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INTRODUCTION 
 

Cardiovascular diseases, particularly coronary artery 

disease (CAD) and ischemic stroke (IS), has emerged as 

a significant global health threat [1, 2]. Atherosclerosis, 

characterized by endothelial dysfunction, inflammatory 

cell infiltration, cytokine production, vascular smooth 

muscle cell activity, and macrophage and monocyte 
activation, serves as a well-established pathological 

foundation for CAD and IS [3, 4]. Previous research has 

highlighted the crucial role of endothelial dysfunction, 

induced by endothelial cell apoptosis and pro-

inflammatory pathway activation, in early atherosclerosis 

[5–7]. In this context, Dickkopf-1 (DKK1), a glyco-

protein secreted by cells, has garnered attention due to its 

ability to hinder the Wnt signaling pathway by binding to 

the LDL receptor-related protein 5 (LRP5) receptor on 

the cell membrane. Consequently, DKK1 may contribute 

to endothelial dysfunction and plaque instability. The 
underlying molecular mechanisms involve the regulation 

of various inflammatory factors, such as interleukin-6 

(IL-6), IL-1β, tumor necrosis factor α (TNF-α), and 
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ABSTRACT 
 

Epidemiological investigations have indicated a correlation between elevated plasma levels of Dickkopf-related 
protein 1 (DKK1) and the presence of atherosclerosis. However, the exact causal relationship of DKK1 with the 
development of coronary artery disease (CAD) and ischemic stroke (IS) remains unclear. To address this gap, 
our study aimed to explore their causal association using a two-sample Mendelian randomization (MR) 
approach. We obtained summary statistics from genome-wide association studies (GWAS) meta-analyses 
conducted by Folkersen et al. and Nikpay et al., which included data from 21,758 individuals for DKK1 and 
42,096 cases of CAD. Additionally, we obtained data from the FinnGen biobank analysis round 5, which 
included 10,551 cases of IS. Eight MR methods were employed to estimate causal effects and detect directional 
pleiotropy. Our findings demonstrated that genetic liability to DKK1 was associated with increased risks of CAD 
(odds ratio [OR]: 1.087; 95% confidence interval [CI]: 1.024–1.154; P = 0.006) and IS (OR: 1.096; 95% CI: 1.004–
1.195; P = 0.039). These results establish a causal link between genetic liability to DKK1 and elevated risks of 
CAD and IS. Consequently, DKK1 may represent a promising therapeutic target for the prevention and 
treatment of CAD and IS. 
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monocyte chemoattractant protein-1 (MCP-1) [8, 9]. 

Furthermore, an observational study involving 291 

subjects demonstrated higher plasma DKK1 levels in 

patients with ST-segment elevation myocardial infarction 

(STEMI) compared to those with non-ST-segment 

elevation acute coronary syndrome (NSE-ACS), 

suggesting the potential of DKK1 plasma levels as 

prognostic indicators for the severity and stability of 

coronary atherosclerosis [10]. Similarly, another 

observational study led by He et al. investigated the 

association between DKK1 and acute IS onset in 124 

stroke patients and 62 healthy controls. They found an 

independent association between elevated DKK1 levels 

and acute IS onset, thus identifying DKK1 as an 

independent risk factor for this condition [11]. These 

findings imply that DKK1 could be a potential 

therapeutic target for the management of CAD and IS. 

Nevertheless, direct evidence linking DKK1 to the risks 

of CAD and IS remains limited. 

 

Given the inherent limitations of observational studies, 

such as confounding and reverse causality, it is  

crucial to employ more robust methods to investigate 

causal relationships between variables. Mendelian 

Randomization (MR) is one such method widely used to 

infer causality by utilizing genetic variations that are 

associated with the exposure of interest as instrumental 

variables (IVs) [12]. Since genetic variations are 

randomly assigned at conception, their association with 

outcomes is less susceptible to environmental con-

founding factors. To the best of our knowledge, the 

causal relationship between DKK1 and the risks of 

CAD and IS has not been established using MR. 

Therefore, the objective of this study was to assess the 

causal effect of DKK1 on the risk of CAD and IS by 

utilizing the MR framework. 

 

RESULTS 
 

Selection and validation of SNPs 

 

A total of 25 independent Single Nucleotide 

Polymorphisms (SNPs) that exhibited a significant 

correlation with DKK1, with an r2 < 0.001 between 

each other, at a genome-wide significance level of  

P < 5 × 10−8 were identified. However, among these 

SNPs, rs7896518 was excluded from subsequent 

analysis due to its association with multiple 

confounding factors, such as blood lipids, blood 

pressure, and body mass index. Consequently, 24 

SNPs were selected for further analysis, as outlined in 

Supplementary Table 1. Notably, all of these SNPs 

demonstrated F statistics greater than 10, indicating 
the absence of bias in weak instrumental variables 

(IVs). Moreover, a comprehensive overview of the 

additional characteristics of these SNPs, as well as 

their associations with clinical outcomes, including 

CAD and IS, can be found in Supplementary Table 2. 

 

MR estimates 

 

The findings in Figure 1 and Supplementary Table 3 

demonstrated that, according to the random-effects 

inverse-variance weighted (IVW) analysis, DKK1 was 

indeed a risk factor for both CAD and IS. Specifically, 

the analysis revealed an odds ratio (OR) of 1.087 (95% 

confidence interval [CI]: 1.024-1.154; P = 0.006) for 

CAD and an OR of 1.096 (95% CI: 1.004-1.195; P = 

0.039) for IS. Similarly, the maximum likelihood 

analysis also supports DKK1 was a risk factor for CAD, 

with an OR of 1.090 (95% CI: 1.028-1.155; P = 0.003), 

as well as for IS, with an OR of 1.099 (95% CI: 1.011-

1.195; P = 0.026). Moreover, although the results from 

other MR methods did not reach statistical significance, 

they consistently demonstrate a similar direction of 

effect. Additionally, the scatter plot (Figure 2) and the 

forest plot (Figure 3) further highlight the positive 

association between DKK1 levels and the risks of CAD 

and IS. Furthermore, no significant causal relationship 

was observed between CAD and IS with DKK1 levels, 

indicating the absence of reverse causality between 

DKK1 and the risk of CAD and IS (Supplementary 

Table 4). 

 

Sensitivity analyses 

 

The leave-one-out sensitivity analysis consistently 

affirmed the direction and estimate of the association 

between elevated DKK1 levels and the risks of CAD and 

IS (Figure 4). Furthermore, the Two-Sample Mendelian 

randomization (TSMR) analysis revealed that there was 

no heterogeneity observed between DKK1 levels and the 

risks of CAD and IS, as indicated in Supplementary 

Table 5. Moreover, the MR-Egger intercept tests 

revealed no evidence of horizontal pleiotropy, with all 

P-values exceeding 0.05 (Supplementary Table 6). 

Additionally, no outliers were identified in the MR 

Pleiotropy RESidual Sum and Outlier (MR-PRESSO) 

analysis (Supplementary Table 7). 

 

DISCUSSION 
 

Until now, the genetic associations between circulating 

levels of DKK1 and the risks of CAD and IS have 

remained unclear. To address this knowledge gap, we 

conducted the first MR study to clarify the genetic 

causalities of DKK1 levels with CAD and IS using MR 

methods. Given the ethical considerations and high costs 

associated with conducting randomized controlled trials, 

the MR framework provided an effective alternative for 

the identification of potential intervention targets and 

potential therapeutic strategies. Our findings indicated 
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Figure 1. Effects of genetically predicted DKK1 on the risks of CAD and IS. OR, odds ratio; CI, confidence interval. *p < 0.05, **p < 

0.01. DKK1, Dickkopf-related protein 1; CAD, coronary artery disease; IS, ischemic stroke. 
 

 
 

Figure 2. Scatter plots of the estimated SNP effects on DKK1 (x-axis) plotted against the estimated SNPs effects on CAD and 
IS (y-axis). (A) DKK1-CAD; (B) DKK1-IS. The slope of the line corresponds to a causal estimate using a different method. DKK1, Dickkopf-
related protein 1; CAD, coronary artery disease; IS, ischemic stroke. 
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that every 1-standard deviation increase in DKK1 levels 

was associated with an 8.7% increase in the risk of CAD 

and a 9.6% increase in the risk of IS. Importantly, we 

observed no evidence of heterogeneity or horizontal 

pleiotropy between DKK1 levels with the risks of CAD 

and IS in the TSMR analysis. Furthermore, the 

robustness and consistency of our results were 

confirmed by employing eight different analytical 

methods. These findings established a strong and 

unconfounded relationship between elevated DKK1 

levels and the risks of CAD and IS. Thus, DKK1 may 

hold significant potential as a promising molecular target 

for the diagnosis and treatment of CAD and IS. 

 

Our study findings are supported by numerous 

pathophysiology studies. Currently, DKK1 has been 

recognized as a biomarker of atherosclerosis due to its 

significantly increased expression in atherosclerotic 

lesions, which contributes to endothelial activation, 

inflammatory responses, coronary atherosclerosis, and 

acute IS [13–15]. DKK1, functioning as a secretory 

glycoprotein, engages in competitive binding with the 

LRP5 receptor located on the cell membrane, impeding 

the Wnt signaling pathway, thereby assuming a non-lipid 

dependent role in vascular pathophysiology [8]. The Wnt 

protein family plays a crucial role in atherosclerosis, and 

different subtypes of Wnt proteins may have contrasting 

functions. For instance, Wnt5a can induce inflammation 

by activating the NF-kappaB (NF-κB) transcriptional 

pathway in vascular endothelial cells [16]. On the other 

hand, Wnt1 may act as an inhibitor of NF-κB activation, 

and compounds like geniposide and baicalin can 

enhance Wnt1 signaling by reducing the expression of 

DKK1, thereby inhibiting downstream cytokine 

expression, such as IL-12, by suppressing the activity of 

NF-κB transcription factor and subsequently slowing the 

progression of atherosclerotic lesions [17]. Furthermore, 

Ueland et al. have highlighted that DKK1 might serve as 

a new mediator for platelet-mediated endothelial cell 

activation and play a critical role in the pathological 

process of atherosclerosis by mediating the inhibition  

of the Wnt/beta-catenin signaling pathway and the 

activation of the NF-kB pathway [13]. These pieces of 

evidence underscore the crucial involvement of DKK1 

in atherosclerosis, although further research is needed to 

elucidate its underlying mechanisms. 

 

 
 

Figure 3. Analysis of the single- and multi-SNP effects on the development of CAD and IS. (A) DKK1-CAD; (B) DKK1-IS. In the forest 

map, each black dot represents a single SNP as instrumental variable and the red dot shows the use of IVW results for all SNPs. DKK1, 
Dickkopf-related protein 1; CAD, coronary artery disease; IS, ischemic stroke; SNP, single nucleotide polymorphism; IVW, inverse variance 
weighted. 
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Our findings were consistent with several observational 

studies. Goliach et al. conducted a case-control study 

with 100 young patients with myocardial infarction and 

100 healthy controls, showing that elevated DKK1 

expression levels significantly increased the risk of 

early-onset myocardial infarction [18]. Besides, Zhu et 

al. conducted a clinical study with 3,178 patients with 

IS, demonstrating that in patients with IS for 1 year, the 

increased DKK1 levels were significantly associated 

with adverse prognosis, including all-cause mortality 

and severe disability [19]. In addition, Zhang et al. 

reported that elevated serum DKK1 levels were 

independently associated with an increased risk of 

depression three months after stroke, suggesting the 

potential use of DKK1 as a prognostic biomarker for 

post-stroke depression. Ueland et al. [20] conducted a 

clinical study involving 100 subjects, including 40 

patients with stable angina pectoris, 40 patients with 

unstable angina pectoris, and 20 healthy subjects, and 

found that compared to healthy subjects, patients with 

angina pectoris had significantly increased serum 

DKK1 levels; meanwhile, compared to stable angina 

pectoris and healthy subjects, patients with unstable 

angina pectoris maintained higher serum DKK1 levels 

[13]. Moreover, an observational study with 291 

subjects demonstrated higher plasma DKK1 levels in 

STEMI patients compared to those with non-ST-

segment elevation acute coronary syndrome (NSE-

ACS), suggesting the potential of DKK1 plasma levels 

as prognostic indicators for severity and stability of 

coronary atherosclerosis [10]. These findings 

demonstrate that DKK1 plays a crucial role in 

atherosclerotic diseases. Although these observational 

studies provide valuable insights, they cannot establish 

causality due to confounding factors and reverse causal 

bias. Therefore, the direct causal relationship between 

elevated DKK1 levels and the risks of CAD and IS 

remains uncertain. In contrast, our study utilized eight 

MR methods to consistently demonstrate a significant 

genetic correlation between plasma DKK1 levels and 

the risks of CAD and IS, providing evidence for a direct 

causal relationship between DKK1 levels and the risks 

of CAD and IS in the European population. 

 

Our study indeed had some limitations that should be 

considered. Firstly, the effect estimates of SNPs on 

DKK1 levels and the risks of CAD and IS were derived 

from populations of European ancestry, which restricted 

 

 
 

Figure 4. Sensitivity analyses using the leave-one-out approach on the association of DKK1 with CAD and IS. (A) DKK1-CAD;  

(B) DKK1-IS. Each black dot represents an IVW method to estimate the causal effect of the exposures on the CAD and IS. The presence of a 
particular SNP causing a significant change in the overall results is not excluded. DKK1, Dickkopf-related protein 1; CAD, coronary artery 
disease; IS, ischemic stroke; SNP, single nucleotide polymorphism; IVW, inverse variance weighted. 
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the generalizability of our findings to other ethnic 

groups, and further investigations would be necessary to 

determine the causal relationship of DKK1 with CAD 

and IS in diverse populations. Secondly, although our 

study provided evidence for the association of DKK1 

with CAD and IS, the underlying molecular mechanisms 

by which DKK1 contributes to these conditions are not 

fully understood. Additional in vivo and in vitro studies 

are required to elucidate the key molecular pathways 

involved in DKK1-mediated pathogenesis of CAD  

and IS. 

 

In conclusion, our findings demonstrate a significant 

genetic correlation between elevated levels of circulating 

DKK1 and increased risks of both CAD and IS. This 

suggests that DKK1 might be a promising therapeutic 

target for the prevention and treatment of CAD and IS. 

 

MATERIALS AND METHODS 
 

Data sources 

 

The genetic associations of the DKK1 protein were 

obtained from a GWAS meta-analysis conducted by 

Folkersen et al. [21], which analyzed 90 circulating 

cardiovascular proteins using data from 13 cohorts, 

comprising a total of 21,758 participants. The  

outcome data for CAD, which included 42,096 cases 

and 99,121 controls, were extracted from a GWAS 

meta-analysis by Nikpay et al. [22]. The outcome  

data for IS, including 10,551 cases and 202,223 

controls, were obtained from the FinnGen biobank 

analysis round 5 (https://www.finngen.fi/). All the 

GWAS data utilized in our study, including DKK1 

(dataset ID: ebi-a-GCST90012060), CAD (dataset  

ID: ebi-a-GCST003116), and IS (dataset ID: finn-b-

I9_STR_EXH), are publicly available on the  

MRC IEU OpenGWAS data infrastructure [23] 

(https://gwas.mrcieu.ac.uk). It is important to note that 

the included GWAS datasets only pertain to European 

populations. Ethical approval was not required for our 

study as it involved a secondary analysis of publicly 

available data. 

 

Study design and selection of IVs 

 

The study hypothesis and flow chart are presented in 

Figure 5. TSMR analysis [24], a widely used method, 

was performed to evaluate the causal relationship 

between the exposures and the outcome in this study 

[25]. IVs were selected from SNPs that showed a 

significant association with DKK1 in the GWAS meta-

analysis conducted by Folkersen et al. [21]. A genome-

wide significance threshold of P < 5 × 10−6 [26, 27] was 

used for SNP selection. To ensure independence between 

selected SNPs, they were required to have a pairwise 

linkage disequilibrium (LD) r2 < 0.001 and located at 

least kb = 10000 apart from each other. The selected IVs 

needed to simultaneously satisfy three assumptions: (1) 

the genetic variants used as instrumental variables were 

 

 
 

Figure 5. Study hypothesis and flow chart. CAD, coronary artery disease; IS, ischemic stroke. 

https://www.finngen.fi/
https://gwas.mrcieu.ac.uk/
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truly predictive of DKK1; (2) the genetic variants were 

not associated with measured and unmeasured 

confounders that influence both DKK1 and CAD  

and IS; and (3) the genetic variants affected CAD  

and IS only through their effects on DKK1 and not 

through any alternative causal pathways. To ensure the 

validity of the instruments, the F-statistic was 

calculated for each SNP based on the R2, with a 

threshold of 10 [12, 28]. In cases where horizontal 

pleiotropy was detected in less than 50% of the 

instruments [29], MR-PRESSO tests were applied to 

remove potential outliers before each MR analysis. All 

IVs were extracted from GWAS using the 

“TwoSampleMR” package in R [30]. 

 

TSMR analysis 

 

In order to overcome the limitations of scarce 

comprehensive data within a single cohort, we adopted 

a TSMR approach, which allowed for analysis to be 

conducted in two distinct samples: one for the exposure 

of interest (DKK1) and another for the outcome [31]. 

During the TSMR analysis, four or one palindromic 

SNP was excluded and the remaining 20 or 23 SNPs 

were used to further explore the causal relationship of 

DKK1 with CAD and IS, respectively. In this study, 

eight MR methods were employed, including IVW, 

MR-Egger, penalized weighted median, simple mode, 

simple median, maximum likelihood, weighted mode, 

and weighted median. These methods were utilized to 

calculate sensitivity and obtain follow-up estimates  

[32, 33]. The IVW test, which is a random-effects 

model, was used as the primary method for estimating 

the causal effect values in the absence of horizontal 

pleiotropy to obtain unbiased estimates [12]. The  

other seven MR methods served as supplementary 

approaches to support the primary analysis. The MR-

Egger method may be influenced by outlying genetic 

variables and provide inaccurate estimates. However, it 

can still provide unbiased estimates even when all 

selected IVs are invalid. The weighted median method, 

on the other hand, can provide consistent estimates of 

the causal effects even if up to 50% of the information 

in the analysis comes from invalid IVs [34]. By 

leveraging the strengths of each MR method, these  

eight approaches complement each other and provide 

more reliable causal effect estimates when the direction 

of β values is consistent. Additionally, a leave-one-out 

sensitivity analysis was performed to assess the 

reliability and stability of the causal effect estimates. 

The MR-Egger intercept test was used to evaluate the 

presence of horizontal pleiotropy, while the MR-

PRESSO test was employed to detect and correct  
for potential outliers through outlier removal. The 

Cochran’s Q test was utilized to assess heterogeneity 

between genetic variants. Moreover, potential 

confounding SNPs were excluded using PhenoScanner 

(https://www.phenoscanner.medschl.cam.ac.uk) [35]. 

All these analyses were conducted using the 

“TwoSampleMR” R package [30]. 

 

Abbreviations 
 

DKK1: Dickkopf-1; CAD: coronary artery disease; IS: 

ischemic stroke; MR: mendelian randomization; IVW: 

inverse-variance weighted; LRP5: LDL receptor related 

protein 5; IL: interleukin; TNF-α: tumour necrosis factor 

α; MCP-1: monocyte chemoattractant protein-1; STEMI: 

ST-segment elevation myocardial infarction; MR-

PRESSO: MR Pleiotropy RESidual Sum and Outlier; 

NSE-ACS: non-ST-segment elevation acute coronary 

syndrome; IVs: instrumental variables; TSMR: two-

sample Mendelian randomization; SNPs: single 

nucleotide polymorphisms; LD: linkage disequilibrium; 

OR: odds ratio; CI: confidence interval; NF-κB: NF-

kappaB. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Tables 

 

 

 

 

Please browse Full Text version to see the data of Supplementary Tables 2–4, 7. 

 

Supplementary Table 1. Identification of instrumental variables. 

chr.exposure SNP Beta se pval pos.exposure effect/otherallele eaf 

1 rs142291089 -0.2378 0.0513 0.00000351 108689300 T/C 0.0174 

1 rs1768584 0.0508 0.0108 0.00000273 205240145 G/A 0.3883 

1 rs12041331 -0.1133 0.0203 0.0000000236 156869714 A/G 0.0921 

2 rs2167973 -0.0851 0.0168 0.000000446 33555177 C/A 0.1205 

2 rs10469741 -0.2004 0.0422 0.00000208 190157500 G/A 0.0349 

3 rs938182 0.0559 0.011 0.000000396 18201859 A/G 0.5913 

5 rs556864429 -0.1776 0.0378 0.0000026 104057620 T/C 0.0481 

6 rs566028 -0.0531 0.0113 0.00000267 147520965 C/T 0.4769 

7 rs11770907 -0.0573 0.0106 0.000000064 80258630 A/G 0.5263 

8 rs4541868 -0.1437 0.0124 4.05E-31 106590705 A/C 0.2471 

9 rs7024581 0.1498 0.0309 0.00000127 113256645 G/A 0.0355 

10 rs11594179 0.0685 0.0125 0.0000000467 104392580 T/C 0.2101 

10 rs1159798 0.122 0.0142 7.65E-18 54412493 C/A 0.7656 

10 rs7898709 0.2271 0.0178 1.93E-37 54423398 G/T 0.1144 

10 rs1149769 0.0779 0.0113 0.0000000000067 54146097 C/G 0.6384 

11 rs145525247 -0.4232 0.0788 0.0000000775 98706433 C/T 0.0097 

11 rs11603211 0.0921 0.0193 0.00000173 126275830 A/G 0.0867 

12 rs215225 -0.0499 0.0106 0.00000231 590545 G/A 0.4158 

14 rs61990064 -0.0684 0.0146 0.00000297 92251587 G/A 0.1733 

15 rs142947703 -0.2889 0.0629 0.00000433 99590146 G/A 0.0138 

16 rs8045833 0.0768 0.0135 0.0000000125 88575439 A/G 0.2713 

17 rs193255470 0.2586 0.056 0.00000391 56137420 T/C 0.0177 

19 rs73007094 0.0578 0.0117 0.00000084 14788628 G/A 0.3779 

19 rs1613662 0.0801 0.0142 0.0000000175 55536595 A/G 0.8488 

 

Supplementary Table 2. Harmonized dataset after instrumental variables selection and two-sample Mendelian 
randomization analysis for the effect of exposure and outcome. 

 

Supplementary Table 3. Two sample Mendelian randomization estimations results with eight methods. 

 

Supplementary Table 4. Two sample Mendelian randomization estimations results with eight methods. 
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Supplementary Table 5. The results of heterogeneity analysis. 

Exposures Outcome Method Q P value 

DKK1 CAD MR Egger 20.6715621723124 0.296305741630627 

DKK1 CAD Inverse variance weighted 20.9137434616642 0.341586548838615 

DKK1 IS MR Egger 24.3522979990856 0.276303645639393 

DKK1 IS Inverse variance weighted 24.7135682623749 0.310967406324591 

DKK1, Dickkopf-1; CAD, coronary artery disease; IS, ischemic stroke. 

 

Supplementary Table 6. The results of primary analysis. 

Exposures Outcome Egger intercept Standard error P value 

DKK1 CAD -0.00289696585804303 0.00630846183233037 0.65157413929669 

DKK1 IS 0.00493175901210229 0.00883580385579911 0.582640218062323 

DKK1, Dickkopf-1; CAD, coronary artery disease; IS, ischemic stroke. 

 

Supplementary Table 7. The results of MR-PRESSO analysis. 


