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INTRODUCTION 
 

Tumor burden is a formidable disease for humanity and 

public health worldwide [1, 2]. As urbanization 

progresses, tumor incidence has varied from previous 

levels. According to Global Cancer Statistics 2020, 

breast cancer has the highest incidence in females [3]. 

Due to the anti-HER2 therapy regiment, HER2-positive 
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ABSTRACT 
 

Background: Overcoming anoikis is a necessity during the metastasis and invasion of tumors. Recently, anoikis 
has been reported to be involved in tumor immunity and has been used to construct prognosis prediction 
models. However, the roles of anoikis in regulating tumor immunity and drug sensitivity in breast cancer are 
still not clear and therefore worth uncovering. 
Methods: TCGA and GEO data are the source of gene expression profiles, which are used to identify anoikis-
related-gene (ARG)-based subtypes. R4.2 is used for data analysis. 
Results: Breast cancer is divided into three subgroups, amongst which shows prognosis differences in pan-
cancer cohort, ACC, BLCA, BRCA, LUAD, MESO, PAAD, and SKCM. In breast cancer, it shows significant 
differences in clinical features, immune cell infiltration and drug sensitivity. Machine learning constructs 
prognosis prediction model, which is useful to perform chemotherapy sensitivity stratification. Following, TJP3 
is identified and verified as the key ARG, up-regulation of which increases tolerance of paclitaxel-induced cell 
toxicity, accompanied with increased expression of caspas3 and cleaved-caspase3. In addition, Down-regulation 
of TJP3 weakens the cell migration, which accompanied with increased expression of E-cad and decreased 
expression of vimentin, twist1, zeb1, and MMP7. Furthermore, the expression level of PD-L1 is negative 
correlated with TJP3. 
Conclusion: ARGs-based subgroup stratification is useful to recognize chemotherapy sensitive cohort, and also 
is useful to predict clinical outcome. TJP3 promotes chemoresistance, tumor metastasis and potential 
immunotherapy escape in breast cancer. 
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breast cancer gets an obvious improvement in clinical 

outcome. However, malignant types of breast cancer, 

such as triple-negative breast cancer (TNBC), are still 

without powerful therapy strategy yet now, and 5-year 

survival rate is less than 30% [4]. 
 

Individualized treatment is prevalent for efficient anti-

tumor therapy, and multi-gene-based assessment tools 

are widely applied in making adjuvant therapy 

strategies, such as 21-gene detection [5], genome 

detection and microsatellite instability detection [6]. 

Nowadays, diversity of pathway-based prognosis 

prediction model is explored and applied in identify-

ing tumor subgroups, such as ferroptosis [7], 

cuproptosis [7], and immunogenic cell death [8] et al. 

Recently, anoikis has been reported to be involved in 

tumor immunity escape [9], and anoikis-related genes 

(ARGs) are applied to assess tumor immunity in 

glioblastoma [9] and neck squamous cell carcinoma 

[10]. However, it’s still unclear in breast cancer. 

Therefore, it is necessary to explore the roles of ARGs 

in regulating drug tolerance, tumor progression and 

prognosis prediction. 
 

In this study, artificial intelligence is applied to 

construct ARG subtype stratification model, and we 

attempt to use AI to assess chemotherapy sensitivity in 

breast cancer. Finally, a key ARG is screened into 

further experiments. 
 

MATERIALS AND METHODS 
 

The aims of this research are to explore the roles of 

anoikis-related genes (ARGs) in identifying drug 

sensitivity subtypes (contains immunotherapy and 

chemotherapy), and to assess the roles of ARGs in 

predicting clinical outcome. The whole research 

network is shown in Figure 1. 

 

Bioinformatic analysis 

 

Data collection 

Data of gene expression is collected from The Cancer 

Genome Atlas (TCGA, https://portal.gdc.cancer.gov 

/repository) and Gene Expression Omnibus (GEO, 

https://www.ncbi.nlm.nih.gov/geo/). Clinical data is 

collected from Sangerbox [11], Kaplan Meier PlotteR 

(http://kmplot.com/analysis/index.php?), UALCAN 

(The University Alabama at Birmingham Cancer  

data analysis Portal, https://ualcan.path.uab.edu/ 

tutorial.html), and GEO. TCGA cohort is used for 

model construction and training, while GSE25066 and 

GSE20685 are used for verification. GSE20685, 

GSE42568 and GSE58812 are used for breast cancer 

model verification, while GES30219, GSE231210, 

GSE37745, and GSE50081 are used for lung  

cancer model verification. Pan-Cancer Analysis of 

Whole Genomes (PCAWG, n = 818) data is used  

for pan-cancer model verification. Anoikis-related 

genes (ARGs) are collected from GeneCard 

(https://www.genecards.org). Immunohistochemical 

staining (IHC) of TJP3 is collected from The Human 

Protein Atlas (THPA, https://www.proteinatlas.org). 

 

Prognosis analysis 

Univariate Cox regression and Kaplan-Meier are used 

to calculate clinical outcome and hazard ratio (HR). 

 

 

 
Figure 1. Research Process. (1) Identification of ARG subgroup: gene expression profiles are collected from TCGA and GEO databases, 

and ARG list is collected from GeneCard. 44 ARGs are selected into consensus cluster to identify subgroups. (2) Features in subgroups: 
Pathway score and immune cell infiltration are calculated by ssGSEA and CIBERSORT, respectively. (3) AI-based drug sensitivity 
stratification: 5 types of machine learning algorithms are applied, and XGBoost displays best results in identification of ARG subgroups. (4) 
TCGA (training) and GEO (testing) cohorts are used to construct prognosis prediction model. (5) Hubgenes are selected to perform in vitro 
experiments. 

https://portal.gdc.cancer.gov/repository
https://portal.gdc.cancer.gov/repository
https://www.ncbi.nlm.nih.gov/geo/
http://kmplot.com/analysis/index.php
https://ualcan.path.uab.edu/tutorial.html
https://ualcan.path.uab.edu/tutorial.html
https://www.genecards.org/
https://www.proteinatlas.org/
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Subtypes identification and machine-learning-based 

drug sensitivity stratification 

706 ARGs are collected from GeneCard, 44 of  

which are prognosis-related identified by Univariate 

Cox regression. 44 ARGs are put into consensus 

cluster analysis by R4.2.0 (ConsensusClusterPlus, 

parameter: maxK = 10, reps = 50). Then, identified 

subgroups are applied into supervised algorithm with 

genome (WGCNA) to find hub genes (module 

merging threshold is 0.3). Following, machine 

learning, containing Support Vector Machine  

(SVM, package: e1071), random forest (RF, package: 

randomForest), Extreme Gradient Boosting 

(XGboost, package: xgboost), multi-logistic 

(package: nnet), and deep learning (DL, package: 

h2o), is applied to construct training model (70% of 

TCGA cohort are training cohort, last 30%) to 

identify ARG subgroups in independent cohorts. 

Drug score is calculated by OncoPredict package in 

R4.2.0. 

 

Tumor immunity assessment 

Cibersort is used to predict immune cell infiltration in 

R4.2.0. 

 

Pathway score 

Genes related to ferroptosis (http://www.zhounan.org/ 

ferrdb/current/), necroptosis (GeneCard), immunogenic 

cell death [12], cuproptosis (PMID: 35298263) [13], 

pyroptosis (GeneCard) and anoikis (GeneCard) are 

collected from corresponding databases or literatures. 

Simple sample Gene Set Enrichment Analysis 

(ssGSEA, package: GSVA) is applied to calculate 

aforesaid pathways score. 

 

Drug score 

Drug score is predicted by package OncoPredict in 

R4.2.0. 

 

Nomogram 

706 ARGs are put into Least Absolute Shrinkage and 

Selection Operator (LASSO) analysis, which is 

followed by Multivariate Cox regression. Five genes are 

finally selected to construct nomogram. Receptor 

operation curve (ROC) analysis and calibration analysis 

are applied to calculate the accuracy of the model, 

amongst which TCGA cohort is training cohort, while 

GEO cohort is testing cohort. Finally, we used 

nomogram to visualize the model. 

 

Biological experiments 

 

Reagents 

MBA-MD-231 is purchased from The Cell Bank of the 

Chinese Academy of Science in 2023 with STR 

matching analysis. Alive&dead staining kit is purchased 

from Yeasen Biotech, China, Edu staining kit is 

purchased from APExBIO (K1077, USA). OPTI-MEM 

is purchased from (Thermo Fisher, Gibco, USA). 

Paclitaxel is purchased from CSNpharm (CSN19486, 

USA), and it is dissolved in DMSO. Antibodies against 

Caspase-3 (AF6311), cleaved-caspase-3 (AF7022, 

Affinity Biosciences, China), TJP3 (ab181991, Abcam, 

UK), PD-L1 (66248-1-Ig, Proteintech, China), E-

cadherin (AF0131, Affinity Biosciences), Snail1 

(AF6032, Affinity Biosciences), Twist1 (AF4009, 

Affinity Biosciences), Zeb1 (21544-1-AP, Proteintech), 

GAPDH (AF7021, Affinity Biosciences), MMP7 

(10374-2-AP) are used for western blot. 

 

Cell culture 

The culture media of MBA-MD-231 is DMEM within 

10% fetal calf serum and 100 units/mL penicillin and 

streptomycin.  

 

Small interfering RNA (siRNA) experiments 

Simply, triple-negative breast cancer (TNBC) cells are 

transplanted into 6 wells plates for 24 h, which is 

followed by transfection of TJP3 small interfere RNA 

(siRNA) (GenePharma, Shanghai, China) for 24 h, 48 h 

and 72 h. Transfection system: 250 ul OPTI-MEM + 

6.5 ul siRNA (20 uM) + 13 ul Lipofectamine 3000 

reagent (Invitrogen, USA). The siRNA sequences for 

TJP3 are listed in the following: 

 

siRNA sequence of TJP3: 

5′–3′ ACCUGCACCAAGAUGGCCAtt 

3′–5′ UGGCCAUCUUGGUGCAGGUtt 

 

Recombinant plasmid transfection assay 

According to previous published work [14], the 

construction and transfection of recombinant plasmid 

are simply described as like the following: Primers of 

TJP3 is designed by Primer 5 soft, and the sequence is 

synthesized and inserted by PrimeScript RT Reagent 

Kit (TaKaRa, China), PrimeSTAR® GXL DNA 

Polymerase (TaKaRa, China), SanPrep Column DNA 

Gel Extraction Kit (Sangon Biotech, China), and Hieff 

Clone™ Plus One Step Cloning Kit (Yeasen Biotech, 

China). For transfection, cells are transplanted into 6-

well plate, and Hieff Trans™ Liposomal Transfection 

Reagent (Yeasen Biotech, China) is used to perform 

transfection. Transfection system: DMEM (10%FBS) + 

2 ug plasmid + 4 ul transfection reagent. Finally, cells 

are harvested after 24~48 h. 

 

Western blot 

Cells with different treatments are harvested and lysed 

with RIPA lysis buffer (Sigma-Aldrich, USA), 
supplemented with phosphorylase and protease inhibitor 

mixture (Thermo Fisher Scientific, USA), quantified by 

the BCA assay (Beyotime, China). The whole process 

http://www.zhounan.org/ferrdb/current/
http://www.zhounan.org/ferrdb/current/
https://pubmed.ncbi.nlm.nih.gov/35298263
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and protocol of western blot (WB) refer to our previous 

work (PMID: 31935687, 33282725). 

 

Alive&dead staining 

The alive&dead staining assay is performed with 

Calcein AM/PI staining assay (YEASEN Biotech Co., 

Ltd., China). Simply, cells are treated by different 

treatments, followed by co-culturing with Calcein AM 

and PI for 0.5~1 h. Then, the cells are washed by PBS 

for 2 times. Finally, cells are observed by fluorescent 

microscope (Green: alive cells; Red: dead cells). 

 

Edu staining 

Cells are transplanted into 24-well plates, followed by 

different treatments. Then, 5 ul Edu (20 uM) is added 

into cells for another 2 h. After that, cells are washed 

with PBS, and followed by 1% BSA culture for 1 h. 

Then, 0.25% triton-100 is used to penetrate cell 

membrane. Then, cells are washed with PBS and 

performed click reaction. 

 

Transwell assay 

Cells are transplanted into Transwell wells (24-well, 

8.0 μm, Corning Incorporated, USA) with a 10% 

gradient of FBS for 48 h. Then stained by crystal violet 

for 15 mins. Quantification of passed cell area is 

performed by Image-ProR Plus. 

 

Statistics 

 

All data analyses were performed in R4.2.0. Univariate 

Cox regression is performed to calculate the hazard 

ratio (HR) and the log-rank test is used to compare 

survival differences. Receiver operating characteristic 

(ROC) curves and the AUC value are performed by the 

pROC package in R4.2.0. P < 0.05 is considered to 

indicate a statistically significant difference. 

 

Data availability statement 

 

The original contributions presented in the study are 

included in the Article/Supplementary Materials. 

Further inquiries can be directed to the corresponding 

authors. 

 

RESULTS 
 

Conquering anoikis is necessary for epithelial-

mesenchymal transition (EMT) [15], and the later one is 

considered as the key mechanism of tumor metastasis 

and invasion. Recently, anoikis has been reported to 

play roles in tumor immunity escape, and anoikis-

related genes (ARGs) are also applied in constructing 

prognosis prediction tools. However, it is not 

comprehensively explored in breast cancer. This study 

aims to uncover the roles of ARGs in regulating 

chemoresistance and immunotherapy in triple-negative 

breast cancer (TNBC), and attempts to construct a 

ARGs-based multi-gene risk model, and to make a drug 

sensitivity prediction tool. The whole research 

designation is displayed in Figure 1. 

 
Identification of ARG-based tumor subtypes 

 

To redefine the tumor subtype, consensus cluster 

analysis is performed. Firstly, ARGs are collected from 

GeneCard with a research strategy of “tumor and 

anoikis” with a threshold related-score (>1.0) (Figure 

2A). After Univariate Cox regression analysis, 44 

ARGs are finally filtered out (Figure 2A). The hazard 

ratio (HR) of each selected ARGs is displayed, eighteen 

of which are protective factors, while twenty-six of 

which are risky factors in pan-cancer (Figure 2B). 

Following, the aforesaid 44 ARGs are put into 

consensus cluster analysis, and three-grouping strategy 

is the best strategy (Figure 2C–2F). The heatmap shows 

obvious differences of ARGs expression amongst ARG 

subtypes (Figure 2G). And the results show significant 

differences of overall survival (OS), disease-free 

survival (DFS) and disease-free interval (DFI) amongst 

ARG subtypes in pan-cancer cohort, while significant 

difference of OS is only observed in adrenocortical 

carcinoma (ACC), bladder urothelial carcinoma 

(BLCA), breast cancer (BRCA), lung adenocarcinoma 

(LUAD), mesothelioma (MESO), pancreatic 

adenocarcinoma (PAAD) and skin cutaneous melanoma 

(SKCM) (Figure 2H, p < 0.05). 

 
Features of tumor immunity and cell death signaling 

amongst ARG subtypes  

 

Immune cells infiltration ratio analysis shows that 

significant difference exists in B cells naïve, T cells 

CD4 naïve, T cell CD4 memory resting, T cell 

regulatory (Tregs), natural killing (NK) cells resting, 

Monocytes, Mast cells activated, Eosinophils, and 

Neutrophils (Figure 3A, p < 0.05, labeled by red). 

Univariate Cox regression displays that B cells naïve, T 

cell CD4 memory resting, NK cells resting, Mast cells 

activated, and Neutrophils are prognosis-related factors 

in pan-cancer, in which forth three are protective factors 

while later four are risky factors (Figure 3B). Besides, 

results show that B cell naïve (K-M p < 0.0001, HR = 

0.36, Logrank p = 0.011) and T cell CD4 memory 

resting (K-M p = 0.001, HR = 0.48, Logrank p = 0.007) 

are protective factors in pan-cancer, while NK cells 

resting (K-M p < 0.0001, HR = 95.33, Logrank p < 

0.0001), Mast cells activated (K-M p < 0.0001, HR = 

16.28, Logrank p < 0.0001), and Neutrophils (K-M p < 

0.0001, HR > 100, Logrank p < 0.0001) are risky 

factors in pan-cancer (Figure 3C). Following, immune 

score is explored. As the results show, obvious 
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significant differences of stromalscore, immunescore 

and estimatescore are observed amongst ARG subtypes 

(Figure 3D, p < 0.0001). And, genomic instability also 

holds a different trend amongst ARG subtypes as 

compared with immune score (Figure 3E). Furthermore, 

immunity checkpoint expression level amongst ARG 

subtypes is also uncovered. The results show that 

CTLA-4, TIGIT, PD-L1, PD-1 and LAG-3 holds same 

trend, which means ARG1 has lowest expression level 

of these genes while ARG3 has highest expression level 

of them (Figure 3F). In addition, cuproptosis, 

necroptosis, ferroptosis, pyroptosis and immunogenic 

cell death, are put into analysis. As Figure 3G shows, 

single sample GSEA (ssGSEA) analysis is applied to 

calculate pathway score, and the heatmap displays 

expression distribution in each sample and ARG 

subtypes (Figure 3G). Next, K-M analysis shows that all 

of foregoing pathways are risky factors in pan-cancer 

(Figure 3H), in which necroptosis, ferroptosis, 

pyroptosis and immunogenic cell death are positive 

correlated with anoikis, while cuproptosis is negative 

correlated with anoikis (Figure 3I, 3J). 

 

Machine learning redefining pan-cancer subtypes 

basing on anoikis 

 

Firstly, WCGNA analysis is applied to identify hub-

genes. As Figure 4A, 4B show, genome is divided into 

 

 
 

Figure 2. Identification of ARG subgroups and prognosis features. (A) ARG subgroups identification process. (B) The HR of 44 

selected ARGs. (C–F) Consensus cluster analysis by ConsensusClusterPlus package to divide the TCGA cohort into three subgroups (ARG1, 
ARG2, ARG3). (G) 44 ARGs expression features amongst ARG subgroups. (H) Prognosis differences between ARG subgroups in pan-cancer 
and single type of cancer. 
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10 subgroups with different colors (Figure 4A, 4B), 

amongst which Module blue (MEblue) holds the highest 

correlation between gene expression and ARG subtype 

identification (Figure 4C, 4D). Following, top-50 hub-

gene are put into ARG grouping and GO/KEGG 

analysis, and results show that hub-gene is related to 

cell adhering, immunity and tumor process, et al. 

(Figure 4E, 4F). CytoScape recognizes the most 

important genes (SH2D3A, TJP3, SFN, GGT6, TMC4, 

TACSTD2, PRSS8, GYLTL1B, ELF3, and S100A14) 

for further analysis (Figure 4G). 

 

Hubgene-based artificial intelligence (AI) is used to 

construct ARG subtype stratification model with TCGA 

cohort. Five types of algorithms show relatively good 

performance, and the XGboost is the best one, in which 

training AUC is 1.0 and testing AUC is 0.9627 (Figure 

5A). Meantime, the prognosis is significantly different 

amongst ARG subgroups in pan-cancer (Figure 5B). To 

further verify the liability of model, independent cohort 

is applied. As Figure 5C shows, expression of hub-gene 

is obviously different amongst AI-identified ARG 

subtypes in PCAWG cohort (Figure 5C), and the ARG 

subtypes’ prognosis is also significantly different (p < 

0.0001, Figure 5D). Tumor types distribution in ARG 

subgroups is displayed in Figure 5E. In order to explore 

whether the model is also workable in single type of 

cancer, 33 single types of cancer are put into analysis. 

Here, prognosis differences occur in ACC, BLCA, 

BRCA, LUAD, PAAD, MESO, and SKCM (Figure 5F). 

For further verification, we randomly selected breast 

cancer and lung cancer into independent cohort testing. 

 

 
 

Figure 3. Tumor immunity and pathway features amongst ARG subgroups. (A) Cibersort is used to predict immune cell infiltration 

in pan-cancer. (B) HR of immune cells in pan-cancer. (C) Kaplan-Miler analysis and Univariate Cox regression of immune cells in pan-cancer. 
(D) Immune score is calculated by R4.2.0. (E) Genomic instability differences amongst ARG subgroups (data from Sangerbox: 
http://vip.sangerbox.com/home.html). (F) Immune checkpoints expression features in ARG subgroups. (G) Pathway score amongst ARG 
subgroups, calculated by ssGSEA. (H) K-M analysis of pathway score in regulating prognosis. (I, J) The relationship between anoikis score 
and the other pathway score. 

http://vip.sangerbox.com/home.html
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Figure 4. Identification of Hubgenes amongst ARG subgroups. (A, B) Dynamic tree cut and modules stratification of WCGNA. (C) 
Correlation between modules and ARG grouping. (D) The correlation between Module-blue and ARG grouping. (E) GO analysis and (F) KEGG 
analysis. (G) Interaction network of top 50 Hubgenes. 

 

 
 

Figure 5. Machine learning identifies ARG subgroup. (A) TCGA cohort is divided into testing cohort (30%) and training cohort (70%), 

five types of machine learning algorithms are applied, and ROC (Tr.AUC means training AUC; Te.AUC means testing AUC) is used to assess 
the accuracy of models. (B) K-M analysis displays prognosis features amongst ARG subgroups. (C) Expression feature of Hubgenes in TCGA 
cohort and PCAWG cohort. (D) K-M analysis displays prognosis features amongst ARG subgroups in PCAWG cohort. (E) Pan-cancer 
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distribution in ARG subgroups in PCAWG cohort. (F) AI-based ARG identification model recognizes ARG subgroups in single cancer in TCGA 
cohort, and K-M analysis shows prognosis features amongst ARG subgroups. (G) Expression feature of Hubgenes in breast cancer, whose 
data from TCGA and GEO cohorts. (H) Overall survival (OS) differences amongst ARG subgroups in GEO cohort (GSE20685, GSE42568). (I) 
Disease free survival (DFS) differences amongst ARG subgroups in GEO cohort (GSE21653, GSE25066). (J) Expression feature of Hubgenes in 
LUAD, whose data from TCGA and GEO cohorts. (K) OS differences amongst ARG subgroups in GEO cohort (GES30219, GSE231210, 
GSE37745, GSE50081). 

 

First, expression features of hub-gene in TCGA cohort 

(BRCA) and GEO cohort (GSE20685, GSE42568 and 

GSE58812) are explored (Figure 5G), and K-M analysis 

shows differences of OS and DFS amongst subgroups in 

GEO cohorts (Figure 5H, 5I). Same analysis is 

performed in long cancer (Figure 5J, 5K). 

 

AI recognizes hierarchical chemotherapy sensitivity 

subtypes in breast cancer 

 

In order to explore whether ARG-based model can 

identify drug sensitivity, OncoPredict algorithm is 

applied to calculate drug score. As Figure 6A shows that 

EPI, CTX, DTX, PTX, DDP, GEM, 5-Fu, NVB. 

Olaparib and TAM are selected, and which display 

significant difference amongst ARG subgroups (Figure 

6B). Then, GEO cohorts (GSE20685, GSE42568, 

GSE58812) are applied to verify the drug stratification. 

As results show, same significant trends are observed in 

EPI, DTX, PTX, DDP, GEM, 5-Fu, NVB, and Olaparib 

(p < 0.05, Figure 6C), while no statistical significance 

exists in CTX and TAM (Figure 6C). Then, the role of 

drug score in breast cancer prognosis is explored, and it 

shows that 5-Fu, CTX, GEM, Olaparib and TAM 

are statistically significant risk factors (Figure 6D). 

Furthermore, the most sensitive drugs 

 

 
 

Figure 6. AI-based drug sensitivity stratification. (A) Correlation between drug score and anoikis pathway score, in which selected 

one are EPI, CTX, DTX, PTX, DDP, GEM, 5-Fu, NVB, Olaparib, and TAM (data from TCGA). (B) Drug score differences amongst ARG subgroups 
of BRCA (* means p < 0.05, ** means p < 0.01, *** means p < 0.001, data from TCGA). (C) Drug score differences amongst ARG subgroups of 
BRCA (data from GES20685, GSE42568, GSE58812). (D) HR of drug scores in TCGA cohort and GEO cohort of BRCA. 
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are also filtered, and Taselisib, Doramapimod, 

AZD8186, Ibrutinib and ZM447439 are the top5 drugs 

(Supplementary Figure 1). 

 

TJP3 promotes drug resistance and tumor 

metastasis in TNBC 

 

To assess the roles of anoikis in regulating drug 

resistance and prognosis in breast cancer, an important 

analysis is performed. It ranks the importance of hub-

gene in ARG subgroups identification, and the top3 

genes are SFN, TJP3 and TACSTD2 (Figure 7A), 

amongst while only TJP3 (HR = 1.95, p = 1.3e-8) is 

prognosis-related gene in breast cancer (Figure 7B). 

Therefore, TJP3 is finally selected for further analysis. 

Results show that higher expression level of TJP3 are 

accompanied with worse clinical outcome in TNBC 

cohort, chemotherapy treatment, and endocrine therapy 

(data from Kaplan Meier PlotteR, Figure 7C–7E). In 

addition, RNA expression of TJP3 is higher in BRCA, 

CESC, COAD, OV, PAAD, READ, THYM, UCEC and 

UCS when compared with adjacent tissues (Figure 7F). 

IHC of TJP3 is collected from The Human Protein Atlas 

(THPA) and the results show that BRCA tissues hold 

higher expression level of TJP3 as compared with 

adjacent normal tissues (Figure 7G, 7H), same result is 

observed in UALCAN (The University Alabama at 

Birmingham Cancer data analysis Portal) breast cohort 

(Figure 7I) and GEO cohort (GSE10780) (Figure 7J). 

Finally, the correlation between TJP3 expression and 

drug score is explored, and it displays that TJP3 level is 

positive correlated with EPI (r = 0.20, p = 4.7e-6), CTX 

(r = 0.26, p = 1.5e-9), DTX (r = 0.14, p = 0.0014), DDP 

(0.16, p = 1.6e-4), GEM (r = 0.093, p = 0.031), NVB 

(0.095, p = 0.028), Olaparib (r = 0.24, p = 0.028) and 

TAM (r = 0.28, p = 4.6e-11) (Figure 7K). 

 

 
 

Figure 7. TJP3 is a pivotal hubgene in regulating drug tolerance. (A) Importance analysis in XGboost, in which SFN, TJP3, TACSTD2, 

GGT6, TMC4, PRSS8, S100A14, SH2D3A, GYLTL1B, and ELF3. (B) K-M analysis of S100A14, SH2D3A, TJP3, and TMC4 in regulating prognosis. 
(C) The roles of TJP3 in regulating prognosis in TNBC cohort, (D) chemotherapy cohort, and (E) endocrinotherapy cohort. (F) TJP3 expression 
in pan-cancer and adjacent tissues. (G) The expression level of TJP3 in adjacent tissues and breast cancer tissues (data from THPA). (H) 
Statistical results of TJP3 expression in THPA cohort. (I) TJP3 expression level in TNBC and corresponding adjacent tissues. (J) TJP3 
expression level in IDC and corresponding adjacent tissues, data from GSE10780. (K) The correlation between the expression of TJP3 and 
drug scores (EPI, CTX, DTX, PTX, DDP, GEM, 5-Fu, NVB, Olaparib, TAM). *p < 0.05, **p < 0.01, ***p < 0.001. 
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To further verify the roles of TJP3 in regulating tumor 

metastasis and drug tolerance, in vitro experiments are 

explored. siRNA is used to down-regulate the 

expression of TJP3 and recombinant plasmid is used to 

up-regulated TJP3 expression. As results show, down-

regulation of TJP3 inhibits the migrated cells area about 

30%-decreasing, as compared with control group 

(Figure 8A–8C), while over-expression of TJP3 

promotes cell migration about 20%-increasing (Figure 

8A–8C). Meantime, Alive&dead assay is performed, 

and the results show that down-regulation of TJP3 

enhances the toxicity of GEM in breast cancer cells (p < 

0.05, Figure 8D–8F). Furthermore, down-regulation of 

TJP3 enhances GEM-induced cell toxicity about 20%-

increasing (p < 0.05, Figure 8G–8I). Based on the above 

results, epithelial-mesenchymal transition (EMT) and 

cell apoptosis are explored after changing the cellular 

expression of TJP3. As results show, siRNA down-

regulates TJP3 expression about a 40% decreasing (p < 

0.05), which leads up-regulation of E-cad (a 30% 

increasing, p < 0.01) and down-regulation of MMP7 

(a 50% decreasing, p < 0.05), Twist1 (a 70% 

decreasing, p < 0.01) and Zeb1 (a 75% decreasing, p < 

0.001) (Figure 9F, 9G). On contrary, over-expression of 

TJP3 (p < 0.001) leads down-regulation of cleaved-

caspase3 and the ratio of cleaved-caspase3/caspase3 

(more than a 50% decreasing, p < 0.01) (Figure 9H, 9I). 

 

TJP3 is a T cell immunity regulator for breast 

cancer 

 

To further explore the relationship between TJP3 and T 

cell immunity, we apply bulky data analysis. As the 

Figure 9A shows, high-expression of TJP3 predicts 

lower immunescore and estimatescore (p < 0.05, Figure 

9A), and the CD8 T cells infiltration is also lower in 

 

 
 

Figure 8. TJP3 regulates migration and drug tolerance in TNBC. (A) Transwell assay displays the role TJP3 in regulating cell 

migration. Statistical analysis shows migrated cell area in (B) 100-fold and (C) 200-fold field of view by ImageJ. (D) Alive&dead assay, in 
which (E) CAM means alive cells with green and (F) PI means dead cells with red. (G) Edu assay shows the role of TJP3 in regulating cell 
proliferation in (H) 100-fold and (I) 200-fold field of view by ImageJ. *p < 0.05, **p < 0.01, ***p < 0.001. 



www.aging-us.com 12900 AGING 

TJP3 high-expression group (Figure 9B). However, the 

correlation between the TJP3 and CD8 T cell infiltration 

is not definitive predicted by TIMER2.0 (Figure 9C). In 

order to uncover the underlying roles of TJP3 in 

regulating T cell immunity, we apply clinical trial 

cohort. As the Figure 9D, 9E show, higher expression of 

 

 
 

Figure 9. TJP3 regulates GEM-induced cell apoptosis and EMT process. (A) Immune Score predicted by SangerBox 
(http://vip.sangerbox.com/login.html). (B) T cell infiltration predicted by SangerBox (http://vip.sangerbox.com/login.html). (C) Immune cell 
infiltration predicted by TIMER2.0 (http://timer.comp-genomics.org/timer/). (D) Anti-PD1 prognosis in TJP3 low and high expression groups. (E) 
Anti-PD1 response differences between TJP3 low and high expression groups. (F) Si-RNA down-regulates TJP3 expression, and the 
corresponding down-stream targets expression features. (G) Statistical analysis, normalized by GAPDH. (H) Recombinant plasmid up-regulation 
TJP3 expression, and the corresponding down-stream targets expression features. (I) Statistical analysis, normalized by GAPDH. *p < 0.05, 
**p < 0.01, ***p < 0.001. 

http://vip.sangerbox.com/login.html
http://vip.sangerbox.com/login.html
http://timer.comp-genomics.org/timer/
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TJP3 predicts better prognosis in anti-PD1 therapy 

(Figure 9D), and TJP3 high-expression group 

accompanies with higher proportion of anti-PD1 

response (CR and PR) (Figure 9E). 

 

Based on the above results, in vitro experiments are 

performed to show the relation between TJP3 and 

immune escape. As results show, down-regulation of 

TJP3 leads down-regulation of PD-L1 (a 30% decrease, 

p < 0.01) (Figure 9F, 9G), while over-expression of 

TJP3 (p < 0.001) makes up-regulation of PD-L1 (Figure 

9F, 9H). 

 

Construction of ARGs-based prognosis prediction 

model of breast cancer 

 

ARGs show their ability in identifying drug sensitivity 

subgroups and prognosis differences, above. Here, 

prognosis prediction by ARGs is also explored. Firstly, 

LASSO analysis, Univariate Cox regression and 

Multivariate Cox regression are applied to screen out 

genes for constructing multi-gene risk model (TCGA 

cohort), in which BCL2, BRD4, CASP7 and TP53I11 are 

selected (Figure 10A, 10B). The concordance index of 

the model is 0.69 (p = 9.2527e-9, Figure 10B). Then, 

ROC and K-M analysis are performed, and the results 

show that only 1-year survival prediction AUC is greater 

than 0.8 (Figure 10C), and all of cohorts (training cohort, 

testing cohort, and whole cohort) show prognosis 

differences between high riskscore and low riskscore 

groups (Figure 10D). So, it’s necessary to add clinical 

features to improve the efficiency of risk model. 

As Figure 10E shows, Multivariate Cox regression 

selects riskscore, clinical stage, age and N stage to 

construct a nomogram, and the concordance index is 

0.77 (p = 1.0657e-17, Figure 10E). Following, 

nomogram is visualized by R4.2.0, which is displayed 

in Figure 10F. To further verify the prediction efficiency 

of monogram, TCGA cohort and GEO cohorts are  

both put into ROC analysis. As the results show, the 

AUC value is obviously improved as compared  

with nomogram which without clinical features 

 

 

 
Figure 10. ARGs-based nomogram. (A) LASSO analysis and (B) Multivariate Cox regression screen out five ARGs (BCL2, BRD4, CASP7, 

CASP9, TP53I11) to construct prognosis prediction model. (C) ROC analysis of prognosis prediction model in training cohort, testing cohort, 
and all cohort (TCGA data). (D) K-M analysis of multi-gene riskscore model. (E) Multivariate Cox regression selects riskscore, clinical state, 
age and N stage as components to construct monogram (data from TCGA). (F) Visualization of monogram. (G) ROC analysis of monogram in 
TCGA cohort and GEO cohort. 
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(Figure 10G). Besides, calibration analysis is also 

performed (Figure 11A–11E). 

 

DISCUSSION 
 

Breast cancer develops to be a top1 incidence tumor 

type in human being now, which leads tumor-related 

death more than 600,000 per year [3]. Although the 

development of anti-HER2 therapy and novel antibody–

drug conjugates (ADC) bring a large improvement of 

clinical outcome in breast cancer, about 30% of breast 

cancer turns into advanced stage, especially for TNBC 

[4]. Recently, immunotherapy showed an exciting 

progression in prolonging events-free survival (EFS) in 

early stage of TNBC (KENOTE-522 trial), which with 

positive expression of PD-L1 [16]. Thus, gene-

detection-based individualized therapy holds a develop-

ing impact against advanced breast cancer. 

 

Multi-gene-based risk model is reported to be applied in 

assessing prognosis and immunotherapy in various 

types of cancer. Recently, anoikis-related genes are 

considered as a tool to identify tumor immunity 

subtypes in liver cancer, lung cancer, and colorectal 

cancer [17–19]. In addition, anoikis is already reported 

to participate in breast cancer invasion before, such as 

HCXIP-mediated anoikis resistance leads increased 

ability of migration in breast cancer cells [20, 21]. 

 

 
 

Figure 11. Calibration of nomogram. Calibration of (A) OS-prediction, (B) disease stable survival (DSS), (C) progression free survival 

(PFS) in monogram (data from TCGA). Calibration of (D) OS-prediction and (E) PFS in monogram (data from GEO). 
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Regretfully, the role of anoikis in drug sensitivity is still 

not clear yet now. A previous study shows that anoikis-

resistant osteosarcoma is accompanied by enhanced 

drug tolerance (doxorubicin and cisplatin) [22]. In our 

study, we found ARGs are closely involved in drug 

resistance. As we are constructing ARGs-based AI 

model, we find AI identified ARG subgroups exist 

significant differences of drug score, in which ARG-1 

subpopulation get highest drug score whereas ARG-3 

subpopulation gets lowest drug score (Figure 6B, 6C). 

This implies patients with expression features like 

ARG-1 subpopulation probably have low response to 

chemotherapy, such as EPI, DTX, CTX, or PTX, et al. 

Besides, ARGs-based AI model successfully divides 

breast cancer into subgroups with prognostic 

differences, which is verified in independent cohorts in 

GEO data (Figure 5F, 5H, 5I). Based on pathway 

analysis, it shows that Hubgenes close to ARG subtype 

identification are involved into immunity process, such 

as interleukin-10 (IL10) and IL17 signaling pathways 

(Figure 4E, 4F), and are also involved into Wnt 

signaling pathway and Hippo signaling pathway, both 

of which participate in drug tolerance process in breast 

cancer [23–26]. 

 

TJP3 (tight junction protein 3), also named ZO-3, is 

considered as a cell scaffolding role which plays roles 

in epithelial differentiation [27]. Our study screens out 

TJP3 as a pivotal role in ARG subtype identification 

(Figure 7A). TJP3 is reported to participate in drug 

tolerance in long non-coding RNA NEAT1-mediaed 

tumor invasion in ovarian cancer [28], and it is 

involved in treatment sensitivity of FPDHP in human 

cancer cells [29]. In this study, we find up-regulation 

of TJP3 leads enhanced cell migration whereas down-

regulation of it leads weaker migration ability and 

enhanced GEM-induced cell toxicity in TNBC cells 

(Figure 8A, 8D). Furthermore, down-regulation of 

TJP3 exactly reverses EMT, which performs as up-

regulation of E-cad, down-regulation of MMP7, 

Twist1 and Zeb1 (Figure 9A, 9B). On contrary, up-

regulation of TJP3 weakens GEM-induced cell 

apoptosis, such as cleaved caspase3 (Figure 9C, 9D). 

In addition, our research displays that TJP3 is 

overexpression in BRCA, CESC, COAD, OV, PAAD, 

READ, THYM, UCEC and UCS (Figure 7F). 

 

CONCLUSION 
 

In this study, we explore the roles of anoikis-related 

genes in identifying tumor subgroups, assessing drug 

sensitivity and tumor immunity escape. Here, we 

consider that (1) ARGs-based AI model is useful to 

assess drug sensitivity in breast cancer; (2) ARGs-

based monogram has potential merits for prognosis 

prediction in breast cancer; (3) An anoikis gene TJP3 

promotes chemoresistance, cell migration and 

immunity escape in breast cancer by regulating EMT 

and PD-L1 expression. However, this paper doesn’t 

uncover the deeper investigation of the mechanisms of 

how TJP3 regulates PD-L1 and EMT process, it’s our 

further work. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figure 
 

 
 

Supplementary Figure 1. Drug sensitivity. 199 kinds of drug are analyzed, 196 of which hold significant difference amongst ARG subgroup 

(tagged with green and grey). Taselisib, Doramapimod, AZD8186, Ibrutinib and ZM447439 are top 5 sensitive drugs, while UMI-77, 
GSK1904529A and TAF1 with no significant differences amongst ARG subgroup. 
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