in both groups. The Wilcox 

test revealed that high-scoring patients had significantly 

higher abundances of central memory T cells (Tcm) and 

T helper cells (Th), but lower abundances of B cells, 

immature dendritic cells (iDC), mast cells, neutrophils, 

NK CD56 bright cells (NKbright), effector memory T 

cells (Tem), and gamma delta T cells (Tgd) (Figure 4D) 

than the low-score group. 

CNV incidence between low- and high-score patients 

in TCGA cohort 

 

We found significant differences between the two 

groups in tumor somatic or germline mutations, which 

were both calculated from CNV files; therefore, we 

performed a statistical analysis of CNVs events in both 

groups of patients. 

 

The ‘Masked Copy Number Segment File’ and  

‘SNP6 GRCH38 Remapped Probeset File for CNV 

Analysis,’ were used for GISTIC2 analysis [14]  

on the GenePatter website [15]. The CNV values were 

further thresholder using a noise cutoff of 0.3. A chi-

square test was performed to confirm the difference in 

focal CNVs events between the high- and low-score 

groups. 

 

Patients in the high-score group had a higher incidence 

of CNVs events in 6861 genes than those in the low-

score group (FDR < 0.1) (Figure 4C) (Supplementary 

Table 6). 

 

ES can reflect the treatment sensitivity 

 

We further identified associations between the model 

and the treatment effects of chemotherapeutic agents 

and endocrine therapy. The Genomics of Drug 

Sensitivity in Cancer (GDSC) database was adopted to 

evaluate the correlation between the ES and drug 

sensitivity values (IC50) of molecules in 50 breast cell 

lines (Tissue = “breast”). Consequently, vincristine, 

paclitaxel, and docetaxel, which target microtubules, 

appeared to be significantly and positively correlated 

with ES (Figure 5A–5C). Other common chemo-

therapeutic drugs, such as doxorubicin and cisplatin; and 

endocrine therapy drugs, such as tamoxifen and 

fulvestrant, were not significantly associated with ES 

(p>0.05, Figure 5D–5G). Tamoxifen, fulvestrant or 

anastrozole, and exemestane, mechanism lies in reducing 

the interaction of estrogen with cancer cells. 
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Figure 3. Construction and validation of exosome scores. (A) The relationship between error rate and the number of trees.  

(B) Random Forest feature importance ranking for the five predictive features. (C) Kaplan–Meier survival curves of OS according to ES groups in 
TCGA cohort. (D) ROC curves at 3-, 5-, and 7 years of OS according to ES groups in the TCGA cohort. (E) Forest plots of OS. (F) Kaplan–Meier 
survival curves of DRFS according to ES groups in the GEO validation set. (G) ROC curves at 3- and 5 years of DRFS according to ES groups in the 
GEO validation set. ES, exosome score; OS, overall survival; TCGA, The Cancer Genome Atlas; ROC, receiver operating characteristic; AUC, area 
under the curve; DRFS, distant relapse-free survival; AIC, Akaike information criterion; GEO, Gene Expression Omnibus. 
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Figure 4. Exploration of the exosome score predictive role in the TCGA cohort. (A) Raincloud Plot shows the comparison of ES 

between the different immune subtypes. (B) Lollipop plot showing the comparison of immune-related features between the low- and 
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high-score groups. The length of the stick represents the difference between the medians of the features in the high- and low-score 
groups. (C) Circos Plot displays the CNVs distribution in ES-relevant groups, and red dots represent the difference between the 
incidence of CNVs in the high- and low-score groups. (D) Violin plot showing the distribution of the two groups in different immune 
cells, NA p > 0.05, * p < 0.05, ** p < 0.01, *** p < 0.001. ES, exosome score; TCGA, The Cancer Genome Atlas; CNVs, copy number 
variations; aDC, activated dendritic cells; CD8+ T, CD8 T cells; iDC, immature dendritic cells; NKbright, NK CD56 bright cell s; NKdim, NK 
CD56 dim cells; Tcm, central memory T cells; Tem, effector memory T cells; Tfh, follicular helper T cells; Tgd, gamma delta T cell s; Th, 
helper T cells; Treg, regulatory T cells. 
 

Therefore, we evaluated the relationship between ES and 

endocrine therapy in another clinical study of letrozole 

treatment. 

 

Because the study did not provide the exact reference 

genome or annotation file, we re-aligned the reads using 

the fastp-Hisat2-featurecounts pipeline. Based on the 

counts data (Supplementary Table 7), we calculated 

FPKM and ES in GSE145325 dataset. The Wilcoxon 

test revealed that ES in the non-responder group was 

significantly higher than that in the responder group 

(Figure 5H). 

 

Validation of the expression of four tumor-derived 

exosome genes 

 

The mRNA expression levels of PDPK1, WSB2, PIR, 

and MTHFD2 were evaluated in exosomes extracted 

from the MCF-7 and MCF10A cell lines. The results 

suggest that the mRNA expression of the four genes 

was higher in MCF-7 exosomes than in MCF10A 

exosomes (Figure 6A–6D). 

 

DISCUSSION 
 

Tumor-derived exosomes that transport RNA have 

emerged as a major area of research. During the course 

of our study, we observed insufficient data on 

HR+/HER2- types of breast cancer. Consequently, we 

conducted primary cultures of breast cancer and healthy 

breast epithelial cells from three patients, followed by 

isolation of the supernatant and RNA extraction from 

the exosomes. Microarray assays were performed to 

obtain reliable data for future studies in this domain. 

 

The relationship between gene expression and the 

prognosis of malignant tumors is currently a hot 

research topic [16–18], and several gene signatures such 

as PAM50, Oncotype DX assay (a 21-gene signature), 

and MammaPrint (a 70-gene signature), which have 

garnered FDA approval, have been employed for 

prognostic and diagnostic purposes in the care of 

patients with breast cancer. In this study, we stratified 

HR+/HER2- type breast tumors into two categories 

using 315 UTEGs and the results indicated a disparity 

in survival between the two groups. Hence, we 

anticipate that this novel cluster classification will aid 

future clinical diagnoses and therapies. 

 

To enhance prognostic prediction in breast cancer, we 

developed a novel prognostic model consisting of four 

UTEGs. Previous studies have shown that all genes in 

this signature are considerably associated with breast 

cancer. PDPK1, for instance, is involved in several 

signaling pathways, including PI3K/Akt, Ras/MAPK, 

and Myc, which are frequently altered in cancers [19–21].
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Figure 5. The ES predicting the sensitivity to chemosensitivity and endocrine therapy. Scatter plots for associations between drug 
sensitivity values (IC50) and (A) vincristine, (B) paclitaxel, (C) docetaxel, (D) doxorubicin, (E) cisplatin, (F) tamoxifen, and (G) fulvestrant;  
(H) Raincloud Plot showing the comparison of ES between endocrine therapy non-responder and responder groups. ES, exosome score; IC50, 
half maximal inhibitory concentration. 
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Maurer et al. [22] identified PDPK1 overexpression and 

increased copy number as common events in breast 

cancer. PDPK1 enhances the ability of upstream lesions 

to signal AKT, which accelerates cell growth and 

migration, rendering the cells more resistant to PI3K 

inhibition. Recently, the WSB2 has attracted increasing 

attention from researchers. Ma et al. [23] found that 

WSB2 suppression by shRNA inhibited melanoma cell 

growth and migration by regulating β-catenin. In breast 

cancer, overexpression of WSB2 may promote MCF-7 

cell migration, whereas miR-28-5p inhibits the migration 

of breast cancer cells by regulating WSB2 expression. 

Thus, the miR-28-5p/WSB2 axis may represent a novel 

therapeutic target in breast cancer [24]. Pirin, a 

transcriptional coregulator of NF-kappa-B, has also been 

identified as a critical gene in our model. It facilitates the 

binding of NF-kappa-B proteins to target kappa-B genes 

in a redox-state-dependent manner [25, 26]. Knockdown 

of PIR in MCF7 and MDA-MB-231 cell lines caused a 

dramatic decrease in cell proliferation and xenograft 

tumor growth in mice by activating E2F1 and its target 

genes [27]. MTHFD2 encodes a mitochondrial enzyme 

involved in folate metabolism that is induced in multiple 

tumors to meet the high biosynthetic demand for cell 

proliferation [28]. Suppression of MTHFD2 in MCF-7 

cells resulted in altered levels of intracellular serine and 

glycine and an increase in glycolytic activity [29–31]. 

 

Accumulating evidence suggests that exosomes released 

from cancer cells play remarkable roles in promoting 

proliferation, immune regulation, chemoresistance, and 

carcinogenesis [32]. Multiple studies have demonstrated 

that tumor-derived exosomes can induce cell proliferation. 

Al-Nedawi showed that microvesicles derived from 

glioblastoma cells carry the oncogenic receptor 

EGFRvIII, which actively promotes tumor cell 

proliferation and invasion [33]. Moreover, exosomes 

from tumor cells participate in the immune response. A 

survey found that exosomes produced by breast cancer 

cells in the circulatory system activate macrophages 

through NF-kappa-B signaling, and over-produce various 

inflammatory cytokines to induce proinflammatory 

activity [34]. Recent evidence also indicates that 

exosomes play a crucial role not only in regulating drug 

resistance but also in transferring drug resistance to drug-

sensitive BRCA cells. Chemotherapy induces the 

secretion of multiple extracellular vesicles encapsulating 

miRNAs, such as miRNA-9-5p, miRNA195-5p, and 

miRNA-203a-3p, which concurrently target the 

transcription factor One Cut Homeobox 2, leading to the 

adaptation of cancer stem-like cell traits. Conversely, the 

downregulation of these miRNAs or the upregulation of 

One Cut Homeobox 2 expression abolished the cancer 

stem-like cell-activating effect of extracellular vesicles 

from chemotherapy-treated BRCA cells [35]. In the 

present study, we constructed an exosome signature 

based on breast cancer-derived exosomal genes. We 

queried relevant studies and found that the four genes 

included in the model played different roles in various 

types of cancer cell exosomes [36, 37]. Analysis of the 

TCGA dataset revealed that the high-score group had a 

higher incidence of CNV events and proliferation than 

the low-score group, as well as a different distribution of 

tumor microenvironment (TME). 

 

According to the NCCN guidelines, endocrine therapy 

is the preferred adjuvant systemic treatment for patients 

with stage I HR +/HER2-breast cancer without 

 

 
 

Figure 6. The expression of risk model genes. (A) MTHFD2 mRNA expression levels in exosomes from MCF10A and MCF-7 cell line;  

(B) PDPK1 mRNA expression levels in exosomes from MCF10A and MCF-7 cell line; (C) PIR mRNA expression levels in exosomes from MCF10A 
and MCF-7 cell line; (D) WSB2 mRNA expression levels in exosomes from MCF10A and MCF-7 cell line, * p < 0.05, ** p < 0.01, *** p < 0.001. 
MTHFD2, methylenetetrahydrofolate dehydrogenase 2; PDPK1, phosphoinositide-dependent protein kinase 1; PIR, pirin; WSB2, WD repeat, 
and SOCS box containing 2. 
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high-risk factors. However, patients with stage II/III 

disease, particularly those with high-risk factors, require 

further adjuvant chemotherapy. Our study revealed that 

ES is positively correlated with sensitivity to cytotoxic 

anticancer agents that target microtubules; however, it 

does not reflect the efficacy of anthracyclines, platinum-

based drugs, or endocrine therapeutics. Adjuvant 

endocrine therapy for breast cancer primarily comprises 

of selective estrogen receptor modulators (SERMs) and 

aromatase inhibitors (AIs). The former acts as an 

estrogen antagonist in cancer cells by binding to 

estrogen receptors (ER), whereas the latter reduces 

estrogen levels in postmenopausal women. As these two 

drugs do not directly kill cancer cells, cellular drug 

sensitivity tests cannot accurately reflect the impact of 

endocrine therapy. Therefore, we examined the data 

from a clinical study and found that ES was greater in 

patients who were resistant to endocrine therapy. This 

implies that ES can predict the efficacy of endocrine 

therapy. 

 

CONCLUSIONS 
 

Using microarray assays, we identified differentially 

expressed genes in HR+/HER2-breast cancer exosomes 

and evaluated four of them to develop a predictive 

model. The model can predict the prognosis of patients 

with HR+/HER2-breast cancer and the efficacy of 

chemotherapy and endocrine therapy, giving us a deeper 

understanding of HR+/HER2-breast cancer. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Tables 

 

 

 

Please browse Full Text version to see the data of Supplementary Tables 4–7. 

 

Supplementary Table 1. Primer sequences. 

β-actin: 

Forward primer: CTGGCCGGGACCTGACT 

Reverse primer: TCCTTAATGTCACGCACGATTT 

PDPK1 

Forward primer: GGAACAGCGCAGTACGTTTCT 

Reverse primer: CTCGTTTCCAGCTCGGAATGG 

WSB2 

Forward primer: TTGCTACGGGACTCAACGATG 

Reverse primer: GTGACGCGGAGACCAAAATCA 

PIR 

Forward primer: GAGCAGTCGGAAGGGGTTG 

Reverse primer: TTAACTCGGGTCTGCCAATGC 

MTHFD2 

Forward primer: AGGACGAATGTGTTTGGATCAG 

Reverse primer: GGAATGCCAGTTCGCTTGATTA 

 

Supplementary Table 2. Clinical characteristics of enrolled patients. 

 recoded 

ID 
Age Type Grade 

Maximum tumor 

diameter 

Number of lymph node 

metastases 
Immunohistochemistry 

(Measured according 

to pathology) 

(Measured according 

to pathology) 
ER PR Her2 Ki-67 

patient 1 565774 62 Invasive ductal carcinoma II 2.0cm 0 100%+ 100%+ 0 10% 

patient 2 565297 59 Invasive ductal carcinoma II 1.9cm 0 90%+ 80%+ 0 20% 

patient 3 563841 60 Invasive ductal carcinoma II 1.9cm 0 60%+ 90%+ 1+ 5% 

 

Supplementary Table 3. Model genes and their coefficients. 

gene symbol gene name coef 

MTHFD2 ENSG00000065911.13 0.10523284074475 

PIR ENSG00000087842.11 0.479944592959224 

PDPK1 ENSG00000140992.19 0.8754054718031 

WSB2 ENSG00000176871.9 0.423554406918477 

 

Supplementary Table 4. Exosomes score (ES) and subgroups of HR+/HER2-breast cancer patients in TCGA. 

Supplementary Table 5. Exosomes score (ES) and subgroups of HR+/HER2-breast cancer patients in GSE25066. 

Supplementary Table 6. Patients in the high-score group had a higher incidence of CNVs events. 

Supplementary Table 7. FPKM in GSE145325 dataset. 


