
www.aging-us.com 10453 AGING 

INTRODUCTION 
 

Among primary malignant tumors of the nervous 

system, gliomas are the most common. In recent  
years, molecular technology has revealed some of the 

genetic and chromosomal changes associated with  

the occurrence, development and prognosis of gliomas 

[1]. Gliomas can be characterized by several 

pathological molecular changes, including telomerase 

reverse transcriptase promoter mutations, isocitrate 

dehydrogenase mutations, methylguanine methyltrans-

ferase promoter methylation, 1p/19q codeletion and 

alpha thalassemia retardation syndrome X-linked 

(ATRX) mutations [2]. 
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ABSTRACT 
 

Immune and stromal cells contribute to glioma progression by infiltrating the tumor microenvironment. We used 
clinical characteristics, RNA sequencing data and the ESTIMATE algorithm to obtain stromal and immune scores 
for alpha thalassemia retardation syndrome X-linked (ATRX)-mutation-type (ATRX-mt) and ATRX-wildtype (ATRX-
wt) glioma tissues from The Cancer Genome Atlas. To identify specific immune biomarkers of glioma, we 
compared the gene expression profiles of ATRX-wt glioma tissues with high vs. low immune/stromal scores, and 
discovered 162 differentially expressed genes. The protein-protein interaction network based on these results 
contained 80 interacting genes, of which seven (HOXA5, PTPN2, WT1, HOXD10, POSTN, ADAMDEC1 and MYBPH) 
were identified as key prognostic genes via LASSO and Cox regression analyses. A risk model constructed using the 
expression of these seven genes could predict survival for ATRX-wt glioma patients, but was ineffective for ATRX-
mt patients. T cells and macrophages were more prevalent in low-risk than in high-risk glioma tissues. Immune 
checkpoint blockade treatment was highly beneficial for patients with low risk scores. High-risk gliomas were 
predicted to be more sensitive to rapamycin, dasatinib, 5-fluorouracil and gemcitabine. Thus, our model can be 
used for the diagnosis, prognostic prediction and treatment planning of ATRX-wt glioma patients. 
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At tandem repeat sequences in the genome, ATRX helps 

to prevent replication fork arrest, facilitate histone variant 

formation and prevent homologous recombination at 

telomeres [3]. Loss of ATRX causes epigenetic changes, 

including hypomethylation of repetitive elements such 

as telomeres [4]. ATRX mutation or loss is common  

in a variety of tumor types, including low-grade astro-

cytomas and secondary glioblastomas [5]. A bio-

informatic analysis revealed that glioblastoma patients 

with ATRX loss had longer overall survival and greater 

benefit from temozolomide treatment than patients 

without this change [6]. However, it is unclear how the 

dysregulation of stromal and immune cell infiltration  

in ATRX-wildtype (ATRX-wt) glioma influences its 

development and progression. Therefore, identifying 

specific biomarkers of ATRX-wt glioma may facilitate 

the treatment of this disease. 
 

The Cancer Gene Atlas (TCGA) is commonly used to 

identify tumor biomarkers in bioinformatic analyses [7]. 

Zhu et al. found that a nuclear translocation-associated 

gene signature combined with isocitrate dehydrogenase 

mutation status and 1p/19q codeletion status could im-

prove prognostic prediction in glioma patients [8]. Feng 

et al. identified and validated an autophagy-associated 

signature to predict survival in low-grade gliomas [9]. 

In this study, we used TCGA data to construct a specific 

risk model that predicts the prognosis of ATRX-wt glioma 

patients and informs immune checkpoint blockade 

(ICB) therapy. Our results may provide new insights 

into the diagnosis and treatment of ATRX-wt gliomas. 

 
RESULTS 

 
High- and low-immune/stromal grouping of ATRX-

mt and ATRX-wt glioma patients in TCGA 

 
Our workflow to identify, test and validate prognostic 

and predictive biomarkers of glioma is shown in  

Figure 1A. The ESTIMATE algorithm was used to 

calculate immune and stromal scores for ATRX-mutation-

type (ATRX-mt) and ATRX-wt glioma patients from 

TCGA, and the median scores were used to divide 

patients into high- and low-scoring groups. According to 

a Kaplan-Meier survival analysis, high vs. low immune/ 

stromal scores did not significantly impact ATRX-mt 

glioma patient survival (Supplementary Table 1; Figure 

1B, 1C). However, high immune and stromal scores 

were associated with poorer overall survival than low 

 

 
 

Figure 1. Stromal and immune scores were associated with survival in ATRX-wt glioma patients. (A) Flow chart of the 

analytical process in this study. (B) Kaplan-Meier survival analysis for ATRX-mt glioma patients in the high- and low-immune-score groups. 
(C) Kaplan-Meier survival analysis for ATRX-mt glioma patients in the high- and low-stromal-score groups. (D) Kaplan-Meier survival analysis 
for ATRX-wt glioma patients in the high- and low-immune-score groups. (E) Kaplan-Meier survival analysis for ATRX-wt glioma patients in 
the high- and low-stromal-score groups. 
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immune/stromal scores in ATRX-wt glioma patients 

(Figure 1D, 1E). 

 

Next, we compared the gene expression profiles of 

ATRX-wt glioma patients with high and low immune/ 

stromal scores. We found 166 upregulated and 28 

downregulated genes in the high-stromal-score group 

compared with the low-stromal-score group (Figure  

2A, 2B). In addition, we identified 158 upregulated and 

44 downregulated genes in high-immune-score patients 

compared with low-immune-score patients (Figure  

2C, 2D). When we analyzed the differentially expressed 

genes (DEGs) that overlapped between the high-stromal-

score and high-immune-score groups of ATRX-wt 

glioma tissues, we found 136 upregulated and 26 down-

regulated genes (Supplementary Table 2; Figure 2E, 

2F). 

 

We then generated a protein-protein interaction (PPI) 

network based on the overlapping DEGs in ATRX- 

wt glioma patients with high stromal and immune 

scores. The PPI network contained 80 interacting genes 

(Figure 3A). Candidate hub genes from this network 

were subjected to Gene Ontology analyses for 

Molecular Function, Biological Process and Cellular 

Component. The Molecular Function terms associated 

with the candidate hub genes were enriched in “RNA 

polymerase II transcription factor activity”, “RNA 

polymerase II core promoter proximal region sequence 

specific”, “sequence specific double stranded”, “DNA 

binding” and “RNA polymerase II transcription 

regulatory region sequence specific binding” (Figure 

3B). In the Biological Process analysis, the candidate 

hub genes were found in “regulation of transcription 

from RNA polymerase II promoter”, “positive 

regulation of transcription from RNA polymerase II 

promoter”, “anterior/posterior pattern specification”, 

“immune response” and “embryonic skeletal system 

morphogenesis” (Figure 3C). The Cellular Component 

analysis was enriched in “cell surface”, “external side of 

plasma membrane”, “nucleoplasm”, “chromatin” and 

“nucleus” (Figure 3D). We also performed a Kyoto 

Encyclopedia of Genes and Genomes (KEGG) pathway 

analysis, which revealed that the candidate hub genes 

were involved in the “T cell receptor signaling 

pathway”, “chemokine signaling pathway”, “intestinal 

 

 
 

Figure 2. DEGs in ATRX-wt glioma tissues with high vs. low stromal/immune scores. (A) Volcano plot showing the DEGs between 
the high- and low-stromal-score groups of ATRX-wt glioma tissues. (B) Heat map showing the DEGs between the high- and low-stromal-
score groups of ATRX-wt glioma tissues. (C) Volcano plot showing the DEGs between the high- and low-immune-score groups of ATRX-wt 
glioma tissues. (D) Heat map showing the DEGs between the high- and low-immune-score groups of ATRX-wt glioma tissues. (E) 
Overlapping downregulated genes between the high-stromal-score and high-immune-score groups of ATRX-wt glioma tissues. (F) 
Overlapping upregulated genes between the high-stromal-score and high-immune-score groups of ATRX-wt glioma tissues. 
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immune network for IgA production”, “cell adhesion 

molecules” and “IL-17 signaling pathway” (Figure 3E). 

 

Constructing the immune profiles of ATRX-wt 

glioma patients 

 

Next, we performed a univariate Cox regression analysis, 

which revealed that seven of the 80 aforementioned 

candidate genes were associated with survival in ATRX-
wt glioma patients (Table 1). We subsequently conducted 

a LASSO analysis (Figure 4A, 4B) and a multivariate 

Cox analysis (Figure 4C), which identified homeobox 

A5 (HOXA5), protein tyrosine phosphatase non- 

receptor type 2 (PTPN2I, WT1 transcription factor 

(WT1), homeobox D10 (HOXD10), periostin (POSTN), 

ADAM like decysin 1 (ADAMDEC1) and myosin 

binding protein H (MYBPH) as independent predictors 

of survival in ATRX-wt glioma patients. These  

results were used to develop a risk model capable of 

predicting survival in ATRX-wt glioma patients. After 

computer optimization, and the following risk score 

expression was obtained: 0.11 × HOXA5 expression + 

0.41 × PTPN2 expression + 0.14 × WT1 expression + 

0.08 HOXD10 expression + 0.14 × POSTN expression + 

0.11 × ADAMDEC1 expression + 0.10 × MYBPH 

expression. 

 

Risk model validation for ATRX-wt glioma patients 

from TCGA  

 

Next, we randomized ATRX-wt glioma patients from 

TCGA into training and testing groups to evaluate the 

applicability of the risk model. The median risk score  

of ATRX-wt glioma patients in the training cohort  

was used to divide patients into high-risk and low- 

risk groups (Figure 5A). The overall survival rate was 

lower in the high-risk group than in the low-risk group 

(Figure 5B). The area under the curve (AUC) values  

for predicting survival after one, three and five years  

in ATRX-wt glioma patients from TCGA were 0.905, 

0.917 and 0.883, respectively (Figure 5C–5E). The 

proportion of deaths among ATRX-wt glioma patients in 

the training cohort was higher in the high-risk-score 

group than in the low-risk-score group (Figure 5F). 

 

 
 

Figure 3. Landscape of the 162 overlapping DEGs. (A) A PPI network was constructed using the 162 overlapping DEGs, and isolated 

genes were removed. Genes in the PPI network were set as candidate hub genes. (B) Molecular Function analysis of candidate hub genes. 
(C) Biological Process analysis of candidate hub genes. (D) Cellular Component analysis of candidate hub genes. (E) KEGG analysis of 
candidate central genes. 
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Table 1. The hazard rate of genes for glioma patients with ATRX wild type. 

ID HR HR.95L HR.95H p-value 

IL10 1.63484617 1.412942779 1.891599604 3.99005E-11 

CD2 1.611050947 1.433723056 1.810311372 1.09872E-15 

CD80 1.7382012 1.499705417 2.01462459 2.10213E-13 

CD40LG 1.8853422 1.569864227 2.264218236 1.14512E-11 

CD3D 1.511986167 1.357567997 1.683968814 5.41101E-14 

CXCR3 1.689515301 1.466473383 1.946480574 3.86946E-13 

GZMA 1.533573702 1.368230012 1.718898341 2.03829E-13 

IL2RA 1.420618668 1.310610237 1.539860855 1.37017E-17 

CXCL10 1.444697765 1.327141928 1.572666485 1.9634E-17 

KLRB1 1.424623253 1.252339783 1.620607633 7.38551E-08 

CD1C 1.304011289 1.106812658 1.536344413 0.001508233 

ITK 1.304789296 1.212904297 1.403635153 9.29442E-13 

CCL20 1.528458983 1.379381296 1.693648355 5.37739E-16 

EOMES 1.850243392 1.563956973 2.18893529 7.26351E-13 

HOXA5 1.487580596 1.37233437 1.612504996 4.77108E-22 

HOXB4 1.356548073 1.268566382 1.450631752 4.961E-19 

HOXC5 1.355479717 1.247924496 1.47230483 5.56712E-13 

HOXC6 1.398363699 1.299196088 1.505100771 4.09751E-19 

CCR2 1.515505644 1.3446989 1.708008654 9.46906E-12 

CD3G 1.97053978 1.675350136 2.317740596 2.56698E-16 

CXCR6 1.632790049 1.434214112 1.858860069 1.25766E-13 

GZMK 1.463623123 1.304237832 1.642486205 9.46095E-11 

SLAMF1 1.819797159 1.547395713 2.140151786 4.58977E-13 

HOXA6 1.662424064 1.494113871 1.849694204 1.03216E-20 

HOXA7 1.345855826 1.259788559 1.437803106 1.26014E-18 

HOXB5 1.358497599 1.260754795 1.46381813 8.83251E-16 

HOXB6 1.326695547 1.210956287 1.453496788 1.28002E-09 

ICOS 1.920980315 1.636669811 2.254679195 1.36592E-15 

PTPN2 3.495063245 2.621384416 4.659929698 1.50998E-17 

SERPINB2 1.066398994 0.956099402 1.189423205 0.248475874 

HLA-DQB2 1.429799876 1.289408444 1.585477196 1.19892E-11 

TREM1 1.396376391 1.288781934 1.512953412 3.31576E-16 

GZMH 1.543481182 1.366668852 1.743168549 2.70548E-12 

HOXA4 1.378181402 1.288339219 1.474288719 1.09728E-20 

IDO1 1.394241778 1.279359915 1.519439612 3.58653E-14 

EMR1 1.339801159 1.22325332 1.467453319 2.97954E-10 

HOXA3 1.411515491 1.315087781 1.515013681 1.33904E-21 

HOXC13 1.393680779 1.295503313 1.499298454 5.26971E-19 

HOXC8 1.37465946 1.281366075 1.474745327 7.04381E-19 

MMP1 1.306961437 1.19148689 1.433627355 1.41002E-08 
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SAA1 1.283128792 1.219917417 1.349615534 3.95869E-22 

CLEC12A 1.644937171 1.464824546 1.847196174 4.04077E-17 

HOXA2 1.394805161 1.299252034 1.497385716 3.92337E-20 

HOXC10 1.341228692 1.261587965 1.425896927 5.45794E-21 

HOXC11 1.403993146 1.302969576 1.512849409 5.28754E-19 

HOXC9 1.436720784 1.331802034 1.549904985 7.54091E-21 

ZNF688 0.874617662 0.624701343 1.224514824 0.435228095 

GATA4 1.241703748 1.167891593 1.32018092 4.40649E-12 

HOXA9 1.39322244 1.289617922 1.505150273 4.05828E-17 

HOXB8 1.254756043 1.176395478 1.338336261 5.29039E-12 

HOXB9 1.500349523 1.367894648 1.645630162 7.75209E-18 

LY9 1.67557693 1.427630369 1.966586106 2.66302E-10 

MYOD1 0.539023747 0.439750921 0.660707202 2.67179E-09 

UBASH3A 1.567325372 1.384392666 1.774430682 1.27879E-12 

WT1 1.335635519 1.234997982 1.44447381 4.46098E-13 

CD70 1.432034962 1.309320043 1.566251234 3.96289E-15 

HOXB3 1.345372479 1.266243377 1.429446454 8.59509E-22 

HOXD10 1.379600692 1.288315904 1.477353546 3.17174E-20 

MMP7 1.226784337 1.142975571 1.316738388 1.50129E-08 

NKX2-5 1.444403467 1.34504005 1.551107252 4.9136E-24 

PAX3 1.387602684 1.296537487 1.485064048 3.12651E-21 

POSTN 1.278881874 1.215527437 1.345538405 2.32988E-21 

SKAP2 1.895375614 1.597045547 2.249434103 2.52333E-13 

CEACAM4 1.476404054 1.258849233 1.731556785 1.66575E-06 

FPR2 1.490163867 1.326673876 1.67380122 1.72684E-11 

HOXA1 1.697129654 1.52345432 1.890604152 7.77973E-22 

HOXD11 1.38815997 1.295848113 1.487047814 9.49276E-21 

C19orf59 1.546978426 1.394142512 1.716569311 2.02504E-16 

TNFSF14 1.608910103 1.441944692 1.795208744 1.78337E-17 

ADAMDEC1 1.389433804 1.281737235 1.506179459 1.35046E-15 

AREG 1.38785747 1.242507701 1.550210397 6.36893E-09 

CLEC5A 1.470656313 1.341530655 1.612210637 1.93109E-16 

CSTA 1.556115415 1.37713758 1.758353864 1.3108E-12 

DEFA1B 1.272612393 1.15436257 1.402975412 1.26672E-06 

HOXD13 1.347733466 1.262427352 1.438803979 3.71652E-19 

LTF 1.211324452 1.157232844 1.26794442 1.9472E-16 

MYBPH 1.51820243 1.390962593 1.657081672 8.83792E-21 

PI3 1.274011507 1.196291544 1.356780735 4.67323E-14 

SIRPG 1.908303098 1.607189367 2.26583176 1.63867E-13 

VGLL2 1.455690311 1.328701794 1.594815549 7.47498E-16 
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In glioma tissues from the high-risk group of the 

training cohort, HOXA5, PTPN2, WT1, HOXD10, 

POSTN, ADAMDEC1 and MYBPH were highly expressed 

(Figure 5G). 

 

We then validated the model using the test cohort. 

Again, ATRX-wt glioma patients were divided into 

high- and low-risk groups based on the median risk 

score (Figure 6A). Glioma patients with high-risk scores 

were more likely to die than those with low-risk scores 

(Figure 6B). The AUCs for predicting survival after 

one, three and five years in ATRX-wt glioma patients 

from the test cohort were 0.882, 0.885 and 0.825, 

respectively (Figure 6C–6E). The death rate of the  

high-risk group of glioma patients was higher in the  

test cohort than in the high-risk-score group than in the 

low-risk-score group (Figure 6F). In the test cohort, 

HOXA5, PTPN2, WT1, HOXD10, POSTN, ADAMDEC1 

 

 
 

Figure 4. Key genes selected for risk model construction. (A, B) LASSO analysis of key genes associated with survival in ATRX-wt 

glioma patients. (C) Multivariate Cox regression analysis of HOXA5, PTPN2, WT1, HOXD10, POSTN, ADAMDEC1 and MYBPH. These seven 
genes were used for risk model construction. 
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and MYBPH levels were elevated in glioma tissues  

with high-risk scores (Figure 6G). Thus, our risk model 

exhibited significant prognostic value in ATRX-wt glioma 

patients. 

 

Exploring the applicability of the risk model for 

ATRX-mt glioma patients from TCGA 

 

Next, we classified ATRX-mt patients from TCGA  

into high- and low-risk groups based on the median 

risk score (Figure 7A). High risk scores were associated 

with a lower survival rate than low risk scores (Figure 

7B). However, the AUCs for predicting one-, three- and 

five-year survival among ATRX-mt glioma patients 

were 0.53, 0.543 and 0.524, respectively (Figure 7C–

7E). Moreover, the death rates for ATRX-mt glioma 

patients did not differ significantly between the high- 

and low-risk groups (Figure 7F). Nevertheless, HOXA5, 

PTPN2, WT1, HOXD10, POSTN, ADAMDEC1 and 

MYBPH were overexpressed in ATRX-mt glioma tissues 

 

 
 

Figure 5. Validation of the applicability of the risk model in the training cohort of ATRX-wt glioma patients. (A) ATRX-wt 

glioma patients in the training cohort were divided into high- and low-risk-score groups based on the median risk score. (B) Survival 
differences between ATRX-wt glioma patients in the high- and low-risk-score groups in the training cohort. (C–E) Prognostic value of the  
risk model for the one-, three- and five-year survival of ATRX-wt glioma patients in the training cohort. (F) Deaths of ATRX-wt glioma 
patients in the high- and low-risk-score groups in the training cohort (green dots represent living cases; red dots represent dead cases). (G) 
Expression of HOXA5, PTPN2, WT1, HOXD10, POSTN, ADAMDEC1 and MYBPH in glioma patients in the high- and low-risk-score groups in 
the training cohort. 
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with high-risk scores compared with low-risk scores 

(Figure 7G). These results demonstrated that the risk 

model constructed with HOXA5, PTPN2, WT1, HOXD10, 

POSTN, ADAMDEC1 and MYBPH could not accurately 

predict survival in ATRX-mt glioma patients, although it 

could in ATRX-wt glioma patients. 

 

Immune characteristics as an independent 

prognostic factor for ATRX-wt glioma patients 

 

Our multivariate Cox regression analysis indicated that 

the HOXA5-derived immune signature was independently 

associated with the outcomes of ATRX-wt glioma 

patients. We used this signature risk score and patients’ 

clinical characteristics to create a nomogram (Figure 

8A), which had high prognostic value for survival at 

one, three and five years (Figure 8B). 

 

Expression of HOXA5, PTPN2, WT1, HOXD10, 

POSTN, ADAMDEC1 and MYBPH in ATRX-wt 

glioma tissues 

 

Next, we obtained 54 glioma tissues from patients at 

Guizhou Medical University Affiliated Hospital, and 

 

 
 

Figure 6. Validation of the applicability of the risk model in the test cohort of ATRX-wt glioma patients. (A) ATRX-wt glioma 

patients in the test cohort were divided into high- and low-risk-score groups based on the median risk score. (B) Survival differences 
between ATRX-wt glioma patients in the high- and low-risk-score groups in the test cohort. (C–E) Prognostic value of the risk model for 
one-, three- and five-year survival in ATRX-wt glioma patients in the test cohort. (F) Deaths of ATRX-wt glioma patients in the high- and low-
score groups in the test cohort (green dots represent living cases; red dots represent dead cases). (G) Expression of HOXA5, PTPN2, WT1, 
HOXD10, POSTN, ADAMDEC1 and MYBPH in glioma patients in the high- and low-risk-score groups of the test cohort. 
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divided them according to whether the patients survived 

long-term (≥15 months) or short-term (<15 months). 

Then, we performed quantitative real-time PCR and 

immunohistochemical analyses to detect the mRNA  

and protein levels of HOXA5, PTPN2, WT1, HOXD10, 

POSTN, ADAMDEC1 and MYBPH in these tissues. 

These genes were expressed at significantly higher 

levels in glioma tissues from short-term survivors than 

in those from long-term survivors (Supplementary Figure 

1; Figure 9A, 9B). A receiver operating characteristic 

curve analysis indicated that HOXA5, PTPN2, WT1, 

HOXD10, POSTN, ADAMDEC1 and MYBPH had 

significant prognostic value for the survival of ATRX-wt 

glioma patients (AUC = 0.84, 0.81, 0.79, 0.91, 0.80, 0.79 

and 0.85, respectively) (Figure 9C). 

 

Immunological properties of immune markers 

 

We then used the “CIBERSORT” R package to evaluate 

immune cell infiltration in ATRX-wt glioma tissues 

from TCGA, and found that 22 types of immune cells 

infiltrated differently in the high- vs. low-risk groups. 

 

 
 

Figure 7. Validation of the applicability of the risk model in ATRX-mt glioma patients from TCGA. (A) ATRX-mt glioma patients 

from TCGA were divided into high- and low-risk-score groups based on the median risk score. (B) Survival differences between the high- 
and low-risk-score groups of ATRX-mt glioma patients from TCGA. (C–E) Prognostic value of the risk model for the one-, three- and five-year 
survival of ATRX-mt glioma patients from TCGA. (F) Deaths of ATRX-mt glioma patients from TCGA in the high- and low-risk-score groups 
(green dots represent living cases; red dots represent dead cases). (G) Expression of HOXA5, PTPN2, WT1, HOXD10, POSTN, ADAMDEC1 and 
MYBPH in ATRX-mt glioma tissues from the high- and low-risk-score groups. 
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CD8+ T cells, naive CD4+ T cells, monocytes, M1 

macrophages and M0 macrophages were in higher 

proportion in glioma tissues with low-risk scores 

(Figure 10A–10C). We also evaluated the response  

to ICB treatment in the high- and low-risk ATRX-wt 

groups, and found that patients in the low-risk group 

had a higher response rate to ICB treatment (Figure 

10D). Thus, our risk model can be used to predict the 

prognosis and treatment responsiveness of ATRX-wt 

patients. 

 
Patients with high-risk glioma may benefit from 

rapamycin, dasatinib, 5-fluorouracil and 

gemcitabine 

 
Lastly, we used the OncoPredict algorithm to derive a 

drug sensitivity model from the gene expression data in 

the ATRX-wt atlas. We evaluated a total of 198 inhibitors, 

and noted that high-risk glioma tissues were predicted 

to be sensitive to rapamycin, dasatinib, 5-fluorouracil 

and gemcitabine (Supplementary Table 3; Figure 11A–

11E). This evidence suggests that rapamycin, dasatinib, 

5-fluorouracil and gemcitabine may be useful drugs for 

patients with high-risk gliomas. 

 
DISCUSSION 

 
Abnormal ATRX expression has been detected in a 

variety of malignant tumors [10, 11]. ATRX mutations 

have been observed in neuroblastomas, pancreatic neuro-

endocrine tumors and pediatric osteosarcomas [12, 13]. 

ATRX protein contains a C-terminal helicase/ATPase 

domain, and belongs to the SWI/SNF2 chromatin re-

modeling protein family [14]. The N-terminal ATRX–

DNA methyltransferase 3–DNA methyltransferase 3-like 

(‘ADD’) domain contains a plant homeodomain and  

a GATA zinc finger structure [15]. The GATA zinc 

finger can bind to DNA or chromatin, while the plant 

homeodomain participates in chromatin regulation and 

transcription [16, 17]. 

 

Previous studies have indicated that the immune 

microenvironment influences the progression of ATRX-
wt gliomas [12]. We compared the survival of ATRX- 

wt glioma patients with high and low stromal/immune 

scores, and found that patients with low scores had a 

higher survival rate. We also assessed the DEGs between 

ATRX-wt glioma patients with high and low stromal/ 

immune scores, and used them to generate a PPI 

network. We found that 80 of the 162 DEGs interacted 

with other genes and were significantly associated with 

patients’ prognoses. Using LASSO and Cox regression 

analyses, we identified HOXA5, PTPN2, WT1, HOXD10, 

POSTN, ADAMDEC1 and MYBPH as independent 

predictors of survival. Based on the expression of these 

genes, we then generated immune profiles to classify 

ATRX-wt glioma patients as high- or low-risk. 

 

The seven genes identified in this study have been 

associated with cancer in previous studies. For instance, 

alterations in the HOX family members HOXA5 and 

HOXD10 have been implicated in the development  

and progression of cancer [18, 19]. In non-small cell 

lung cancer, HOXA5 was found to promote apoptosis 

and inhibit proliferation by upregulating linc00312 

expression [20]. HOXD10 was identified as a biological 

correlate of tumor suppressor DNA and an inducer of 

miRNA-7 and insulin-like growth factor binding protein 

3 in colorectal cancer [21]. In tumor cells, PTPN2 was 

 

 
 

Figure 8. Construction of the nomogram. (A) Construction of a nomogram using age, sex, grade and risk score. (B) Nomogram in 
glioma patients with one-, three- and five-year survival. 
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shown to enhance antigen presentation and growth 

arrest [22]. WT1 has been detected in hematologic 

malignancies and solid tumors (breast, lung, pancreatic 

and prostate cancers). Furthermore, WT1 protein has 

high immunogenicity, suggesting that it may be a  

useful therapeutic agent in patients with WT1 gene 

amplification [23]. Ovarian cancer cells incorporating 

POSTN from cancer-associated fibroblasts were 

 

 
 

Figure 9. Expression of HOXA5, PTPN2, WT1, HOXD10, POSTN, ADAMDEC1 and MYBPH in ATRX-wt glioma tissues. ATRX-wt 

patients were divided into long-term and short-term survival groups based on a cut-off of 15 months. (A) Immunohistochemistry scores for 
HOXA5, PTPN2, WT1, HOXD10, POSTN, ADAMDEC1 and MYBPH in ATRX-wt glioma tissues. (B) Representative plots of HOXA5, PTPN2, WT1, 
HOXD10, POSTN, ADAMDEC1 and MYBPH expression in ATRX-wt glioma tissues from the long- and short-term survival groups. (C) 
Prognostic value of HOXA5, PTPN2, WT1, HOXD10, POSTN, ADAMDEC1 and MYBPH1 in distinguishing ATRX-wt glioma patients with long- 
and short-term survival. 
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Figure 10. Immunological characteristics of the three immune features. (A, B) Gene expression profiles of the high- and low-risk-

score groups of ATRX-wt glioma tissues from TCGA were transformed into 22 immune cell expression matrices. (C) Immune cell differences 
between the high- and low-risk groups of ATRX-wt glioma tissues from TCGA. (D) Responders and non-responders to ICB treatment among 
ATRX-wt glioma patients in the high- and low-risk groups. *P < 0.05; **P < 0.01; ***P < 0.001. 

 

 
 

Figure 11. Selection of appropriate drugs for glioma patients in the high-risk group. (A–E) OncoPredict showed that the drug scores 

for rapamycin, dasatinib, 5-fluorouracil and gemcitabine differed between glioma patients in the high- and low-risk groups. ***P < 0.001. 
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reported to migrate and invade more effectively due to 

phosphoinositide 3-kinase/Akt pathway activation [24]. 

In the same study, the pro-metastatic and fibroblast-

activating properties of transforming growth factor  

β1 were shown to depend partially on POSTN [24]. 

MYBPH was found to suppress Rho-associated coiled-

coil containing protein kinase 1 and inhibit actin orga-

nization, thus impairing single cell motility, increasing 

collective cell migration, and reducing cancer invasion 

and metastasis [25]. Downregulation of ADAMDEC1 

was shown to upregulate active caspases 3 and 9, inhibit 

proliferation and induce apoptosis in glioma cells [26]. 

We constructed a risk model using HOXA5, PTPN2, 

WT1, HOXD10, POSTN, ADAMDEC1 and MYBPH ex-

pression data from a cohort of patients in TCGA, and 

found that it had significant prognostic value for ATRX-

wt glioma patients. 

 

The tumor environment consists of cancer cells, immune 

cells, inflammatory cells, tumor-associated fibroblasts 

and various cytokines [27]. Immune cells within the 

tumor microenvironment influence the progression of 

glioma [27]. Glioma tissues contain a high proportion of 

M2 macrophages, which have the potential to promote 

glioma cell invasion through angiogenesis, while M1 

cells have the potential to suppress angiogenesis [28, 

29]. Natural killer cells and CD8+ T cells are sus-

ceptible to senescence in gliomas [30, 31]. Little has 

been known about the immune signature of ATRX-wt 

glioma, but we found that ATRX-wt patients with low 

risk scores tended to have higher levels of M1 and 

CD8+ T cells, suggesting that these infiltrating cells 

were able to kill cancer cells. 

 
In order for the host to kill cancer cells, immune 

checkpoints need to be blocked so that deactivated cells 

can be reactivated. ICB therapy has shown significant 

curative effects in hepatocellular carcinoma and breast 

cancer patients [32, 33]. We found evidence that CD8+ 

T cell and M1 cell inactivation were inhibited in the 

tumor microenvironment of ATRX-wt glioma patients 

with low risk scores; thus, we analyzed whether ICB 

therapy was beneficial for low-risk ATRX-wt glioma 

patients. ICB therapy response rates were higher  

among low-risk patients than among high-risk patients, 

suggesting that ATRX-wt glioma patients with low risk 

scores may benefit from ICB therapy. An OncoPredict 

analysis predicted that high-risk glioma patients would 

be more sensitive to rapamycin, dasatinib, 5-fluorouracil 

and gemcitabine. 

 
In conclusion, our study revealed that an immune 

signature based on HOXA5, PTPN2, WT1, HOXD10, 

POSTN, ADAMDEC1 and MYBPH expression effectively 

predicted the prognosis of ATRX-wt glioma patients, 

and demonstrated that immunotherapy was effective for 

low-risk patients. Our immune signature may be helpful 

in diagnosing and treating ATRX-wt glioma patients. 

 

MATERIALS AND METHODS 
 

Downloading and preprocessing gene expression 

profiles 

 

The gene expression profiles and clinical characteristics 

of 452 ATRX-wt and 188 ATRX-mt glioma patients were 

obtained from TCGA. The gene expression profiles 

were normalized and centralized, and gene names were 

assigned to the probes. The immune and stromal scores 

of the ATRX-wt glioma tissues were calculated using  

the ESTIMATE algorithm. 

 

DEG analysis 

 

The median immune and stromal scores from the 

dataset in TCGA were used to divide patients into high- 

or low-scoring groups. DEG analysis was performed 

using EdgeR, with an adjusted P-value of 0.05 and a 

|logFold-Change| <1 set as the threshold for significance. 

Volcano plots and heat maps were used to visualize gene 

expression changes in the groups with high immune/ 

stromal scores [34]. 

 

PPI network 

 

A PPI network was constructed by mapping DEG 

information to the Search Tool for the Retrieval of 

Interacting Genes (STRING) database. Isolated genes 

were removed from the original PPI network using 

Cytoscape software. A visual analysis was performed, 

and reciprocally related genes were designated as hub 

genes and included in the next step. 

 

Functional and pathway enrichment analysis 

 

The Database for Annotation, Visualization and Integrated 

Discovery was used to analyze the enriched KEGG  

and Gene Ontology terms of genes. Three categories  

were used for the Gene Ontology analysis: Biological 

Processes, Cellular Components and Molecular Functions. 

A bubble diagram was used to present the terms to 

determine significance. 

 

Immune signature construction and verification 

 

In ATRX-wt patients, a univariate Cox regression analysis 

with a significance threshold was used to construct an 

immune signature. A LASSO operator with an appro-

priate penalty was used to eliminate genes with the 

same genetic information. A prognostic risk model was 

developed using multivariate Cox regression analysis 

with the Akaike information criterion. Kaplan-Meier 
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survival analyses and receiver operating characteristic 

curve analyses were used for ATRX-wt and ATRX-mt 

glioma patients [35]. 

 
Construction of column line diagrams 

 
The “rms” package in R was used to create column line 

plots and conduct a multi-factor regression analysis. 

Asymptotic lines were then used to plot on the same 

plane at a certain scale. The accuracy of the line plot 

was predicted, and the prognostic value of the line plot 

was determined. 

 
Immune cell analysis 

 
Using the “CIBERSORT” R package, we examined 22 

immune cells infiltrating ATRX-wt glioma tissues in 

TCGA. Differentially infiltrated cells in the high- and 

low-risk-score groups were analyzed using the unpaired 

t-test, with significance set as P < 0.05. 

 
Immunohistochemical analysis 

 
Throughout Guizhou Medical University Affiliated 

Second People Hospital of Guiyang, 54 ATRX-wt glioma 

tissues were collected with approval from the Guizhou 

Medical University Human Ethics Committee. All parti-

cipants provided informed consent before they were given 

radiotherapy or chemotherapy. Immunohistochemical 

staining was performed as described in a previous study 

[36]. The sections were probed with the following anti-

bodies: HOXA5 (1:200; ab140636, Abcam, Cambridge, 

UK), PTPN2 (1:100; 11214-1-AP, Proteintech, Wuhan, 

China), WT1 (1:100; 12609-1-AP, Proteintech), POSTN 

(1:100; 66491-1-Ig, Proteintech), ADAMDEC1 (1:100; 

17899-1-AP, Proteintech), MYBPH (1:100; ab197216, 

Abcam) and HOXD10 (1:100; ab138508, Abcam). 

 
Drug score analysis 

 
In vivo drug responses can be predicted using 

OncoPredict, an algorithm developed by Maeser et al. 

[37]. In order to calculate the drug sensitivity of 

gliomas, OncoPredict scripts were used to match the 

gene expression matrix of each glioma sample to the 

chemotherapeutic effects of drugs recorded in Cancer 

and the gene expression information for cancer lines in 

the Broad Institute Cancer Cell Line Encyclopedia. 

Glioma patients with higher drug scores are less 

sensitive to drugs. The limma package was used to 

analyze the differences in drug scores between those at 

high and low risk. A |logFold-Change| ≥1 and adjusted 

P < 0.05 were used as cut-offs for determining 

significance. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figure 
 

 
 

Supplementary Figure 1. The mRNA levels of HOXA5, PTPN2, WT1, HOXD10, POSTN, ADAMDEC1 and MYBPH in each subtype 
of glioma. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1–3. 

 

Supplementary Table 1. Stromal and immune scores of ATRX-wt and ATRX-mt glioma patients in TCGA. 

 

Supplementary Table 2. Overlapping genes between the low-stromal-score and low-immune-score groups of ATRX-wt 
glioma tissues. 

 

Supplementary Table 3. Drug scores of 198 drugs in each sample. 

 

 


