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INTRODUCTION 
 

There is an aging population around the world. Aging is 

a complex phenomenon that refers to the process of 

physical deterioration as the population ages [1]. As a 

major organ of body movement and metabolism, 

skeletal muscle is also highly plastic [2]. Its mass 

decreases as a result of many factors, including aging, 

immobilization, diseases and malnutrition [3, 4]. In the 

elderly, muscle mass decreases causing sarcopenia, 

functional impairment, tissue disorganization, loss of 

mass and disability [5, 6], which also increases 

morbidity and mortality [7]. Sarcopenia mainly occurs 

in the elderly because of aging [8, 9], which is the 

leading cause of frailty among elders [10]. It is 

characterized by progressive and generalized loss of 

muscles, strength, and function, resulting in fracture, 

physical disability, and death [11, 12]. In this condition, 

muscle mass and strength gradually decrease, leading to 

an increased risk of falls and permanent disability [13]. 

It is also becoming an increasingly important health 

concern worldwide [14]. Approximately 5%–13% of 

people aged 60 or over suffer from sarcopenia, while 

50% of people aged 80 or older suffer from the disease 

[15, 16]. 

 

As a complex process, skeletal muscle aging is affected 

by multiple signaling pathways [17]. The regulation of 

the process involves the participation of myogenic 

regulatory factors (MRFs), such as myogenin (MyoG) 

and myogenic factor 5 (Myf5), as well as myogenic 

differentiation D (MyoD) [18–20]. These MRFs, in 

conjunction with their co-regulator, myocyte enhancer 

factor 2C (MEF2C), play significant roles in the process 

of myogenesis. The expression of MRFs is controlled by 

Wingless-type (Wnt) signals [21]. Specifically, Wnt5a, a 

member of the Wnt family, is responsible for regulating 

MyoD and Myf5 during myogenesis [22, 23]. However, 

skeletal muscle myogenesis and differentiation remain 

poorly understood molecular mechanisms. 

 

Long non-coding RNAs (lncRNAs) are a subclass of 

RNA molecules exceeding 200 nucleotides in length, 

exhibiting limited potential for protein coding [24, 25]. 
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ABSTRACT 
 

Sarcopenia induced by muscle aging is associated with negative outcomes in a variety of diseases. Long non-
coding RNAs are a class of RNAs longer than 200 nucleotides with lower protein coding potential. An increasing 
number of studies have shown that lncRNAs play a vital role in skeletal muscle development. According to our 
previous research, lncRNA GPRC5D-AS1 is selected in the present study as the target gene to further study its 
effect on skeletal muscle aging in a dexamethasone-induced human muscle atrophy cell model. As a result, 
GPRC5D-AS1 functions as a ceRNA of miR-520d-5p to repress cell apoptosis and regulate the expression of 
muscle regulatory factors, including MyoD, MyoG, Mef2c and Myf5, thus accelerating myoblast proliferation 
and differentiation, facilitating development of skeletal muscle. In conclusion, lncRNA GPRC5D-AS1 could be a 
novel therapeutic target for treating sarcopenia. 
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These lncRNAs are situated within intergenic regions, 

distinct from annotated coding genes [26]. Over the past 

decade, mounting evidence has demonstrated that 

lncRNAs play crucial roles in various significant 

biological processes, such as cell fate determination, 

cellular differentiation, regulation of the cell cycle and 

proliferation, apoptosis, and aging, through their 

interactions with essential proteins [27–29]. Notably, a 

strong association has been observed between the 

expression of lncRNAs and muscle proliferation, 

differentiation, and atrophy. For instance, the up-

regulation of the long non-coding RNA (lncRNA) 

Atrolnc-1 in catabolic conditions has been observed to 

enhance muscle atrophy by augmenting NF-κB activity 

[30]. Similarly, the lncRNA Chronos has been found to 

be upregulated with advancing age, and its inhibition 

has been shown to induce myofiber hypertrophy both 

in vitro and in vivo [31]. Furthermore, other lncRNAs 

such as Neat1, Malat1, Sra, and Meg3 exhibit distinct 

expression patterns during myoblast differentiation, 

suggesting their crucial involvement in muscle fiber 

development and maturation [32]. Several studies have 

proposed that lncRNAs serve as microRNA sponges, 

thereby playing significant roles in various vital cellular 

processes, but there is not much information available 

on whether competing endogenous RNAs (ceRNAs) 

play a role in muscle aging [29, 33]. 

 

As a result, it is imperative to investigate the molecular 

mechanisms by which lncRNA involves in aging-

related diseases in order to combat the problem in 

today’s aging society. Our earlier report identified that 

three candidate lncRNAs (GPRC5D-AS1, AC004797.1 

and PRKG1-AS1) might play vital roles during the 

aging process of skeletal muscles [2]. In this study, 

lncRNA GPRC5D-AS1 was selected as the target gene 

to further study its effect on skeletal muscle aging in a 

dexamethasone-induced human muscle atrophy cell 

model. Currently, most studies on lncRNA profiling 

have used aged mouse models to date. We utilized  

a dexamethasone-induced human muscle atrophy cell 

model, which was considered to be a relatively un-

common approach. Consequently, the identification and 

functional characterization of lncRNAs associated with 

muscle aging in this study holds great promise for the 

development of innovative therapeutic interventions. 

This investigation presents a potentially groundbreaking 

strategy for addressing sarcopenia. 

 

RESULTS 
 

lncRNA GPRC5D-AS1 restored the proliferation 

level of atrophic myoblasts 

 

In our previous report, we conducted lncRNA 

sequencing on skeletal muscle samples obtained from 

elderly and young individuals, and found that lncRNA 

GPRC5D-AS1 was significantly decreased during 

skeletal muscle aging process. Furthermore, we 

validated our findings using clinical samples and a 

dexamethasone-induced human muscle atrophy cell 

model [2]. In this study, we further studied its effect on 

skeletal muscle aging to characterize underlying 

mechanisms. FISH analysis demonstrated that 

GPRC5D-AS1 exhibited predominant expression in the 

cytoplasmic region (Figure 1A). In order to investigate 

the role of GPRC5D-AS1 on myoblasts, we constructed 

an overexpressing vector containing GPRC5D-AS1. 

The efficiency of overexpression was examined by 

qRT-PCR (Figure 1B). 

 

The proliferation of cells is controlled by the cell cycle, 

which consists of various phases [34, 35]. Analysis of 

the cell cycle demonstrated the decreases in the 

proportion of G0/G1 and S phases, and an increase in 

the proportion of G2/M phase in the atrophied skeletal 

muscle myoblasts (Figure 1C and Supplementary 

Table 1). Notably, the overexpression of GPRC5D-AS1 

in model cells resulted in a significant increase in cells 

in the G0/G1 phase and a decrease in cells in the G2/M 

phase, which suggested that overexpression of 

GPRC5D-AS1 restored the cell cycle of the atrophic 

cells to a situation similar to that of the control  

group. These findings suggested that GPRC5D-AS1 

potentially exerted a positive influence on the 

regulation of the transition in the skeletal muscle 

myoblast cycle. 

 

Overexpression of GPRC5D-AS1 enhanced cell 

viability and reduced cell apoptosis in atrophy cell 

 

Next, we investigated whether overexpression of 

GPRC5D-AS1 influenced cell proliferation and cell 

apoptosis. In order to measure cell viability, CCK-8 

assays were performed at different time points. As 

determined by the CCK-8 assay, significant reductions 

in cell viability were observed in the atrophied skeletal 

muscle myoblasts compared with the control group at 

48 and 72 hours. Notably, overexpression of GPRC5D-

AS1 could significantly increase cell viability, which 

reversed reduction to varying degrees in model cells 

(Figure 2A). 

 

Besides, apoptosis rates were significantly high in the 

model group based on flow cytometric detection of 

apoptotic cells. The apoptotic rate of the 

overexpression group presented a drastic decline in 

comparison with model group, which suggested that 

GPRC5D-AS1 overexpression could inhibit atrophy 
cell apoptosis (Figure 2B). The quantitative analysis 

of the results of cell apoptosis was shown in 

Figure 2C. 
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Figure 1. GPRC5D-AS1 restored the proliferation level of atrophic myoblasts. (A) FISH assay was utilized to identify the subcellular 

localization of long non-coding RNA (lncRNA) GPRC5D-AS1 in cells (200 ×). The red fluorescence represents GPRC5D-AS1, and the blue 
fluorescence represents the cell nucleus. Quantification of fluorescence intensities (Gray Value) by ImageJ software. (B) The efficiency of 
overexpression vector encoding GPRC5D-AS1 was examined by qRT-PCR. Human skeletal muscle myoblasts (HSMM) were the control 
group. 15 mM Dexamethasone (Dex) was added in HSMM to establish atrophy cell model (model group). Empty plasmid (NC group) and 
GPRC5D-AS1-OE plasmid (lncRNA-OE group) were transfected into atrophy cell model. Differences among groups were analyzed using 
ANOVA with Bonferroni’s multiple comparison test. *P < 0.05, **P < 0.01 compared with control group; #P < 0.05, ##P < 0.01 compared with 
model group; &P < 0.05, &&P < 0.01 compared with NC group. (C) Effects of GPRC5D-AS1 overexpression on cell cycle progression using flow 
cytometry after propidium iodide staining. Representative images were shown. *P < 0.05, **P < 0.01 compared with control group; #P < 
0.05, ##P < 0.01 compared with model group; &P < 0.05, &&P < 0.01 compared with NC group. 
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Overexpression of GPRC5D-AS1 influenced the 

expression level of muscle regulatory factors 

 

Our experiments validated the effect of GPRC5D-AS1 

on myogenesis and differentiation in skeletal muscle by 

detecting the levels of MyoD1, Myf5, Mef2c and MyoG 

mRNA and protein expression. Based on Figure 3, the 

dexamethasone-induced muscle atrophy cell model 

showed significant decreases in these four factors. Their 

expression at mRNA level were enhanced by 

transfection with GPRC5D-AS1-OE (Figure 3A). The 

results obtained by Western blot were consistent with 

qRT-PCR. Western blot analysis indicated that the 

expression of MyoD1, MyoG, Mef2c and Myf5 were 

reduced in model group compared with control. And 

these muscle regulatory factors expression were 

upregulated in the GPRC5D-AS1-OE group (Figure 3B, 

3C). The above results indicated that GPRC5D-AS1 

regulated myoblast differentiation. 

 

Prediction and validation of miR-520d-5p as one of 

target miRNAs of GPRC5D-AS1 

 

First, we predicted the potential interactive miRNAs  

of GPRC5D-AS1 using the Starbase database 

(http://starbase.sysu.edu.cn/index.php), and chose 

 

 
 

Figure 2. The effect of overexpression of GPRC5D-AS1 on cell viability and cell apoptosis. (A) Cell viability was assessed by CCK-8 

assay. HSMM was control group. Dex (15 mM) was added in HSMM to establish atrophy cell model (model group). Empty plasmid (NC 
group) and GPRC5D-AS1-OE plasmid (lncRNA-OE group) were transfected into atrophy cell model and incubated for 24 h, 48 h and 72 h. 
*P < 0.05, **P < 0.01 compared with control group; #P < 0.05, ##P < 0.01 compared with model group; &P < 0.05, &&P < 0.01 compared with 
NC group. (B) Cell apoptosis was assessed by flow cytometry. Groups were set as previously mentioned. Empty plasmid and GPRC5D-AS1-
OE plasmid were transfected into atrophy cell model and incubated for 48 h. (C) Quantitative analysis of cell apoptosis. *P < 0.05, **P < 0.01 
compared with control group; #P < 0.05, ##P < 0.01 compared with model group; &P < 0.05, &&P < 0.01 compared with NC group. 

http://starbase.sysu.edu.cn/index.php
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miR-520d-5p, miR-153-3p, miR-524-5p as the 

candidate miRNAs to qRT-PCR verification. qRT-PCR 

results indicated that GPRC5D-AS1 expression was 

down-regulated after dexamethasone-induced human 

muscle atrophy. The expression of miR-520d-5p, miR-

524-5p and miR-153-3p were upregulated to varying 

degrees. Of these, miR-520d-5p exhibited a marked 

dose-dependent tendency (Figure 4A). 

 

Then, to further verify whether miR-520d-5p was 

targeted by GPRC5D-AS1, a luciferase reporter vector 

was constructed by ligating with GPRC5D-AS1-WT 

and GPRC5D-AS1-MUT. The findings indicated a 

significant decrease in luciferase activity in the groups 

co-transfected with GPRC5D-AS1-WT and miR-520d-

5p (Figure 4B). Moreover, we investigated the effect of 

GPRC5D-AS1 overexpression on the miR-520d-5p. 

Quantitative real-time PCR result demonstrated that 

miR-520d-5p significantly upregulated in the 

dexamethasone-induced muscle atrophy cell model. Its 

expression was reduced at mRNA level after trans-

fection with GPRC5D-AS1-OE plasmid (Figure 4C). 

 

 
 

Figure 3. The effect of overexpression of GPRC5D-AS1 on muscle regulatory factors. (A) qRT-PCR analyzed gene expression of 

Myf5, MyoG, MyoD and Mef2c. HSMM was control group. Dex (15 mM) was added in HSMM to establish atrophy cell model (model group). 
Empty plasmid (NC group) and GPRC5D-AS1-OE plasmid (lncRNA-OE group) were transfected into atrophy cell model and incubated for 
48 h. *P < 0.05, **P < 0.01 compared with control group; #P < 0.05, ##P < 0.01 compared with model group; &P < 0.05, &&P < 0.01 compared 
with NC group. (B) Protein expression of Myf5, MyoG, MyoD and Mef2c detected by Western blot. Groups were set as previously 
mentioned. Empty plasmid and GPRC5D-AS1-OE plasmid were transfected into atrophy cell model and incubated for 48 h. (C) Quantitative 
analysis of western blot. *P < 0.05, **P < 0.01 compared with control group; #P < 0.05, ##P < 0.01 compared with model group; &P < 0.05, 
&&P < 0.01 compared with NC group. 
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These results provided evidence that miR-520d-5p is 

among the targeted miRNAs of GPRC5D-AS1. 

 

lncRNA GPRC5D-AS1 interacted with miR-520d-5p 

to promote myoblast proliferation 

 

To understand how GPRC5D-AS1 and miR-520d-5p 

affected atrophy cell myogenesis and differentiation, we 

treated human muscle atrophy model cells with empty 

plasmid, GPRC5D-AS1-OE plasmid, MYOD1-OE 

plasmid, associated miRNA control, miR-520d-5p 

mimic and inhibition. qRT-PCR was used to verify the 

transfection effect (Figure 5A). At the same time, we 

observed that an addition of miR-520d-5p mimic could 

decrease expression of GPRC5D-AS1. The GPRC5D-

AS1 expression was significantly enhanced upon 

addition of miR-520d-5p inhibitor. The above data 

indicated the inter-regulation between GPRC5D-AS1 

and miR-520d-5p. 

By examining the expression of muscle regulatory 

factors, we found that overexpression of GPRC5D-AS1 

increased the expression of MyoD1, MyoG, Mef2c and 

Myf5, and this phenomenon can be reversed by adding 

miR-520d-5p mimic, making the expression levels 

lower. It is noteworthy that miR-520d-5p inhibitor 

could also enhance MyoD1 and Wnt5a expression. 

Overexpression of MYOD1 could mildly increase other 

muscle regulatory factors expression at different 

degrees, including MyoG and Mef2c (Figure 5B). 

 

lncRNA GPRC5D-AS1 regulated cell viability and 

cell apoptosis by miR-520d-5p 

 

Next, we further examined the effects of GPRC5D-

AS1-mediated miR-520d-5p on atrophy cell viability 

and apoptosis. The CCK-8 assay revealed that over-

expression of GPRC5D-AS1 increased the cell activity, 

and the addition of miR-520d-5p mimic reverse 

 

 
 

Figure 4. Prediction and validation of miR-520d-5p as one of target miRNAs of GPRC5D-AS1. (A) qRT-PCR analyzed gene 

expression level of GPRC5D-AS1, miR-520d-5p, miR-153-3p and miR-524-5p. Different concentrations of Dex (5 mM, 10 mM and 15 mM) 
were added in HSMM and incubated for 48 h. Control: HSMM; T-1: 5 mM Dex; T-2:10 mM Dex; T-3:15 mM Dex. *P < 0.05, **P < 0.01 
compared with control group. (B) NC mimic and miR-520d-5p mimic were co-transfected with plasmid psiCHECK2-GPRC5D-AS1-WT 
luciferase vector or psiCHECK2-GPRC5D-AS1-MUT vector into in human skeletal muscle myoblasts, and the normalized relative luciferase 
activities (Renilla/firefly) were analyzed. *P < 0.05. (C) qRT-PCR analyzed gene expression of miR-520d-5p. HSMM was control group. Dex 
(15 mM) was added in HSMM to establish atrophy cell model (model group). Empty plasmid (NC group) and GPRC5D-AS1-OE plasmid 
(lncRNA-OE group) were transfected into atrophy cell model and incubated for 48 h. *P < 0.05, **P < 0.01 compared with control group; #P < 
0.05, ##P < 0.01 compared with model group; &P < 0.05, &&P < 0.01 compared with NC group. 
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the phenomenon, making the cell activity significantly 

lower than the control group at 72 hours. In addition, 

miR-520d-5p inhibitor and MYOD1 overexpression 

could also mildly enhance cell activity. The results 

above indicated that GPRC5D-AS1 enhanced cell 

activity by inhibiting miR-520d-5p. This regulation 

may be related to the expression of MYOD1 (Figure 

6A). 

 

 
 

Figure 5. LncRNA GPRC5D-AS1 interacted with miR-520d-5p to promote myoblast proliferation. (A, B) qRT-PCR analyzed gene 

expression of GPRC5D-AS1, miR-520d-5p, MyoD1, MyoG, Mef2c, Myf5 and Wnt5a. 15 mM Dex was added in human skeletal muscle 
myoblasts to establish atrophy cell model (control group). Empty plasmid (NC group), GPRC5D-AS1-OE (lncRNA-OE group), GPRC5D-AS1-OE 
+ miR-520d-5p mimic (lncRNA-OE + mimic group), miRNA inhibitor control (inhibitor NC group), miR-520d-5p inhibitor (miRNA inhibitor 
group) or MYOD1-OE plasmid (mRNA-OE group) was transfected into atrophy cell model and incubated for 48 h. *P < 0.05, **P < 0.01 
compared with control group; #P < 0.05, ##P < 0.01 compared with NC group; &P < 0.05, &&P < 0.01 compared with lncRNA-OE group; %P < 
0.05, %%P < 0.01 compared with inhibitor NC group. 
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Apoptosis assay showed that GPRC5D-AS1 over-

expression, miR-520d-5p inhibition or MYOD1 mRNA 

overexpression all significantly inhibited apoptosis; 

miR-520d-5p mimic had a significant negative effect  

on apoptosis inhibition in GPRC5D-AS1 over-

expression group, and finally induced a significant 

 

 
 

Figure 6. LncRNA GPRC5D-AS1 regulated cell viability and cell apoptosis by miR-520d-5p. (A) Cell viability was assessed by CCK-8 
assay. 15 mM Dex was added in HSMM to establish atrophy cell model (control group). Empty plasmid (NC group), GPRC5D-AS1-OE 
(lncRNA-OE group), GPRC5D-AS1-OE + miR-520d-5p mimic (lncRNA-OE + mimic group), miRNA inhibitor control (inhibitor NC group), miR-
520d-5p inhibitor (miRNA inhibitor group) or MYOD1-OE plasmid (mRNA-OE group) was transfected into atrophy cell model and incubated 
for 24 h, 48 h and 72 h. *P < 0.05 compared with control group; #P < 0.05 compared with NC group; &P < 0.05, &&P < 0.01 compared with 
lncRNA-OE group. (B) Cell apoptosis was assessed by flow cytometry. Groups were set as previously mentioned. Six different plasmids were 
transfected into atrophy cell model and incubated for 48 h. (C) Quantitative analysis of cell apoptosis. *P < 0.05, **P < 0.01 compared with 
control group; #P < 0.05, ##P < 0.01 compared with NC group; &P < 0.05, &&P < 0.01 compared with lncRNA-OE group; %P < 0.05, %%P < 0.01 
compared with inhibitor NC group. 
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increase in cell apoptosis (Figure 6B). The quantitative 

analysis of the results of cell apoptosis is shown in 

Figure 6C. 

 

DISCUSSION 
 

Skeletal muscle has been recognized as a primary target 

tissue in the context of aging and aging-related diseases. 

Sarcopenia is one of the most common age-related 

conditions. As a result, it is necessary to investigate the 

molecular mechanisms by which skeletal muscle 

regulatory factor controls age-related pathologies in 

order to combat the problem in a fast-aging society. 

 

lncRNAs have emerged as a novel class of regulators in 

skeletal muscle physiology [36–38]. Recent transcript-

tome analyses on a global scale have revealed a 

multitude of lncRNAs that play significant roles in  

the regulation of skeletal muscle formation and 

differentiation, underscoring the importance of lncRNAs 

in the process of myogenesis [3]. Dysregulated 

expression of lncRNAs has been observed in various 

muscular disorders, including sarcopenia [39]. Further 

research is required to clarify the molecular 

mechanisms of non-coding RNAs underlying aging-

related sarcopenia, to better understand their huge 

potential as therapeutic targets and biomarkers for 

sarcopenia. Our previous experimental findings have 

provided evidence for the essential involvement of 

lncRNAs in the regulation of skeletal muscle atrophy 

and indicated three candidate lncRNAs [2]. As a result, 

lncRNA GPRC5D-AS1 is selected in the present study 

as the target gene to further study its effect on skeletal 

muscle aging. 

 

Cell proliferation inhibition usually results from cell 

cycle arrest, among the G2 arrest has a pivotal role in 

senescence [40, 41]. While doing cell cycle analysis on 

three different lines of normal human fibroblasts, 

Zhiyong Mao et al. observe that a large fraction of 

senescent cell population is arrested in G2 [42]. 

Bortezomib inhibits C2C12 growth by G2/M phase cell 

cycle arrest and apoptosis [43]. The data by Jun-Hui 

Song et al. demonstrate that Bisphenol A inhibits cell 

proliferation by inducing G2/M cell cycle arrest via the 

ATM-CHK1/CHK2–CDC25c-CDC2 signaling pathway 

[44]. Our data indicated that a significant number in the 

atrophied skeletal muscle myoblasts of cells were 

arrested at G2/M phase, and overexpression of 

GPRC5D-AS1 could promote cell proliferation by 

decreasing G2/M phase arrest. Considering that 

apoptosis of skeletal muscle cells is believed to be a 

contributing factor to muscle atrophy [45], we 

hypothesized that GPRC5D-AS1 may exert an 

inhibitory effect on the apoptosis of skeletal muscle 

cells. This hypothesis was subsequently validated. 

When GPRC5D-AS1 was overexpressed in atrophy 

cells, cell viability increased and cell apoptosis 

decreased. On the other hand, proliferation is always 

associated with induction of apoptosis [46]. A study 

finds that lncRNA CRNDE promotes cell proliferation 

owing to the inhibition of apoptosis in hepatocellular 

carcinoma [47]. The role of lncRNA ROR in enhancing 

cell viability and proliferation, as well as inhibiting 

apoptosis, has been documented in esophageal 

squamous cell carcinoma cells and papillary thyroidal 

carcinoma cells [48, 49]. Thus, we speculate that 

GPRC5D-AS1 may promote cell proliferation through 

the apoptosis pathway or cell cycle pathway. However, 

the detailed mechanisms and signaling processes remain 

to be elucidated. 

 

The in vitro experiments in this study have shown that 

the overexpression of GPRC5D-AS1 led to a significant 

increase in various muscle regulatory factors expression 

levels, including Myf5, Mef2c, MyoD and MyoG. 

These factors are mainly involved in the differentiation, 

proliferation, and fusion of myoblasts. Among these 

factors, MyoG plays a crucial role in the growth, 

development and regeneration of skeletal muscle [50, 

51]. Additionally, Mef2c is a member of the myocyte 

enhancer factor 2 (Mef2) family, which involves in 

regulating the expression of muscle regulatory factors 

and skeletal muscle-specific transcription of these 

factors [52]. 

 

MyoD is widely recognized as the principal regulator of 

myogenic differentiation, as it facilitates the 

transcription of the MyoG and MEF2C genes, thereby 

stimulating the expression of muscle-specific genes and 

ultimately leading to the formation of myotubes [53–

55]. Interestingly, Myf5 and MyoD are both co-

expressed and bound to the same gene sites, yet they 

possess distinct functions [56]. Specifically, MyoD 

exhibits a greater capacity to recruit Pol II to bind the 

promoter of downstream genes. In this experiment, 

MYOD1 overexpression also led to upregulation of 

MyoG and Mef2C but not Myf5, in line with previous 

studies. The results indicated that GPRC5D-AS1 had a 

positive influence on skeletal muscle aging. 

Overexpression of GPRC5D-AS1 remarkably promoted 

proliferation and differentiation of skeletal muscle 

myoblasts, suggesting that GPRC5D-AS1 positively 

regulates skeletal muscle development. 

 

Next, through the utilization of bioinformatics analysis 

and luciferase reporter vector assays, we predicted 

possible miRNAs that may bind GPRC5D-AS1 and 

demonstrated miR-520d-5p can be directly targeted by 
GPRC5D-AS1, that targets muscle regulatory factors to 

negatively modulate myoblast proliferation and 

differentiation. We observed the inter-regulation 
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between GPRC5D-AS1 and miR-520d-5p, which were 

in agreement with the studies mentioned in the 

literature: one of molecular mechanisms by which 

cytoplasmic lncRNAs regulate gene expression is to 

interact with miRNA that bind directly to miRNA 

response elements (MREs) and function to control the 

availability of miRNA for binding to their target 

mRNAs [57–59]. RNA transcripts that possess miRNA-

binding sites have the ability to interact and regulate 

one another by competitively binding to shared 

miRNAs, thereby functioning as competing endogenous 

RNAs (ceRNAs) [60, 61]. Numerous instances have 

already been observed where lncRNAs serve as 

ceRNAs for miRNAs. For instance, a muscle-specific 

lncRNA called lincMD1 sequesters miR-135 and miR-

133, effectively modulating the expression of MEF2C 

and MAML1 mRNAs, respectively [62]. LincMD1 

becomes activated during myoblast differentiation and 

exerts control over muscle differentiation in both human 

and mouse myoblasts through its ceRNA activity. In a 

separate study, it is found that lncARSR facilitates the 

expression of AXL and c-MET by competitively 

binding miR-34/miR-449, thereby enhancing resistance 

to sunitinib in renal cell carcinoma cells [63]. We found 

an interaction among GPRC5D-AS1 and miR-520d-5p, 

and validated GPRC5D-AS1 in dexamethasone-induced 

human muscle atrophy cell model, functions as ceRNA 

for miR-520-5d to promote skeletal muscle proliferation 

and differentiation. Our data support the notion that 

lncRNAs function as miRNA sponge, leading to a 

decrease in miRNA levels in the body and subsequently 

reducing miRNA’s inhibitory effect on downstream 

targets [64, 65]. 

 

In addition to their roles in human development, 

GPRC5D-AS1 and miR-520d-5p have been implicated 

in various cancers. For example, miR-520d-5p has been 

shown to promote chondrogenesis and regulate 

chondrocyte metabolic activities by targeting HDAC1 

[66]. Given its anti-tumor effect, miR-520d-5p 

suppresses the proliferation and invasion of cervical 

cancer cells by regulating PTK2 [67]. In triple-negative 

breast cancer, PITPNA-AS1 upregulates SIK2 to exert 

oncogenic function through miR-520d-5p and DDX54 

[68]. One study reported that miR-520d-5p can reduce 

the mutations in hepatoma cancer cells and human 

induced pluripotent stem cells-derivatives, which is 

regulated by nucleotide mutations in these cells [69]. 

On the other hand, GPRC5D-AS1 is recognized as 

prognostic marker for lung squamous carcinoma based 

on bioinformatics analysis [70, 71]. Our study enriches 

the knowledge of the function of this lncRNA and 

miRNA. 
 

Currently, most studies on muscle atrophy have used 

aged mouse models or cells to date, but whether human 

counterparts have similar molecular functions in muscle 

mass remains unclear [72]. Hence, the potential 

applicability of these investigated factors for the 

treatment of muscle atrophy in humans should be 

carefully evaluated. We use the dexamethasone-induced 

human muscle atrophy cell model, which is relatively 

rare. In fact, the metabolic alterations caused by 

dexamethasone in cellular systems exhibit resemblances 

to the metabolic changes observed in muscle atrophy in 

both human pathological conditions and animal models 

[73]. There is suggestive evidence that the adminis-

tration of dexamethasone does not lead to a decline in 

anabolic responsiveness, but rather induces an atrophic 

effect primarily by suppressing the basal synthesis of 

protein in myotubes [74]. This underscores the utility of 

this model for investigating potential strategies to 

mitigate muscle atrophy. 

 

However, the interaction in vivo between GPRC5D-

AS1 and miR-520d-5p in skeletal muscle aging is 

unknown. Animal model experiments are needed to 

further explore their roles in skeletal muscle. 

Furthermore, we observed a slight enhancement in the 

expression of GPRC5D-AS1 and a mild decrease in 

the expression of miR-520d-5p when MYOD1 was 

overexpressed. To date, we found no relevant literature 

on this interaction. Yiwen Guo et al. employ lncRNA 

and mRNA microarray analysis to ascertain  

997 differentially expressed lncRNAs and 1,817 

differentially expressed mRNAs, which are regulated 

by MyoD in muscle cells [75]. The functional 

predictions indicate that the majority of these lncRNAs 

are implicated in biological pathways associated with 

muscle differentiation and the cell cycle, along with 

co-expressed genes. We speculate that MYOD1 

possible feeds back regulation of GPRC5D-AS1 and 

miR-520d-5p, which may be related to MYOD1 

downstream factors; however, this requires further 

investigation. 

 

In summary, this study elucidates the role and 

mechanism of lncRNA GPRC5D-AS1 in inhibiting 

muscle aging. Functionally, GPRC5D-AS1 enhances 

the differentiation and proliferation of myoblasts, while 

suppressing cell apoptosis in vitro. Mechanistically, 

GPRC5D-AS1 acts as a ceRNA for miR-520d-5p, 

leading to the inhibition of cell apoptosis and the 

regulation of muscle regulatory factors such as MyoG, 

Myf5, Mef2c, and MyoD. This subsequently promotes 

the proliferation and differentiation of myoblasts, 

thereby facilitating skeletal muscle development. 

Consequently, the identification and functional 

characterization of GPRC5D-AS1 in relation to muscle 
aging of this study holds great promise for the 

development of novel therapeutic interventions. 

LncRNA GPRC5D-AS1 may offer a potential 
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therapeutic strategy for the treatment of age-related 

sarcopenia. 

 

MATERIALS AND METHODS 
 

Cell culture and treatment 

 

Human skeletal muscle myoblasts (Lonza Japan, Tokyo, 

Japan) were maintained in Dulbecco’s modified Eagle 

medium (DMEM) (Gibco BRL, Grand Island, NY, 

USA), supplemented with 10% (vol/vol) fetal bovine 

serum (Thermo Fisher Scientific, Waltham, MA, USA), 

and cultured at 37°C with 5% CO2. Differentiation into 

myotubes was induced using DMEM supplemented 

with 2% horse serum, 1% penicillin/streptomycin and 

2% glutamine. During this experiment, the medium was 

changed every 48 hours. Following incubation with 

high-glucose DMEM for four days, dexamethasone at 

different concentrations (Dex, 5 mM, 10 mM and 15 

mM) were added and cells were again incubated for 48 

hours. The expression of MyoD by qRT-PCR was 

performed to confirm the success of model 

establishment. 

 

Cell transfection 

 

A 24-well plate was seeded with 1 × 105 skeletal muscle 

myoblasts per well. When the confluence reached 70% 

in plates and then transfected with 0.5 μg plasmid per 

well by 1 μL Lipofectamine 2000 (Thermo Fisher 

Scientific, USA). Empty plasmid and GPRC5D-AS1-

OE plasmid were obtained from Ribobio Biotechnology 

(Guangzhou Ribobio Co., Ltd., Guangzhou, China). 

MiR-520d-5p mimic, inhibitor NC and miR-520d-5p 

inhibitor were obtained from Biotend Biotechnology 

(Shanghai Biotend Co., Ltd., Shanghai, China). 

 

Skeletal muscle myoblasts were divided into four 

groups: control group (cells without any treatment), 

model group (cells treated with Dex), negative control 

(NC) group (model group cells transfected with empty 

plasmid) and lncRNA-OE group (model group cells 

transfected with GPRC5D-AS1-OE plasmid). 

 

Skeletal muscle myoblasts were divided into seven 

groups: control group (cells treated with Dex), NC 

group (control group cells transfected with empty 

plasmid), lncRNA-OE group (control group cells 

transfected with GPRC5D-AS1-OE plasmid), lncRNA-

OE + mimic group (control group cells transfected with 

GPRC5D-AS1-OE plasmid + miR-520d-5p mimic), 

inhibitor NC group (control group cells transfected with 

miRNA inhibitor control), miRNA inhibitor group 

(control group cells transfected with miR-520d-5p 

inhibitor), and mRNA-OE group (control group cells 

transfected with MYOD1-OE plasmid). 

Cell counting kit-8 (CCK-8) assay 

 

A 96-well plate was seeded with 1 × 103 skeletal muscle 

myoblasts per well, followed by the addition of 10 μL of 

10% CCK-8 solution (Biyuntian, China) to each well. A 

two-hour incubation period was followed for the plates. 

A microplate reader (MK3, Thermo Fisher Scientific, 

USA) was used to measure absorbance at 450 nm. 

 

Flow cytometry analysis 

 

Cell apoptosis and cell cycle were measured using flow 

cytometry (FACSCalibur, BD Biosciences, San Jose, 

CA, USA). Cell apoptosis was quantitated using the 

Annexin V-FITC/Propidium Iodide (PI) apoptosis kit 

(BD Biosciences, USA). In brief, skeletal muscle 

myoblasts at 48 hours post-transfection were 

centrifuged at 200 × g for 5 min and re-suspended in 1 × 

Binding buffer. 100 μL cell suspension was transferred 

into test tube, then 5 μL PI and annexin V-FITC were 

added to the mixture, and the cells were incubated for 

15 min in the dark at room temperature (25°C). Lastly, 

the apoptotic cells were assessed using a flow cytometer 

within 1 hour. After transfection for 48 hours, skeletal 

muscle myoblasts were centrifuged at 200 × g 4°C for 5 

min. The cells were harvested and washed, then fixed in 

ice-cold 70% alcohol at 4°C overnight. Subsequently, 

the samples were incubated with 100 µg/ml RNase A 

(Beyotime, China; ST578) at room temperature for 30 

min and stained with 50 µg/ml PI (Biolegend, USA; 

421301) at room temperature for 30 min. Cell cycle was 

tested on flow cytometry. 

 

Dual-luciferase reporter assays 

 

Skeletal muscle myoblasts were cultured in 12-well 

plates. After 70%–80% confluence of the cells, 50 nM 

of the psiCHECK2-GPRC5D-AS1-WT luciferase 

vector or psiCHECK2-GPRC5D-AS1-MUT vector, as 

well as 50 nM of NC, miR-520d-5p mimic were 

transfected by using Lipofectamine™ 3000 Transfec-

tion Reagent. The cells were harvested after 24 hours 

of transfection, and luciferase assays were performed 

with the Dual-Luciferase Reporter Assay System 

(Beyotime, China; RG027). To account for differences 

in transfection efficiency, renilla luciferase activity for 

each sample was normalized to firefly luciferase 

expression. 

 

qRT-PCR analysis  

 

Total RNA of each group was extracted by TRIzol 

reagent (Invitrogen, USA) according to the manufac-
turer’s instructions (TaKaRa, Dalian, China, Product 

code: 9109). Then cDNA was synthesized by reverse-

transcription reaction, using PrimeScript™ RT Master 
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Table 1. The primer sequences for mRNAs, microRNAs and long non-coding RNAs (lncRNAs). 

Primers Sequence (5′–3′) 

GPRC5D-AS1-F GCTGTGTGAGAACTCCGTGT 

GPRC5D-AS1-R ACTATCAAAGGCAGGTCGGTG 

MyoD-F CGCCATCCGCTATATCGAGG 

MyoD-R CTGTAGTCCATCATGCCGTCG 

MyoG-F GGGGAAAACTACCTGCCTGTC 

MyoG-R AGGCGCTCGATGTACTGGAT 

Mef2c-F GAACGTAACAGACAGGTGACAT 

Mef2c-R CGGCTCGTTGTACTCCGTG 

Myf5-F AACCCTCAAGAGGTGTACCAC 

Myf5-R AGGACTGTTACATTCGGGCAT 

Wnt5a-F ATTCTTGGTGGTCGCTAGGTA 

Wnt5a-R CGCCTTCTCCGATGTACTGC 

GAPDH-F TGACAACTTTGGTATCGTGGAAGG 

GAPDH-R AGGCAGGGATGATGTTCTGGAGAG 

hsa-miR-520d-5p-F GGCCGGTGTTGAAACAATCT 

hsa-miR-520d-5p-R 
GTCGTATCCAGTGCAGGGTCCGAG 
GTATTCGCACTGGATACGACGAAAGG 

hsa-miR-524-5p-F CTACAAAGGGAAGCAC 

hsa-miR-524-5p-R 
GTCGTATCCAGTGCAGGGTCCGAG 
GTATTCGCACTGGATACGACGAGAAA 

hsa-miR-153-3p-F TTGCATAGTCACAAAA 

hsa-miR-153-3p-R 
GTCGTATCCAGTGCAGGGTCCGAG 
GTATTCGCACTGGATACGACGATCAC 

 

Mix (Perfect Real Time) (TaKaRa, Product code: 

RR036A). qRT-PCR was conducted under the following 

conditions: 50.0°C for 3 min, 95.0°C for 3 min, and 40 

cycles of 95.0°C for 10 s and 60.0°C for 30 s. After 

reaction, melting curve analysis was performed by 

heating the reaction mixture from 60 to 95°C at a rate of 

0.5°C/10 second. Primer sequences were as shown in 

Table 1. 

 

Western blot 

 

Proteins were isolated with RIPA lysis buffer 

(Beyotime, Shanghai, China) after 48 hours of 

transfection. All protein sample concentration was 

determined by the BCA (Thermo Fisher, USA) method, 

followed by separation on SDS-PAGE. Then, protein 

was transferred to a polyvinylidene difluoride (PVDF) 

membrane (Millipore, USA), blocked with 5% skim 

milk and incubated with primary antibodies of anti-

Mef2c (Cal. No. 10056-1-AP, Proteintech, USA; 

1:1000), anti-MyoG (Cal. No. ab77232, Abcam, USA; 

1:1000), anti-MyoD (Cal. No. 18943-1-AP, Proteintech, 

USA; 1:1000), anti-GAPDH (Cal. No. 10494-1-AP, 

Proteintech, USA; 1:1000), anti-Myf5 (Cal. No. 

ab125078, Abcam, USA; 1:1000) and overnight at 4°C. 

On the second day, horseradish Peroxidase conjugated 

goat anti-rabbit IgG (H+L) (Cal. No. 111-035-003, 

Jackson ImmunoResearch, USA,) was added and 

incubated at 37°C for 2 hours. Chemiluminescence was 

developed by ECL system (Millipore, USA). 

 

Statistical analysis 
 

All data represented the results of three independent 

experiments and were presented as the mean ± 

standard deviation (SDs). Experimental data were 

processed in GraphPad Prism 5 (GraphPad Software, 

San Diego, CA, USA). P < 0.05 represented statistical 

significance. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Table 
 

Supplementary Table 1. Summarized cell cycle data. 

 
Experiment 1  

(%) 
Experiment 2  

(%) 
Experiment 3  

(%) 
Mean (%) SD 

Control 

G0/G1 59.29 60.81 58.54 59.5467 1.1566 

S 15.01 14.97 18.64 16.2067 2.1074 

G2/M 25.7 24.22 22.82 24.2467 1.4402 

Model 

G0/G1 54.05 54.55 54.14 54.2467 0.2665 

S 2.03 3.01 4.16 3.0667 1.0661 

G2/M 43.92 42.44 41.7 42.6867 1.1304 

NC 

G0/G1 53.29 55.93 55.26 54.8267 1.3723 

S 4.81 1.06 2.97 2.9467 1.8751 

G2/M 41.9 43.01 41.77 42.2267 0.6815 

lncRNA-OE 

G0/G1 61.51 63.02 63.07 62.5333 0.8866 

S 6.74 8.68 9.68 8.3667 1.4948 

G2/M 31.75 28.3 27.25 29.1000 2.3543 

 

 


