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ABSTRACT 
 

Background: Copper homeostasis and cuproptosis play critical roles in various biological processes of cancer; 
however, whether they can impact the prognosis of lung adenocarcinoma (LUAD) remain to be fully elucidated. 
We aimed to adopt these concepts to create and validate a lncRNA signature for LUAD prognostic prediction. 
Methods: For this study, the TCGA-LUAD dataset was used as the training cohort, and multiple datasets from 
the GEO database were pooled as the validation cohort. Copper homeostasis and cuproptosis regulated genes 
were obtained from published studies, and various statistical methods, including Kaplan-Meier (KM), Cox, and 
LASSO, were used to train our gene signature CoCuLncSig. We utilized KM analysis, COX analysis, receiver 
operating characteristic analysis, time-dependent AUC analysis, principal component analysis, and nomogram 
predictor analysis in our validation process. We also compared CoCuLncSig with previous studies. We 
performed analyses using R software to evaluate CoCuLncSig's immunotherapeutic ability, focusing on eight 
immune algorithms, TMB, and TIDE. Additionally, we investigated potential drugs that could be effective in 
treating patients with high-risk scores. Additionally qRT-PCR examined the expression patterns of CoCuLncSig 
lncRNAs, and the ability of CoCuLncSig in pan-cancer was also assessed. 
Results: CoCuLncSig containing eight lncRNAs was trained and showed strong predictive ability in the validation 
cohort. Compared with previous similar studies, CoCuLncSig had more prognostic ability advantages. 
CoCuLncSig was closely related to the immune status of LUAD, and its tight relationship with checkpoints IL10, 
IL2, CD40LG, SELP, BTLA, and CD28 may be the key to its potential immunotherapeutic ability. For the high 
CoCuLncSig score population, we found 16 drug candidates, among which epothilone-b and gemcitabine may 
have the most potential. The pan-cancer analysis found that CoCuLncSig was a risk factor in multiple cancers. 
Additionally, we discovered that some of the CoCuLncSig lncRNAs could play crucial roles in specific cancer 
types. 
Conclusion: The current study established a powerful prognostic CoCuLncSig signature for LUAD that was also 
valid for most pan-cancers. This signature could serve as a potential target for immunotherapy and might help 
the more efficient application of drugs to specific populations. 
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INTRODUCTION 
 

Lung cancer is the leading cancer diagnosis and cause 

of cancer-related deaths worldwide [1, 2]. In 2020, there 

were 2.2 million new cases of lung cancer and 1.8 

million deaths attributed to this disease, accounting for 

18% of all cancer-related deaths [1, 2]. Unfortunately, 

lung cancer-related deaths are projected to increase 

globally to approximately 3 million annually by 2035 

due to the high prevalence of tobacco use and aging 

populations [1, 2]. The most common type of lung 

cancer is lung adenocarcinoma (LUAD) [1, 2]. 

Treatment strategies for LUAD can be divided into  

five categories: surgery, chemotherapy, radiotherapy, 

targeted therapy, and immunotherapy [3–5]. Despite 

ongoing updates to clinical management strategies for 

LUAD, issues such as a low early diagnosis rate and 

unsatisfactory long-term patient survival persist [3–5]. 

Therefore, it is imperative to identify a new clinical 

model that can precisely diagnose and prognose LUAD, 

delve deeper into the molecular mechanisms underlying 

its development, and generate novel ideas for targeted 

therapies. 

 

Cells tightly regulate their copper homeostasis through 

a network of copper-dependent proteins, which main-

tain the intracellular copper content within specific 

ranges [6]. Maintaining copper homeostasis is essential 

to avoid the adverse effects of both copper deficiency 

and copper overload [6]. An imbalance in copper levels 

in the body has been correlated with several diseases, 

including cancer [6]. Copper plays a crucial role in  

cell signaling and contributes to cancer development  

by promoting cell proliferation, angiogenesis, and 

metastasis [6]. Studies have found elevated levels of 

copper in lung cancer tissue, and research suggests that 

high serum copper levels in patients with lung cancer 

are linked to tumor stage and disease progression [7]. 

Tsvetkov et al. discovered a novel form of regulated cell 

death, called cuproptosis, which is induced by 

intracellular copper [6, 8]. This unique pathway of cell 

death is distinguishable from established cell death 

mechanisms by the aggregation of lipidated mito-

chondrial enzymes and the loss of Fe-S protein [6, 8]. 

The discovery of cuproptosis opens up new possibilities 

for potential applications in cancer therapy. Evidence 

suggests that copper complexes can be targeted for 

therapeutic use in cancer treatment [9]. However, the 

precise mechanism of cuproptosis remains unclear,  

and its association with LUAD requires further 

investigation. Considering the critical roles of copper 

homeostasis and cuproptosis in cancer progression, the 

corresponding related gene signatures are expected  

to bring new insights into LUAD clinical treatment  

and more clues to reveal the underlying molecular 

mechanisms. 

lncRNAs are RNA molecules that are longer than 200 

nucleotides and do not provide instructions for making 

proteins [10, 11]. They are known to have significant 

roles in a variety of biological processes such as gene 

regulation, chromatin modification, and epigenetic 

regulation [10, 11]. Numerous studies have investigated 

the possibility of using lncRNAs as indicators of lung 

cancer in order to diagnose and forecast the disease [10, 

11]. These studies have discovered many lncRNAs that 

are abnormal in lung cancer and show promise as 

diagnostic and prognostic biomarkers. For example, 

lung cancer tissues exhibit elevated levels of HOTAIR 

[12] and MALAT1 [13], which can facilitate the 

growth, invasion, and metastasis of lung cancer. 

Furthermore, a high degree of HOTAIR and MALAT1 

expression is linked to unfavorable prognoses in 

individuals with lung cancer [12, 13]. Considering their 

potential as indicators of lung cancer, lncRNAs could 

be utilized as therapeutic interventions for LUAD. 

Further research on lncRNAs is needed to investigate 

their potential. 

 

The goal of this research is to develop a prognostic 

signature for copper homeostasis and cuproptosis 

regulated lncRNAs in LUAD. The study involved 

validating the prognostic potential of the signature in a 

large independent group and comparing its 

effectiveness to similar previous studies. Using qRT-

PCR, we also confirmed the differential expression of 

signature lncRNAs in normal and tumor lung tissues. 

Moreover, the study explored the potential of 

immunotherapy and identified certain checkpoints 

(such as IL10, IL2, CD40LG, SELP, BTLA, and 

CD28) that could serve as indicators for the signature, 

and potentially be used in immunotherapy for patients 

with LUAD. The research identified several agents that 

could be possible treatment options for high-risk 

patients and evaluated the potential of the signature in 

pan-cancer. 

 

MATERIALS AND METHODS 
 

Exploring datasets for this study and data 

preprocessing 

 

In the present study, we utilized expression data and 

clinical characterization of patients with LUAD from 

the TCGA-LUAD project, which was acquired through 

the Xena Hub online portal (https://xenabrowser.net/) 

and served as the training cohort. To validate our 

results, we utilized the Gene Expression Omnibus 

(GEO, https://www.ncbi.nlm.nih.gov/geo/) to gather 

validation data. Our search on GEO was tailored to 

identify a dataset related to “lung adenocarcinoma”, 

where we filtered out any results that did not contain 

expression and survival data to create our candidate 

https://xenabrowser.net/
https://www.ncbi.nlm.nih.gov/geo/
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dataset. We opted for GSE29013, GSE30219, 

GSE31210, GSE37745, and GSE50081 datasets from 

GEO. It is essential to highlight that these GEO datasets 

underwent preprocessing before being used. To carry 

out preprocessing, we utilized the R package 

“inSilicoMerging” [14] to merge them, and we 

eliminated batch effects using the approach established 

by Johnson et al. [15]. The preprocessed GEO data was 

utilized as the validation cohort. 

 

Consensus clustering for clusters that identified by 

copper homeostasis and cuproptosis correlated genes 

(CoCu clusters) 

 

We selected 11 copper homeostasis-regulated genes 

[6], STEAP1, SLC31A1, CCS, SOD1, ATOX1, 

ATP7A, ATP7B, COX17, COX11, SCO1, and MT-

CO1, and 10 cuproptosis-regulated genes [8], FDX1, 

LIAS, PDHA1, PDHB, MTF1, LIPT1, DLD, DLAT, 

GLS, and CDKN2A from previous studies. Applying 

the Pearson test to the copper homeostasis-regulated 

genes in the LUAD population and setting the 

threshold as |coefficient| > 0.6 to yield copper 

homeostasis-correlated genes. The same method and 

threshold were applied to the cuproptosis-regulated 

genes and outputted cuproptosis-correlated genes. We 

then went to the intersection of the above correlated 

genes and put them into an algorithm of consensus 

clustering (“ConsensusClusterPlus” R package) to 

classify the LUADs in the training cohort. We selected 

the optimal value of k for forming our CoCu clusters 

by evaluating the cumulative distribution function 

(CDF) plot, intragroup consistency plot, and Kaplan-

Meier (KM) curve. KM curve was made possible by 

using the R packages “survival” and “survminer”. 

Additionally, we employed several R packages, 

including “GSEABase”, “reshape2”, “limma”, 

“ggpubr”, and “GSVA”, to execute the single-sample 

gene set enrichment analysis (ssGSEA) and generate 

visualizations. We utilized the “limma” R package 

with an FDR threshold of less than 0.05 to identify the 

differentially expressed genes identified among CoCu 

clusters (CoCu-DEGs) among the CoCu clusters. 

Kyoto Encyclopedia of Genes and Genomes (KEGG) 

analysis was then conducted on CoCu-DEGs for 

discovering potential pathways. To perform KEGG 

analysis, we employed the KEGG API (https://www. 

kegg.jp/kegg/rest/keggapi.html) to retrieve the most  

up to date KEGG Pathway gene annotations as a 

reference for gene mapping. The R package 

“clusterProfiler” (version 3.14.3) was utilized for 

conducting enrichment analysis on specific operations. 

The minimum gene set was set to 5, while the 
maximum gene set was set to 5000. Results were 

deemed statistically significant when the P value was 

less than 0.05 and the FDR was less than 0.25. 

Development of CoCu-DEG cluster and copper 

homeostasis and cuproptosis regulated lncRNA 

signature (CoCuLncSig) 

 

We categorized patients in the training cohort based on 

CoCu-DEGs and generated KM curves to evaluate 

survival disparities across the CoCu-DEG clusters. To 

assess the level of differentiation among the different 

clusters, we utilized principal component analysis (PCA) 

by using “scatterplot3d” package in R. Then we 

conducted the ssGSEA and generated visualizations. 

Next, we employed the “limma”, “GSEABase”, 

“GSVA”, and “pheatmap” R packages to perform 

GSVA to identify the top significant KEGG pathways 

among the CoCu-DEG clusters. We observed the 

distribution of 21 copper homeostasis/cuproptosis-

regulated genes (STEAP1, SLC31A1, CCS, SOD1, 

ATOX1, ATP7A, ATP7B, COX17, COX11, SCO1, 

MT-CO1, FDX1, LIAS, PDHA1, PDHB, MTF1, 

LIPT1, DLD, DLAT, GLS, and CDKN2A) across 

CoCu-DEG clusters using boxplot. We explored the 

lncRNA that were differentially expressed between the 

CoCu-DEG clusters (DELs) with an FDR threshold of 

less than 0.05. Subsequently, we conducted univariate 

Cox and KM analyses on DELs to identify the ones that 

showed potential prognostic significance with a p-value 

of less than 0.05. The CoCuLncSig was constructed 

using prognostic DELs and a least absolute shrinkage 

and selection operator (LASSO) to prevent overfitting. 

The “glmnet” R package was used to ascertain the 

model, with the penalty parameter (λ) corresponding to 

the partial likelihood deviance and tested using tenfold 

cross-validation. The R package outputted the 

composition of the CoCuLncSig and the coefficient of 

each lncRNA. The risk score was calculated by 

summing the expression level of each lncRNA in the 

CoCuLncSig multiplied by its corresponding coefficient. 

 

Validation of the CoCuLncSig in an independent 

cohort 

 

After assigning a risk score to each LUAD in our study 

using the formula above, we categorized the population 

into high and low-risk groups using their medians. In 

order to evaluate CoCuLncSig’s predictive, accuracy, 

and discriminative abilities, a variety of bioinformatic 

analyses were conducted on all populations within the 

study. These analyses included Cox analysis, receiver 

operating characteristic (ROC) analysis, time-dependent 

AUC (tAUC) analysis, and survival nomogram using 

continuous variables, as well as KM analysis and PCA 

analysis using categorical variables. The validation 

process was carried out in R software, utilizing several 
R packages such as “timeROC”, “survival”, 

“survminer”, “rms”, “scatterplot3d”, “forestplot”, 

“limma”, “reshape2”, “ggplot2”, “ggpubr”, and 

https://www.kegg.jp/kegg/rest/keggapi.html
https://www.kegg.jp/kegg/rest/keggapi.html
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“regplot”. To perform Gene Set Enrichment Analysis 

(GSEA) [16] for CoCuLncSig, we obtained the 

“c2.cp.kegg.v7.4.symbols.gmt” [17] subset from 

http://www.gsea-msigdb.org/gsea/downloads.jsp to 

assess associated pathways and molecular mechanisms. 

In our GSEA analysis, we established the minimum 

gene set as 5, the maximum gene set as 5000, and 

performed 1000 resamples. We deemed results to be 

statistically significant if they had a P-value < 0.05 and 

an FDR < 0.25. 

 

Identification of the immunological status of the 

CoCuLncSig 

 

The R package “ESTIMATE” utilizes the gene 

expression levels of the training cohort to compute 

stromal, immune, and ESTIMATE scores for individual 

patients [18]. We evaluated the correlation between 

CoCuLncSig and the above category scores using 

statistical analysis methods like the Pearson coefficient 

and the Wilcoxon rank sum test. With R package 

“IOBR,” immuno-oncology exploration can be 

facilitated, tumor-immune interactions can be explored, 

and precision immunotherapy can be expedited [19]. 

The R package “IOBR” or its algorithms included, 

namely CIBERSORT [20], CIBERSORT-ABS [20], 

quanTIseq [21], TIMER [22], MCPCounter [23], xCell 

[24], EPIC [25], and IPS [26] were applied to assess 

immune-infiltrating levels of every LUAD in the 

TCGA-LUAD. To assess the relationship between 

CoCuLncSig and immune-infiltrating levels, we 

employed the Pearson coefficient and the Wilcoxon 

rank sum test, and the outcomes were presented as 

lollipop plots and heatmaps. We summarized the 

aforementioned findings through Venn and cloud 

diagrams, and assessed the immune function of 

CoCuLncSig utilizing the ‘ssGSEA’ function available 

in the ‘gsva’ R package. 

 

Identification of CoCuLncSig’s role in 

immunotherapy and its potential checkpoint targets 

 

Mariathasan’s study [27] signature provided us with a set 

of genes associated with the immune checkpoint blocker 

(ICB) response, while Xu et al.’s web portal [28] gave 

us gene sets linked to the steps of the tumor immune cycle. 

As the immune microenvironment influences both ICB 

responses and immune cycle steps, we aimed to leverage 

this information to investigate the potential role  

of CoCuLncSig in LUAD immunity. Specifically, 

we conducted analyses to examine the correlations 

between CoCuLncSig and ICB responses, as well as 

CoCuLncSig and tumor immune cycle steps. We utilized 
the R language package “maftools” to generate a visual 

representation of the mutational landscape of genes within 

the training cohort. To evaluate the correlation between 

the risk score and the tumor mutational burden (TMB) 

[29], a commonly used indicator of immunotherapy 

sensitivity that measures the frequency of specific 

mutations in tumor genes, we employed a combination of 

Pearson’s coefficient and the Wilcoxon rank sum test 

in our study. By utilizing markers of T cell dysfunction 

and data on T cell exclusion, the Tumor Immune 

Dysfunction and Exclusion (TIDE) framework models 

how tumors evade detection by the immune system [30–

32]. We also determined the correlation between our 

signature and the TIDE using Pearson’s coefficient and 

Wilcoxon rank sum. To assess immunotherapy capacity in 

the CoCuLncSig, we obtained TCGA-LUAD immuno-

therapy response data from the TIDE portal and done 

visualization using a ridgeline plot and percent stacked 

column chart. In our study, we chose a set of 60 immune 

checkpoints that had been previously investigated, which 

included 24 inhibitory and 36 stimulatory checkpoints 

[33] (Supplementary Table 1). To evaluate the 

relationships between our CoCuLncSig and the 60 

selected immune checkpoints, we conducted integration 

analysis including Pearson coefficient and Wilcoxon rank-

sum analyses. We sought to determine if our CoCuLncSig 

could serve as a guide for immunotherapy. To this end, 

we utilized the KM and Cox analysis to assess the 

outcome predictive value of 60 immune checkpoints. 

Using a Venn diagram, we summarized the results to 

identify potential checkpoints with targeting ability related 

to that of the CoCuLncSig. We gathered immunotherapy-

related data from various published immune datasets and 

analyzed the effects of identified checkpoints on 

immunotherapy outcomes. This particular step was 

carried out through the “regulator prioritization” module 

in the TIDE online tool [31]. 

 

Drug selection for patients with high CoCuLncSig 

score LUAD 

 

Data regarding drug susceptibility in cancer cell lines 

(CCLs) was downloaded from two sources, namely the 

Cancer Therapeutics Response Portal (CTRP) at 

https://portals.broadinstitute.org/ctrp and PRISM 

Repurpose at https://depmap.org/portal/prism/. The 

CTRP evaluated 481 compounds across 835 CCLs, 

while PRISM Repurpose assessed 1448 compounds 

across 482 CCLs. In both datasets, the drug sensitivity 

was determined by the area under the dose-response 

curve (AUC), with lower values indicating greater 

sensitivity. Our study involves the analysis of drug 

response data from CTRP and PRISM to identify 

feasible drug candidates from the high-scoring group. 

To do this, we compared drug responses between 

patients with the highest and lowest decile risk scores 
and used a threshold of log2FC > 0.05 to screen for 

drugs with lower AUC in high-scoring patients [34]. To 

select compounds with a negative correlation between 

http://www.gsea-msigdb.org/gsea/downloads.jsp
https://portals.broadinstitute.org/ctrp
https://depmap.org/portal/prism/
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AUC values and risk scores, we performed Spearman 

correlation analysis. We set our screening threshold at a 

Spearman correlation coefficient [34] of less than −0.3. 

 

Validation of drug candidates 
 

Additional validation analyses were conducted on the 

results of the drug candidate, which involved reviewing 

the data of clinical trial and published experimental 

evidence, and the use of Connectivity Map (CMap) to 

further confirm its potential in LUAD [34]. CMap is a 

tool that generates and examines large perturbed 

datasets, aiding in the comprehension of human disease 

and speeding up the identification of new treatments. 

CMap’s datasets, processing, and analysis capabilities 

are utilized to advance drug research [34]. In this study, 

we employed CMap analysis as a supplementary 

approach to explore the potential efficacy of the 

identified drug candidates in LUAD. A total of 2429 

compounds were available for analysis on the CMap 

online analysis portal (https://clue.io/query). We 

conducted a differential expression analysis to compare 

tumor and normal samples. We then selected the top 

150 up-regulated and the top 150 down-regulated genes 

based on the fold difference results and submitted them 

for analysis on the CMap online analysis portal. Each 

compound’s CMap result is represented as a value 

between −100 and 100, with a result closer to -100 

indicating a greater potential for therapeutic power. 

 

Comparing CoCuLncSig with previous studies 
 

In order to conclude whether our study is more robust 

than previous, we searched PubMed using keywords 

“copper lncRNA signature lung adenocarcinoma” or 

“cuproptosis lncRNA signature lung adenocarcinoma” 

to find candidate study. We included the research that 

contained a lncRNA signature and the related 

coefficient. Because most of the candidate studies did 

not upload raw data or used different or unmentioned 

data preprocessing methods, therefore, to ensure  

the standard consistency of the comparison, we use  

the official TCGA data for analysis here, which are 

TCGA-LUAD_PanCanAtlas from Genomic Data 

Commons, Pan-Cancer Atlas (https://gdc.cancer.gov/ 

about-data/publications/pancanatlas), and TCGA-

LUAD_Count, TCGA-LUAD_FPKM_UQ, and TCGA-

LUAD_FPKM from Genomic Data Commons Data 

Portal (https://portal.gdc.cancer.gov/). For specific 

comparative analysis, we used Cox regression analysis. 

 

CoCuLncSig’s expression pattern determination by 

qRT-PCR and its pan-cancer ability assessment 

 

To investigate the expression status of CoCuLncSig 

lncRNAs in real-life scenarios, we conducted qRT-PCR 

on clinical obtained human tissue samples from our 

facility. We collected nine LUAD tissues and their 

corresponding adjacent normal tissues from nine 

clinical patients. This approach was approved by the 

Ethics Review Committee of the First Affiliated 

Hospital of Zhengzhou University, and informed 

consent was obtained from all patients prior to surgery. 

None of the patients had received any kind of therapy 

before undergoing the surgical operation. Tissue 

samples were immediately frozen and stored in liquid 

nitrogen after extraction during the surgery. The TRIzol 

reagent (Invitrogen, Thermo Fisher Scientific 

corporation, USA) was used to extract total RNA from 

sample tissues, following the manufacturer’s 

instructions. The extracted RNA (1 μg) was reverse 

transcribed using the PrimeScript RT reagent kit 

(TAKARA BIO INC., Shiga, Japan). The resulting 

cDNA was used in triplicate for qRT-PCR, performed 

with SYBR® Premix Ex Taq™ (Perfect Real-Time) 

(TAKARA BIO INC., Shiga, Japan). The qRT-PCR 

conditions involved 40 cycles of 95°C for 30 s, 95°C for 

10 s, and 60°C for 30 s. The internal reference used was 

GAPDH and the primer sequences are listed in Table 1. 

Gene expression was quantified using the 2−ΔΔCt 

method. The statistical analyses were conducted using 

GraphPad Prism 9.0 software (GraphPad Software, Inc., 

La Jolla, CA, USA). The data were presented as mean ± 

standard deviation, and the unpaired Student’s t-test was 

utilized to compare two groups. Statistical significance 

was indicated by p values < 0.05. 

 

To evaluate the pan-cancer potential of CoCuLncSig, 

we obtained the TCGA pan-cancer datasets from 

Genomic Data Commons, Pan-Cancer Atlas (https://gdc. 

cancer.gov/about-data/publications/pancanatlas). We 

applied our CoCuLncSig to pan-cancer visualizing the 

risk score distribution and determining our signature’s 

prognosis impacts on cancers using Cox regression. R 

packages of “ggplot2”, “survival”, “cowplot”, and 

“ggpubr” were making this demonstration possible. 

We also assessed whether the lncRNAs in 

CoCuLncSig are differentially expressed between 

tumors and normal tissues. R packages “ggplot2”, 

“clusterProfiler”, “ComplexHeatmap”, and “limma” 

were adopted for the calculation and visualization. Then 

we conducted the prognostic ability determination for 

CoCuLncSig lncRNAs using R packages “survival” and 

“pheatmap”. 

 

Novelty and impact statements 

 

This study utilized a novel approach by leveraging the 

publicly available online repository (with a total sample 
size of > 1000 cases) to develop CoCuLncSig, an eight-

lncRNA signature related to copper homeostasis and 

cuproptosis that can predict LUAD prognosis. We also 

https://clue.io/query
https://gdc.cancer.gov/%0babout-data/publications/pancanatlas
https://gdc.cancer.gov/%0babout-data/publications/pancanatlas
https://portal.gdc.cancer.gov/
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Table 1. Prognostic LncRNAs obtained from LASSO Cox regression model and their primer sequences. 

Gene Symbol Coefficient 
Sequence (5′–3′) 

Forward Reverse 

AL691432.2 −0.479622606 AGGCTCTCCAGGACAAGTGA GGCTCTCTCCAACAACAAGC 

AC093010.2 −0.36577691 GGTGAGCCTGAGAGTTGAGG AGCAGAGGGTGAAGGAGACA 

AC107464.3 −0.212021473 GGCAAGAGAATGCTGGTCTC TCTTTTCTCATGCCCCTCTG 

AC025278.1 −0.109850151 CGTTCACCTCTTTTCCAAGC TGACCTGGTTGTCAGGATGA 

COLCA1 −0.079334536 GACAAGTTTGGCTCCTGCTC CCTCTGTGGACCATTCCTGT 

AC026471.3 −0.008162688 CACTCCACCTCCACAGGAGT ACTTCAGCTTCGCTGGACAT 

LINC01833 0.16143488 ACCTCACACTCCACCCAAAG ATTATGCCTGTGGGCACTTC 

ITGB1-DT 0.278740024 AGTTGCGTCCTGCTTTTGAT CAATCATCGAATCGACATGC 

 

confirmed the CoCuLncSig’s power by comparing it 

with previous studies. The CoCuLncSig lncRNAs’ 

expression patterns were measured using human tissues 

and qRT-PCR. We identified the specific targets of 

CoCuLncSig that played vital roles in immunotherapy 

and highlighted potential therapeutic agents that may be 

effective for high-risk score LUADs. 

 

Availability of data and materials 

 

The study utilized a combination of publicly available 

databases and original data. The TCGA data used for 

the model training was downloaded from Xena Hub 

online portal (https://xenabrowser.net/), and GEO data 

for model validation, GSE29013, GSE30219, 

GSE31210, GSE37745, and GSE50081, were obtained 

from https://www.ncbi.nlm.nih.gov/geo. Additionally, 

data for drug prediction was sourced from the CTRP 

database, which can be accessed at https://portals. 

broadinstitute.org/ctrp, as well as the PRISM database, 

which was downloaded from https://depmap.org/portal/ 

prism. For comparison and pan-cancer assessments, we 

obtained official TCGA data Genomic Data Commons, 

Pan-Cancer Atlas (https://gdc.cancer.gov/about-

data/publications/pancanatlas) and Genomic Data 

Commons Data Portal (https://portal.gdc.cancer.gov/). 

The raw data generated from the qRT-PCR used in the 

study is available upon request from the corresponding 

author. 

 

RESULTS 
 

Characteristics of LUADs included in the study 

 

The general flowchart of our study is illustrated in 

Figure 1. To construct the training cohort, we included 

500 LUAD patients from TCGA-LUAD, while the 

validation cohort comprised of 554 LUAD patients 
from five GEO datasets (GSE29013, GSE30219, 

GSE31210, GSE37745, and GSE50081), selected 

based on our predefined criteria. Prior to the analysis, 

we merged the five GEO datasets and removed any 

batch effects, as demonstrated in Figure 2A. The 

UMAP plot revealed that the samples from each dataset 

were distinct prior to the removal of batch effects. 

However, after utilizing Johnson et al.’s batch effect 

removal method [15], the datasets displayed 

interleaving, which suggests that the technique was 

effective in removing the batch effect. Table 2 presents 

the clinical data of the patients included in each cohort 

of this study. 

 

Construction of CoCu clusters in LUADs using 

consensus clustering 

 

1280 copper homeostasis-correlated genes and 1278 

cuproptosis-correlated genes were obtained, and a total 

of 110 genes were in their intersection (Figure 2B). An 

algorithm of consensus clustering classified training 

cohort LUADs into 2, 3, 4, 5, 6, 7, 8, 9, and 10 

clusters, respectively, based on the 110 copper 

homeostasis/cuproptosis correlated genes. We ob-

served the CDF plot for the downward trend of the 

curve, finding that when k = 4, 5, or 6 may potentially 

arouse our interest (Figure 2C). In addition, we 

examined the intragroup consistency of each group by 

checking the consensus values, and the results 

indicated that when k is 5, the clusters have the highest 

average consistency. When k is 4, the consistency of 

the cluster ranked the second highest (Figure 2C). 

Based on the evidence, we are more interested in the 

clustering situation when k = 4, 5, and 6. In Figure 2D 

upper parts, we plotted the clustering diagrams for k = 

4, 5, and 6. It could be seen that when k = 5, the 

clustering was relatively neat and well gathered. Next, 

we constructed the KM curve for each k value (Figure 

2D, lower parts), and found that the p value was 

smaller than the others’ when k = 5, which indicated 

that the survival difference was the most pronounced. 

We then take the cluster with k = 5 as our copper 

homeostasis/cuproptosis related (CoCu) cluster (Figure 

2E). Furthermore, there were statistically significant 

differences in five CoCu clusters of LUAD patients in 

terms of clinical factors like gender, race, tumor stage, 

https://xenabrowser.net/
https://www.ncbi.nlm.nih.gov/geo
https://depmap.org/portal/%0bprism
https://depmap.org/portal/%0bprism
https://gdc.cancer.gov/about-data/publications/pancanatlas
https://gdc.cancer.gov/about-data/publications/pancanatlas
https://portal.gdc.cancer.gov/
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and smoking history (Figure 2E). The ssGSEA method 

was used to determine the infiltration levels of various 

immune cell populations in the five CoCu clusters. 

Figure 2F illustrates that the distribution of all 23 types 

of immune cells across the clusters differed 

significantly from a statistical perspective. By 

comparing the five CoCu clusters, we carried out an 

analysis to find differentially expressed genes and 

identified 72 CoCu-DEGs (Supplementary Table 2). 

The KEGG was performed using these 72 CoCu-DEGs 

and demonstrated the top ten pathways related to the 

CoCu cluster, which were VEGF signaling pathway, 

Parkinson disease, Alzheimer disease, Huntington 

disease, oxidative phosphorylation, alpha-Linolenic acid 

metabolism, linoleic acid metabolism, ether lipid 

metabolism, thermogenesis, and ovarian steroidogenesis 

(Figure 2G). 

Two CoCu-DEG clusters determined and a 

CoCuLncSig generated 

 

Using CoCu-DEG as a basis, we attempted to classify 

the training cohort LUADs into 2, 3, 4, 5, 6, 7, 8, 9, and 

10 clusters, respectively (Figure 3A, upper-left). We 

examined the intragroup consistency of each group by 

checking the consensus values, and the results indicated 

that when k is 2, the clusters have the highest average 

consistency (Figure 3A, upper-left). We plotted the 

clustering diagram for k = 2, showing the clustering was 

relatively neat and well gathered (Figure 3A, upper-

right). Next, we constructed the KM curve for k = 2 

cluster, finding that the survival difference in clusters 

was statistically significant (Figure 3A, lower-left). 

Based on the results of PCA, it was observed that 

clusters C1 and C2 were distinctly separated from each 

 

 
 

Figure 1. Flowchart of the main steps, design, and analysis process of this study [80]. Abbreviations: TCGA: The Cancer Genome 

Atlas; LUAD: lung adenocarcinoma; CoCuLncSig: copper homeostasis and cuproptosis regulated lncRNA signature; HR: hazard ratio; ROC: 
receiver operating characteristic; AUC: area under the ROC curve; TP: true positive rate; FP: false positive rate; PC: principal component; 
GSEA: gene set enrichment analysis; CMap: Connectivity Map; DEGs: differentially expressed genes; qRT-PCR: quantitative real-time PCR. 
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Figure 2. Removal of batch effects for the validation cohort and construction of the CoCu cluster . (A) The validation cohort is 

visually compared before and after the elimination of batch effects. The UMAP plot displayed at the top depicts the combined state of the 
GEO dataset before removing the batch effect. Conversely, the UMAP plot in the lower section illustrates that after removing the batch 
effect from the merged dataset, the samples are interwoven, providing proof of the effectiveness of batch effect removal. (B) 110 genes 
that correlate to both copper homeostasis and cuproptosis-regulated genes were identified using a Venn diagram. (C) CDF plot (left) 
showing the downward trend of the curve. Consensus plot (right) showing the consensus value at specific k value. (D) Based on the 
evidence provided from CDF and consensus plots, we were more interested in the clustering situation when k = 4, 5, and 6. Clustering 
diagrams (upper) for k = 4, 5, and 6. KM curves (lower) for each k value. (E) The heatmap depicts the correlation between CoCu clusters, 
clinical parameters, and 110 genes associated with copper homeostasis and cuproptosis. The asterisks indicate statistical differences 
between CoCu clusters. In the heatmap, each row corresponds to a specific gene, while each column corresponds to a particular sample. (F) 
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The box plots illustrate notable variations in the distribution of all 23 immune cell types across the 5 CoCu clusters, indicating statistical 
significance. (G) KEGG that was performed using 72 CoCu-DEGs showing the top enriched pathways. CoCu clusters: clusters identified by 
copper homeostasis and cuproptosis correlated genes; CoCu-DEGs: differentially expressed genes identified among CoCu clusters; UMAP: 
Uniform Manifold Approximation and Projection; CDF: cumulative distribution function; KM: Kaplan–Meier estimator; DEGs: differentially 
expressed genes; KEGG: Kyoto Encyclopedia of Genes and Genomes; A statistically significant P-value was defined as being less than 0.05; 
The following notation was used: * for P-values less than 0.05, ** for P-values less than 0.01, and *** for P-values less than 0.001. 

 

other (Figure 3A, bottom right). Considering these pieces 

of evidence, we propose that the clusters at k = 2, namely 

the CoCu-DEG clusters (Figure 3B), can be the focus of 

our study. Notably, the analysis revealed that LUAD 

patients in the CoCu-DEG cluster exhibited significant 

differences in terms of gender and tumor stage (Figure 

3B). Further, by utilizing ssGSEA, we were able to 

determine the extent of infiltration of various types of 

immune cells within the CoCu-DEG clusters. Figure 3C 

depicted that among the CoCu-DEG clusters, 15 distinct 

immune cells, namely Activated B cell, Activated CD4 T 

cell, Activated dendritic cell, CD56dim natural killer cell, 

Eosinophil, Gamma delta T cell, Immature B cell, 

Immature dendritic cell, Mast cell, Natural killer T cell, 

Natural killer cell, Neutrophil, T follicular helper cell, 

Type 1 T helper cell, and Type 2 T helper cell, were 

significantly distributed. To identify the key KEGG 

pathways between the CoCu-DEG clusters, we 

conducted GSVA (Figure 3D, Supplementary Table 3). 

Surprisingly, KEGG_PROTEASOME, KEGG_DNA 

REPLICATION, KEGG_PARKINSONS_DISEASE, 

KEGG_OXIDATIVE_PHOSPHORYLATION, KEGG_ 

CELL_CYCLE, KEGG_PENTOSE_PHOSPHATE 

PATHWAY, KEGG_HUNTINGTONS_DISEASE, 

KEGG_PYRIMIDINE_METABOLISM, KEGG 

ALZHEIMERS_DISEASE, and KEGG PORPHYRIN 

_AND_CHLOROPHYLL_METABOLISM ranked as 

the top 10 pathways. Notably, we looked at the 

distribution of 21 copper homeostasis/cuproptosis-

regulated genes across CoCu-DEG clusters and found 

15 genes (STEAP1, SLC31A1, SOD1, ATOX1, 

ATP7A, COX17, MT-CO1, FDX1, DLD, DLAT, 

PDHA1, PDHB, MTF1, GLS, and CDKN2A) were 

related to the clusters (Figure 3E). 

 

6646 DELs were identified based on our predefined 

criteria. Subsequent KM and Cox analyses were 

performed to screen these DELs, and only 15 of them 

met our criteria (Supplementary Table 4). Further 

narrowing down of the results was done using LASSO 

analysis on these 15 DELs, which identified eight 

lncRNAs and their corresponding coefficients (Figure 

4A, Table 1). To explore the relationships among CoCu 

clusters, CoCu-DEG clusters, risks, and vital status, a 

Sankey diagram was created (Figure 4B). We also 

observed significant differences in risk scores among 

the CoCu clusters (Figure 4C). Interestingly, the risk 

scores among the CoCu-DEG clusters were also 

significantly different. We next tested the expression 

situation of the 21 copper homeostasis/cuproptosis-

regulated genes in the high- and low-risk groups finding 

14 genes (STEAP1, SLC31A1, CCS, ATP7A, COX11, 

SCO1, MT-CO1, FDX1, LIAS, LIPT1, PDHA1, 

PDHB, MTF1, and GLS) significantly differently 

expressed (Figure 4D). Among the 14 genes found, only 

STEAP1 was up-regulated, while the remaining genes 

were down-regulated in the high-risk group. In addition, 

we have shown the association between the 21 copper 

homeostasis/cuproptosis-regulated genes and each 

CoCuLncSig lncRNA, which is illustrated in 

Supplementary Figure 1A. 

 

Validation results demonstrated robust prognostic 

ability of CoCuLncSig 

 

The fundamental performance of our CoCuLncSig  

in both the training and validation cohorts is 

demonstrated in Supplementary Figure 1B, 1C, 

respectively. In our analysis of KM, we made survival 

predictions for whole-time, 3-year, and 5-year periods. 

The results indicated that both the high-risk LUADs in 

the training cohort (Figure 5A, upper) and those in the 

validation cohort (Figure 5A, lower) had a worse 

prognosis than those in the low-risk groups. 

Additionally, the KM curve presented in Sup-

plementary Figure 2A of the supplementary material 

illustrates the prognostic ability of each CoCuLncSig 

lncRNA in the two cohorts. This curve reveals that 

ITGB1-DT and LINC01833 were associated with a 

worse prognosis for LUADs, while AL691432.2, 

AC093010.2, AC107464.3, AC025278.1, COLCA1, 

and AC026471.3 were associated with improved 

outcomes in LUADs. Our analysis then determined 

whether the risk score was a reliable predictor of 

outcomes for LUAD patients, independent of clinical 

parameters such as age, gender, race, ethnicity, tumor 

stage, tumor origin, etc. To this end, univariate and 

multivariable analyses were performed, as illustrated in 

Figure 5B. The risk scores displayed significant 

prognostic ability (p ≤ 4.20e-05) in univariate Cox 

regression analysis for both the training and validation 

cohorts. In the training cohort, the risk score had a 

hazard ratio of 3.43 (95% CI: 2.22–5.29, p = 2.54e-08) 

in multivariate Cox analysis, while in the validation 

cohort, the risk score had a hazard ratio of 1.84 (95% CI: 

1.28-2.64, p = 9.37e-04). These results indicate that the 

risk score performed well in both cohorts and can be 

considered an independent prognostic factor. 

Interestingly, while the ‘age’ factor showed independent 

prognostic power in the validation cohort, it did not  
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Table 2. The clinical baseline conditions of the cohorts and patients included in the study. 

Characteristics 

Training cohort Validation cohort 

(TCGA-LUAD, n = 500) 
(GSE29013, GSE30219, GSE31210,  
GSE37745, and GSE50081, n = 554) 

Age 

<65 219 (43.8%) 315 (56.86%) 

≥65 271 (54.2%) 239 (43.14%) 

Unknown 10 (2%) 0 

Gender 

Female 270 (54%) 265 (47.83%) 

Male 230 (46%) 289 (52.17%) 

Race 

White 386 (77.2%) NA 

Non-White 60 (12%) NA 

Unknown 54 (10.8%) NA 

Ethnicity 

Hispanic or Latino 7 (1.4%) NA 

Non-Hispanic or Latino 381 (76.2%) NA 

Unknown 112 (22.4%) NA 

Tumor stage 

Stage I 268 (53.6%) 339 (61.19%) 

Stage II 119 (23.8%) 108 (19.49%) 

Stage III 80 (16%) 21 (3.79%) 

Stage IV 25 (5%) 4 (0.72%) 

Unknown 8 (1.6%) 82 (14.8%) 

Prior malignancy 

Yes 79 (15.8%) NA 

No 421 (84.2%) NA 

Tissue origin 

Upper lobe lung 291 (58.2%) NA 

Non-upper lobe lung 209 (41.8%) NA 

Smoking history 

Ever 415 (83%) 216 (38.99%) 

Never 71 (14.2%) 139 (25.09%) 

Unknown 14 (2.8%) 199 (35.92%) 

Vital status 

Alive 318 (63.6%) 348 (62.82%) 

Dead 182 (36.4%) 206 (37.18%) 

 

have any independent predictive power in the training 

cohort. In Supplementary Figure 2B of the sup-

plementary material, we have provided an analysis of 

the results and visualization for each CoCuLncSig 

lncRNA using univariate Cox regression. ROC analysis 

(Figure 5C) and tAUC (Figure 5D) were utilized to 

evaluate the accuracy of the model. The CoCuLncSig 

AUC in the training cohort was determined to be 0.737, 

0.657, and 0.652 at one year, three years, and five years, 

respectively, as indicated by the ROC curves. In the 

validation cohort, the AUC was found to be 0.693, 

0.646, and 0.632 at one year, three years, and five years, 

respectively. The CoCuLncSig model’s accuracy was 

continuously assessed using tAUC. In the training 

cohort (Figure 5D, left), our risk score was found to  

be in close proximity to the tumor stage, as determined 

by tAUC. This was also observed in the validation 

cohort (Figure 5D, right), where the model’s tAUC  

was also comparable to the tumor stage, which has 

been regarded as the gold standard for prognosis 

prediction. Remarkably, when we combined our risk 

score with the tumor stage for tAUC, the predictive 
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Figure 3. Two CoCu-DEG clusters identified. (A) The development process of CoCu-DEG clusters, and its KM and PCA performance. 72 

CoCu-DEGs were applied for the clusters’ generation. Consensus plot (top left) showing the consensus value at specific k value. Clustering 
diagrams for k = 2 displaying at the top right. KM curves for k = 2 is at the lower left and PCA plot is at the lower right for k = 2. (B) The 
heatmap depicts the correlation between CoCu-DEG clusters, clinical parameters, and 72 CoCu-DEGs. The asterisks indicate statistical 
differences between CoCu clusters. In the heatmap, each row corresponds to a specific gene, while each column corresponds to a particular 
sample. (C) The box plots illustrate variations in the distribution of 23 immune cell types across the two CoCu-DEG clusters. The asterisks 
indicate distribution statistical differences between clusters. (D) A heatmap was used to visualize the enrichment of KEGG pathways that 
were present between the CoCu-DEG clusters, which was carried out utilizing the R package “GSVA.” (E) Box plots show the distribution of 
21 copper homeostasis/cuproptosis-regulated genes across CoCu-DEG clusters. CoCu clusters: clusters identified by copper homeostasis 
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and cuproptosis correlated genes; CoCu-DEGs: differentially expressed genes identified among CoCu clusters; CoCu-DEG clusters: clusters 
identified by CoCu-DEGs; DEGs: differentially expressed genes; KM: Kaplan–Meier estimator; PCA: Principal component analysis; KEGG: 
Kyoto Encyclopedia of Genes and Genomes; In Figure 3, statistical significance was defined as a P-value < 0.05; Results with P-values 
greater than or equal to 0.05 were considered not significant (ns), while those with P-values less than 0.05, 0.01, and 0.001 were denoted 
by *, **, and ***, respectively. 

 

AUC of the combination was consistently above 0.7 in 

the training cohort (Figure 5D, left) and outperformed 

other factors at all time points in the validation cohort 

(Figure 5D, right). These findings indicate that our 

CoCuLncSig risk score’s accuracy is comparable to 

that of the tumor stage and an excellent complement to 

it. Figure 5E of the study showed that there was 

significant heterogeneity between high-risk and low-

risk patients in the study cohorts based on the results  

of PCA. This suggests that the risk score model is 

effective in distinguishing these two groups. 

Furthermore, a nomogram (Figure 5F) was developed 

using clinical parameters such as age, tumor stage, 

gender, smoking history, tissue origin, prior 

malignancy, and risk score. This nomogram has the 

potential to assist in determining the 1-year, 3-year, and 

5-year prognosis status of clinical patients. The 

predictive accuracy of the nomogram was confirmed by 

the calibration curve (Figure 5G). The GSEA analysis 

demonstrated the most vital ten CoCuLncSig related 

KEGG pathways were related to alpha-Linolenic acid 

metabolism, gonadotropin-releasing hormone signaling 

pathway, long-term depression, linoleic acid 

metabolism, vascular smooth muscle contraction, 

proximal tubule bicarbonate reclamation, dilated 

cardiomyopathy, ether lipid metabolism, hypertrophic 

 

 
 

Figure 4. The establishment of the risk model CoCuLncSig and its basic performance demonstration.  (A) This visualization 

depicts the reduction of dimensionality for prognostic lncRNAs through the use of the LASSO algorithm. The left section of the visualization 
displays the LASSO coefficient profile for the examined prognostic lncRNAs, while the right section illustrates the LASSO regression process 
employing ten-fold cross-validation and minimal Lambda to identify eight prognostic lncRNAs. (B) The relationship between CoCu clusters, 
CoCu-DEG clusters, risks, and vital status in general is illustrated by the Sankey diagram. The diagram reveals that a notable portion of the 
C1 clusters in CoCu-DEG display high-risk scores, while the majority of its C2 clusters exhibit low-risk scores. (C) The box plots on the left 
panel demonstrate distinct statistical variations in the distributions of risk scores across the five CoCu clusters. On the right panel, the box 
plots exhibit statistically different distributions of risk scores in the two CoCu-DEG clusters. (D) Box plots display expression pattern of the 
21 copper homeostasis/cuproptosis-regulated genes in the high- and low-risk groups. CoCuLncSig: copper homeostasis and cuproptosis 
regulated lncRNA signature; CoCu clusters: clusters identified by copper homeostasis and cuproptosis correlated genes; CoCu-DEGs: 
differentially expressed genes identified among CoCu clusters; CoCu-DEG clusters: clusters identified by CoCu-DEGs; DEGs: differentially 
expressed genes; LASSO: least absolute shrinkage and selection operator; A P-value less than 0.05 was considered significant for statistical 
analysis; The notation * represents P-value less than 0.05, ** represents P-value less than 0.01, *** represents P-value less than 0.001, and 
**** represents P-value less than 0.0001. 
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Figure 5. The stability and applicability of CoCuLncSig were validated in the study cohorts. (A) The prognostic value of 

CoCuLncSig was demonstrated through Kaplan-Meier analysis in both the training and validation cohorts, which also affirms its broad 
applicability. By using their median CoCuLncSig risk scores, patients were stratified into high- and low-risk groups, and Kaplan-Meier 
analysis revealed significant differences in survival between the two groups. (B) Univariate and multivariate Cox proportional hazards 
models were built, incorporating risk scores and several clinical variables. #: the types of variables involved in the studied cohorts. The types 
of variables included in the analysis were defined as follows: Gender (male vs. female), Race (white vs. non-white), Ethnicity (Hispanic or 
Latino vs. non-Hispanic or Latino), Prior malignancy (yes vs. no), Tumor origin (upper lobe lung vs. non-upper lobe lung), and Smoking 
history (ever vs. never). (C) ROC curves. Our signature’s accuracy in predicting LUAD outcomes at 1-year, 3-year, and 5-year intervals was 
evaluated using ROC curves. (D) The purpose of the tAUC analysis was to continually assess the prognostic precision of our signature 
relative to other clinical measures over successive time intervals. An increase in the AUC size is indicative of a more robust predictive 
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accuracy of the model. (E) The principal component analysis visualization clearly indicates that the signature is capable of distinguishing the 
LUAD population. (F) A nomogram model was created that predicts the clinical outcome of LUAD patients using seven factors: risk score, 
tumor stage, age, grade, smoking history, prior malignancy, and tissue origin. This model forecasts the overall survival of patients for 1, 3, 
and 5 years in the TCGA-LUAD cohort. The significance of the results was indicated using asterisks, where * represents a p-value of < 0.05 
and *** represents a p-value of < 0.001. (G) 1-, 3-, and 5-year overall survival calibration plots for LUAD patients based on the predictive 
nomogram model. These plots depict the predicted survival rate on the X-axis and the actual survival rate of LUAD patients on the Y-axis. 
The 45° line on the graph indicates the optimal predicted value. A curve that closely follows the 45° line indicates better results. (H) The 
GSEA analysis identified 10 KEGG pathways with the strongest association with CoCuLncSig. These pathways’ significance thresholds were 
established as p-value < 0.05 and FDR < 0.25. CoCuLncSig: copper homeostasis and cuproptosis regulated lncRNA signature; L95: 95% 
confidence interval lower; H95: 95% confidence interval higher; HR: hazard ratio; AUC: area under the ROC curve; ROC: receiver operating 
characteristic; tAUC: time-dependent AUC; TCGA: The Cancer Genome Atlas; GSEA: Gene Set Enrichment Analysis; LUAD: lung 
adenocarcinoma; OS: overall survival; KEGG: Kyoto Encyclopedia of Genes and Genomes; FDR: false discovery rate; A statistical significance 
was deemed to be present when the P-value was less than 0.05. 

 

cardiomyopathy, and arachidonic acid metabolism 

(Figure 5H). 

 

CoCuLncSig is linked to LUAD immune status 

 

According to the consensus among the research 

community, cancer is characterized as a dynamic 

ecosystem in which malignant and noncancerous cells 

in the tumor microenvironment collaborate to facilitate 

the advancement of the disease. As a result, in order to 

properly examine LUAD, it is imperative to thoroughly 

investigate its tumor microenvironment. We utilized 

data from the TCGA cohort and the R language package 

“ESTIMATE” finding that the high-risk group exhibited 

decreased stromal, immune, and ESTIMATE scores. 

Additionally, all scores demonstrated a negative 

correlation with CoCuLncSig, as illustrated in Figure 

6A. By utilizing eight mainstream immune informatics 

algorithms and employing the Pearson correlation 

coefficient test and Wilcoxon rank sum test analysis 

methods, we were able to visually represent the 

relationship between CoCuLncSig and various immune 

components through a lollipop (Figure 6B) and heatmap 

(Figure 6C). To simplify the findings and present 

crucial information to readers, a Venn diagram (Figure 

6D) was used to intersect the results, revealing that CD4 

T cells, Memory B cells, Macrophages, Myeloid 

dendritic cells, and Mast cells are most likely to connect 

CoCuLncSig and LUAD immune status. Regarding 

CoCuLncSig’s immune function, the immune functions 

of the high-score group, such as CCR, Check-point, 

HLA, T_cell_co-inhibition, T_cell_co-stimulation, and 

Type_II_IFN_Response, were comparatively weak 

compared to the low-risk group (Figure 6E). These 

results suggest that CoCuLncSig may have a connection 

to the immune status of LUAD. 

 

CoCuLncSig participates in immunotherapy and 

targets immune checkpoints 

 

The top 10 ICB response pathways that CoCuLncSig 

correlated with were progesterone mediated oocyte 

maturation, oocyte meiosis, cell cycle, p53 signaling 

pathway, viral carcinogenesis, pyrimidine metabolism, 

mismatch repair, Fanconi anemia pathway, homologous 

recombination, and spliceosome (Figure 7A, Sup-

plementary Table 5). CoCuLncSig correlated with some 

of the tumor immune cycle steps, which the top 10 

ranked were Step 4 CD4 T cell recruiting, Step 4 

Basophil recruiting, Step 4 Eosinophil recruiting, Step 5 

Infiltration of immune cells into tumors, Step 2 Cancer 

antigen presentation, Step 4 TH17 cell recruiting, Step 4 

MDSC recruiting, Step 4 Neutrophil recruiting, Step 1 

Release of cancer cell antigens, and Step 4 B cell 

recruiting (Figure 7B, Supplementary Table 6). The 

relationship between CoCuLncSig and ICB response 

and the involvement of the tumor immune cycle steps 

further imply its potential connection to certain immune 

checkpoint treatments. 

 

In the training cohort, we analyzed the mutation profile 

of all tumor samples and depicted the top 20 genes with 

the most significant mutations in Figure 7C. TP53 was 

identified as the most frequently mutated gene, with a 

prevalence of around 47.6%, followed by TTN at 45.3% 

and CSMD3 at 36.4%. Our findings revealed that 

missense mutations were the most commonly observed 

variant classification across all mutation types. 

 

According to the Wilcoxon test results, the group with a 

higher risk score exhibited elevated TMB levels (Figure 

7D, upper-left), and a positive correlation was observed 

between risk score and TMB (Figure 7D, upper-right). 

Immunotherapy may confer longer-lasting clinical 

benefits for patients with higher TMB [35, 36]. Based 

on our analysis, it is plausible that our model’s high-

scoring LUADs could benefit from immunotherapy. 

Furthermore, our findings suggest that patients with 

high-risk scores had lower TIDE scores, and there was 

an inverse correlation between TIDE scores and risk 

scores (Figure 7D, lower panel). Patients with higher 

TIDE scores are more likely to experience immune 

evasion [30–32], implying that the high-risk population 

in our model could benefit more from immunotherapy. 

This finding aligns with our aforementioned discovery 

regarding TMB. To testify the immunotherapy trend 
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Figure 6. Extensive examination to investigate the correlation between CoCuLncSig and the tumor microenvironment 
status, immune cell infiltration, and immune function. (A) Boxplots compared the distribution of immune, stromal, and ESTIMATE 

scores between high and low-risk groups. The correlation of risk score with immune, stromal, and ESTIMATE scores was depicted using 
scatterplots. (B) Lollipop plots visualize the correlation of immune cell infiltration with CoCuLncSig scores. Here, the R language package 
“IOBR” generates the immune cell infiltration based on the training cohort data. (C) The heatmap demonstrates the immune cell infiltration 
distributions in high and low CoCuLncSig score population. (D) A Venn diagram (upper plot) depicts the intersection between the outcomes 
of the correlation analysis and the distributional differences. Word clouds (lower plot) were utilized to emphasize crucial immune cell-
infiltrating cell types that emerged from this intersection. (E) The violin plots display variations in the immune function distribution 
between the high-risk and low-risk LUADs. CoCuLncSig: copper homeostasis and cuproptosis regulated lncRNA signature; LUAD: lung 
adenocarcinoma; A P-value below 0.05 was deemed as statistically significant. “ns” indicates non-significance, “*” represents a P-value 
below 0.05, “**” signifies a P-value below 0.01, “***” denotes a P-value below 0.001, and “****” indicates a P-value below 0.0001. 
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Figure 7. Demonstration of the relationship between the CoCuLncSig and immunotherapy [80]. Correlation between risk score 

and ICB response signature (A) and correlation between risk score and each step of the tumor immune cycle (B). (C) A waterfall plot 
displays the mutational landscape of the 20 most frequently mutated genes in LUAD. Furthermore, the plot showcases the variations in 
mutations of these genes between the high-risk and low-risk LUADs. (D) Boxplots on the left show the difference in the distribution of TMB 
and TIDE among high-risk and low-risk patients by the Wilcoxon rank sum test. On the right side, scatterplots depict the correlations 
between risk scores and TMB and TIDE, evaluated by Pearson analysis. (E) The ridgeline plot (left) presents the distribution of risk score 
variation in nonresponse and response LUADs. The proportion (right) of patients with response and nonresponse to immunotherapy in the 
high and low CoCuLncSig score groups. (F) Lollipop plots visualize the correlation between CoCuLncSig and immune checkpoints. 
Correlation was detected by Pearson’s coefficient test. (G) Violin plots showing differences in expression of immune checkpoint genes 
between high and low risk groups. Differences in expression were analyzed using the Wilcoxon rank sum test. (H) Cox analysis was 
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performed to reveal the prognostic potential of the 60 checkpoint genes. The Cox results showed that 15 checkpoint genes had prognostic 
ability. (I) KM analysis evaluated whether high-expression and low-expression checkpoint genes had the predictive ability for LUAD 
outcomes. The KM results demonstrated that 8 out of 60 checkpoint genes could discriminate LUAD prognosis. (J) The Venn diagram 
merges findings from correlation analysis, difference distribution analysis, Cox analysis, and KM analysis to identify the checkpoint genes 
associated with CoCuLncSig and impacting the prognosis of LUAD. (K) A heatmap has been generated to display published datasets’ relative 
immunotherapy scores for six checkpoint genes. The checkpoint genes, ranked in order of their immunotherapy score from high to low, are 
IL10, IL2, CD40LG, SELP, BTLA, and CD28. The immunotherapy scores have been subjected to zero-mean normalization. CoCuLncSig: copper 
homeostasis and cuproptosis regulated lncRNA signature; KM: Kaplan–Meier estimator; TMB: Tumor mutational burden; ICB response: 
immune checkpoint blockers response; TIDE: Tumor Immune Dysfunction and Exclusion; ns: not significant; rSeg: r segment; pSeg: p-value 
segment; sign: significant; pos: positively; neg: negatively; LUAD: lung adenocarcinoma; Asterisks denote statistical significance levels; in 
this context, the significance levels for p-values are as follows: *p-value < 0.05 **p-value < 0.01 ***p-value < 0.001 ****p-value < 0.0001; A 
p value < 0.05 was used as the threshold for statistical significance. 

 

among CoCuLncSig risk score, we obtained 

immunotherapy response data of the TCGA-LUAD 

from the TIDE web portal and displayed them in the 

form of ridgeline plot and percent stacked column chart, 

as exhibited in Figure 7E. The ridgeline plot indicated 

that the response population has a higher risk score 

distribution than the nonresponse cases. The stacked 

column chart showed the high-risk population had a 

higher percentage of responses than that in the low-risk 

group. 

 

In our study, we conducted a literature review to 

identify immune checkpoint genes, selecting a total of 

60 based on previous research [33]. To analyze their 

relationship with the risk score, we utilized Pearson 

correlation coefficient analysis and displayed the results 

using lollipop plots (Figure 7F). As demonstrated in 

Figure 7F and Supplementary Table 7, 44 of the 60 

genes showed a significant association with the risk 

score. The top 5 were CD40LG (coefficient = 

−0.504060342, p = 1.41E-33), TNFRSF14 (coefficient 

= −0.438304706, p = 6.89E-25), SELP (coefficient = 

−0.425936122, p = 1.87E-23), ADORA2A (coefficient 

= −0.422734376, p = 4.30E-23), and BTLA (coefficient 

= −0.419675547, p = 9.45E-23) (Figure 7F, 

Supplementary Table 7). Violin plots were used to 

visualize the Wilcoxon test, which compared the 

distribution difference of 60 checkpoints between high-

risk and low-risk groups (Figure 7G). The analysis 

revealed that 44 checkpoint genes exhibited a 

differential distribution. 

 

To identify prognostic genes among the 60 checkpoints, 

we employed Cox analysis and KM analysis. Cox 

analysis indicated that LUAD prognosis was linked to 

15 checkpoint genes (Figure 7H), while KM analysis 

demonstrated that 8 out of 60 checkpoint genes were 

capable of distinguishing LUAD prognosis significantly 

(Figure 7I). To further investigate the checkpoints that 

have a strong association with CoCuLncSig and 

significantly influence prognosis, we utilized conducted 
lollipop diagrams, violin diagrams, Cox analysis, and 

KM analysis, and employed a Venn diagram to intersect 

the results. The Venn diagram revealed that CD40LG, 

BTLA, SELP, IL2, CD28, and IL10 are the most 

noteworthy checkpoints (Figure 7J). In order to gain a 

better understanding of how these six checkpoint genes 

may impact immunotherapy, we utilized a heatmap 

visualization to assess their effectiveness (Figure 7K). 

Our analysis revealed that IL10, IL2, CD40LG, SELP, 

BTLA, and CD28 were ranked in decreasing order  

of immunotherapy scores. These findings suggest  

that investigating the potential crosstalk between 

CoCuLncSig and immunotherapy should be a focus of 

future exploration. 

 

Selecting potentially effective drugs and validating 

them for high-risk score LUADs 

 

After removing duplicate entries, the combined CTRP 

and PRISM datasets comprised 1770 unique 

compounds. One hundred sixty compounds were 

common to both datasets, as depicted in Figure 8A and 

summarized in Supplementary Table 8. By utilizing 

both CTRP and PRISM data, we integrated two distinct 

methodologies to pinpoint potential therapeutic agents 

for LUADs with elevated risk scores (Figure 8B). These 

approaches produced eight CTRP-derived agents 

(including paclitaxel, leptomycin B, nakiterpiosin, 

fluorouracil, SB-743921, 3-Cl-AHPC, STF-31, and 

parbendazole) (Figure 8C, upper) and eight PRISM-

derived compounds (including cabazitaxel, epothilone-

b, vincristine, gemcitabine, SGI-1776, dolastatin-10, 

echinomycin, and MPI-0479605) (Figure 8D, upper). 

 

While 16 potential compounds demonstrated increased 

drug sensitivity in high-risk patients, relying solely on 

the above analysis is insufficient to conclude that these 

compounds are effective. Additional validation is 

necessary to provide more convincing evidence for our 

conclusion. Therefore, we proceeded with further 

validation analyses to evaluate the therapeutic 

potential of the 16 candidate compounds in high-risk 

score LUAD patients (Figure 8C lower, Figure 8D 

lower, Supplementary Table 9). According to the CMap 
analysis findings, two compounds, namely epothilone-

b and gemcitabine, exhibited a CMap score of less 

than −95, indicating their potential as promising 
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therapeutic options for LUAD. The fold-change values 

depicting elevated expression of drug target genes  

in tumor tissue as opposed to normal tissue suggest  

that these drug candidates have a higher likelihood  

of effectively treating LUAD. Additionally, we 

conducted a thorough search of the PubMed database 

https://www.ncbi.nlm.nih.gov/pubmed/) to find in vivo 

or in vitro studies supporting the efficacy of drug 

 

 
 

Figure 8. Identification of candidate drugs for high CoCuLncSig risk score patients. (A) The data for our drug prediction comes 

from the CTRP and PRISM databases, and the Venn diagram shows the compounds they include. (B) The flowchart shows the steps we 
explored in the drug databases of CTRP and PRISM, respectively, mainly including the Wilcoxon rank sum and the Spearman correlation 
statistical algorithms. (C) A collection of potential drugs has been discovered in the CTRP drug database. The top portion displays eight drug 
candidates that were identified through Spearman correlation and differential drug response analyses. The lower section presents the 
validation of the most encouraging LUAD therapeutics with high CoCuLncSig scores, using evidence from various sources. (D) The PRISM 
drug database has revealed a set of potential drug candidates. The top section displays eight drug candidates that were identified through 
Spearman correlation and differential drug response analyses. The lower section showcases the validation process for the most promising 
LUAD therapeutics with high CoCuLncSig scores, drawing on evidence from various sources. CoCuLncSig: copper homeostasis and 
cuproptosis regulated lncRNA signature; LUAD: lung adenocarcinoma; FC: fold change; #: fold change differences of drug targets between 
tumor and normal tissue (> 0 represents up-regulated in tumor tissue); ***P-value < 0.001; In the analysis, a P-value of less than 0.05 was 
considered statistically significant, denoted by an asterisk. 

https://www.ncbi.nlm.nih.gov/pubmed/
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Table 3. The characteristics of the similar categories of studies from predecessors [37–47]. 

Authors Published data Journal name Signature Study PMID 

Xiaocong Mo et al. July 22, 2022 Frontiers in Oncology 7-lncRNA signature PMID: 35936736 

Shaohui Wang et al. August 30, 2022 Frontiers in Pharmacology 6-lncRNA signature PMID: 36110528 

Fangwei Wang et al. September 1, 2022 World Journal of Surgical Oncology 16-lncRNA signature PMID: 36050740 

Wei Ye et al. October 7, 2022 MEDICINE 
3-lncRNA signature  

(no coefficient given) 
PMID: 36221373 

Zhuning Wang et al. October 14, 2022 Journal of Immunology Research 8-lncRNA signature PMID: 36281357  

Shouzheng Ma et al. October 31, 2022 Translational Lung Cancer Research 7-lncRNA signature PMID: 36386454  

Huang Di et al. December 9, 2022 MEDICINE 10-lncRNA signature PMID: 36626411 

Ran Chen et al. January 7, 2023 Clinical and Translational Oncology 
5-lncRNA signature  

(no coefficient given) 
PMID: 36609650 

Pengpeng Zhang et al. January 17, 2023 Frontiers in Oncology 7-lncRNA signature PMID: 36733364 

Linfeng Li et al. February 11, 2023 Scientific Reports 7-lncRNA signature PMID: 36774446  

Yu Wang et al. February 11, 2023 Scientific Reports 8-lncRNA signature PMID: 36774418  

 

 

(Candidates, Furthermore, we utilized 

https://www.clinicaltrials.gov/ to search for lung cancer 

clinical trials related to the drug candidates. Our 

findings, presented in Figure 8C, Figure 8D, and 

Supplementary Table 9, indicate that epothilone-b and 

gemcitabine exhibit promising results for the treatment 

of high-risk score LUAD, based on their outstanding in 

silico and in vitro performance. 

 

CoCuLncSig is better than similar previous studies 

in survival predictions 

 

In order to conclude whether our study is more robust 

than previous, we searched PubMed and initially eleven 

studies [37–47] were found (Table 3). However, Wei 

Ye et al. and Ran Chen et al. ‘s study did not provide 

the coefficient details of their signatures, which were 

excluded from our choices. Finally, nine studies [37–40, 

42, 43, 45–47] were listed as candidates for comparison 

with our signature (Table 3). To compare previous 

signatures with ours, we performed Cox regression 

analysis for overall, disease-specific, and progression-

free survival using four formats of official TCGA data 

(Figure 9), respectively. The analysis confirmed that 

CoCuLncSig has solid predictive ability in overall, 

disease-specific, and progression-free survival in four 

testing cohorts (p < 3.31e-04) (Figure 9). In particular, 

our signature occupies the first place in terms of p value 

in overall survival and disease-specific survival analysis 

of TCGA-LUAD_PanCanAtlas, TCGA-LUAD_Count, 

and TCGA-LUAD_FPKM_UQ, and progression-free 

survival analysis of TCGA-LUAD_FPKM (Figure 9). 

CoCuLncSig ranked 2nd in terms of p value in 

progression-free survival analysis of TCGA-

LUAD_PanCanAtlas, TCGA-LUAD_Count, and 

TCGA-LUAD_FPKM_UQ, and overall survival and 

disease-specific survival analysis of TCGA-

LUAD_FPKM (Figure 9). It’s worth noting that our 

signature didn’t rank third or worse in the comparisons. 

From the statistical significance comparison plots 

(Figure 9, right), we can see that the study that closest 

to our signature is from Shouzheng Ma et al., but they 

only ranked first in the progression-free survival 

analysis of TCGA-LUAD_Count and TCGA-LUAD 

FPKM_UQ with a slight advantage, and in other 

comparisons in a later position. 

 

Validation of CoCuLncSig in human tissues and 

pan-cancer 

 

Our qRT-PCR validation revealed differential 

expression of seven lncRNAs between LUAD and 

normal lung tissues (Figure 10A). Specifically, 

LINC01833 and ITGB1-DT were upregulated in LUAD 

tissues, while the remaining five lncRNAs were 

downregulated in cancer samples. Interestingly, our 

earlier analysis in Supplementary Figure 2 indicated 

that the upregulation of LINC01833 and ITGB1-DT in 

cancer tissues had a negative impact on LUAD 

prognosis. Conversely, our analysis in Supplementary 

Figure 2 confirmed that the downregulation of the other 

five lncRNAs had a protective effect on prognosis. The 

concurrence of the expression patterns and prognostic 

abilities further validates the efficacy of our developed 

CoCuLncSig and offers valuable insights for future in-

depth studies. It is worth noting that we did not find 

differential expression of AC025278.1 in tumors and 

normal tissues. We speculate that it is due to the size of 

the sample or the reason for the race, but the specific 

reason remains to be explored. 

https://pubmed.ncbi.nlm.nih.gov/35936736
https://pubmed.ncbi.nlm.nih.gov/36110528
https://pubmed.ncbi.nlm.nih.gov/36050740
https://pubmed.ncbi.nlm.nih.gov/36221373
https://pubmed.ncbi.nlm.nih.gov/36281357
https://pubmed.ncbi.nlm.nih.gov/36386454
https://pubmed.ncbi.nlm.nih.gov/36626411
https://pubmed.ncbi.nlm.nih.gov/36609650
https://pubmed.ncbi.nlm.nih.gov/36733364
https://pubmed.ncbi.nlm.nih.gov/36774446
https://pubmed.ncbi.nlm.nih.gov/36774418
https://www.clinicaltrials.gov/
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To test the effectiveness of our CoCuLncSig in pan-

cancer, we called the TCGA-LUAD_PanCanAtlas 

dataset. According to the calculation formula of the 

CoCuLncSig, the risk score distribution in pan-cancer 

was obtained, as shown in Figure 10B. We also called 

Cox regression to evaluate whether CoCuLncSig can 

impact the overall, disease-specific, and progression-free 

survival of pan-cancer. As a result, we found that our 

signatures were unfavorably influencing 25 of 32 kinds 

of cancer survival in terms of overall, disease- specific, 

and progression-free survival. What is very interesting is 

that our signature showed stable protectable effects on 

overall, disease-specific, and progression-free survival in 

READ, LGG, and THCA, which is worthy of further 

research. We analyzed the LUAD_PanCanAtlas dataset 

to explore the expression difference of the lncRNAs, as 

shown in Figure 10C. The plots hinted that the lncRNAs, 

AC026471.3, AL691432.2, COLCA1, ITGB1-DT, and 

LINC01833 ranked the different expression ability. The 

cancer types of KICH, KIPAN, KIRC, KIRP, and 

NSCLC may more strongly tell the eight lncRNAs’ 

differences between tumor and normal samples. The 

survival heatmap in Figure 10D showed that the ITGB1-

DT and LINC01833 might have an unfavorable impact 

on most parts of the pan-cancer population. In contrast, 

the remaining lncRNAs mostly protected the outcomes. 

Our preliminary investigation into the potential of 

CoCuLncSig and eight lncRNAs in pan-cancer has 

provided valuable insights and highlighted their 

significance, thereby paving the way for further research 

in other cancers. However, there are still several obscure 

factors that require in-depth examination. 
 

DISCUSSION 
 

Copper homeostasis refers to the maintenance of copper 

levels within the body at a stable and appropriate level 

[6]. This involves a delicate balance between copper 

uptake, distribution, utilization, and elimination [6]. 

Disruptions in copper homeostasis have been implicated

 

 
 

Figure 9. Comparison of previous signatures [37–47] with CoCuLncSig by performing Cox regression analysis for overall, 
disease-specific, and progression-free survival using four formats of official TCGA data. CoCuLncSig: copper homeostasis and 

cuproptosis regulated lncRNA signature. 
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in various human diseases, including cancer [48]. In 

cancer, copper is required for angiogenesis, the process 

of blood vessel formation that supplies tumors with 

nutrients and oxygen, and copper chelation therapy is 

being explored as a potential cancer treatment [48]. 

Cuproptosis refers to a recently discovered form of cell 

death triggered by copper, which is predominantly 

observed in cells that rely on oxidative phosphorylation 

as their primary metabolic process for energy 

production [6]. Numerous studies have indicated the 

crucial involvement of cuproptosis in cancer, 

particularly in its response to chemotherapy and 

radiation therapy [49, 50]. In some cases, cancer cells 

can become resistant to chemotherapy and radiation 

therapy by activating survival pathways that block 

apoptotic cell death. Furthermore, copper accumulation 

in cancer cells can also induce immunogenic cell death, 

which can trigger an immune response against the 

tumor [51]. This mechanism can potentially enhance the 

efficacy of immunotherapies and lead to better 

outcomes for cancer patients. Overall, understanding the 

roles of copper homeostasis and cuproptosis in cancer 

may lead to the development of new therapeutic 

strategies for cancer treatment, including the targeting 

of copper metabolism and the induction of cuproptosis 

as a means of enhancing the efficacy of existing 

treatments. 

 

Further attention should be given to the study of joint 

modulators of copper homeostasis and cuproptosis in 

the progression and prognosis of LUAD disease, as 

currently there are no existing studies on the topic. 

Establishing an effective classifier for the treatment, 

prediction, follow-up, and other clinical work of 

LUADs is crucial due to the heterogeneity of patients 

and the significant difference in their prognostic results. 

Our study employed a combination of public database 

mining and experimental validation, as well as the latest 

concept of copper homeostasis and cuproptosis to 

establish the LUAD clinical model, CoCuLncSig. By 

utilizing advanced algorithms and statistics, we were 

able to confirm the broad applicability and effectiveness 

of our signature. CoCuLncSig targets immune function 

and key immune molecules, such as IL10, IL2, 

CD40LG, SELP, BTLA, and CD28. Our screening of 

1770 compounds resulted in the identification of 

 

 
 

Figure 10. The qRT-PCR validation of expression pattern of CoCuLncSig lncRNAs in human tissues and the prognostic 
potential assessments of CoCuLncSig by pan-cancer analysis. (A) Boxplots showing the expression of CoCuLncSig lncRNAs measured 
by qRT-PCR in LUAD and adjacent tissues. (B) CoCuLncSig score distribution in pan-cancer and its impact on overall survival, disease specific 
survival, and progression free survival of each cancer type. (C) Heatmap depicts the variance in expression of CoCuLncSig lncRNAs between 
normal and tumor tissues across pan-cancer. The histogram at the top illustrates the count of genes exhibiting significant differential 
expression. Genes that are markedly upregulated and downregulated are identified with red and green markers, respectively. (D) Heatmap 
shows the prognostic ability of CoCuLncSig lncRNAs in pan-cancer. CoCuLncSig: copper homeostasis and cuproptosis regulated lncRNA 
signature. 
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effective drugs for patients with high CoCuLncSig 

scores, and multidimensional validation of these drugs 

confirmed their efficacy. We also compared our 

CoCuLncSig and previous similar studies, described 

real-world expression patterns of the eight lncRNAs 

using qRT-PCR, and assessed the performance of the 

signature and its lncRNAs in pan-cancer. 

 

Table 1 displays the signature we have devised in this 

study, comprising of eight lncRNAs: AL691432.2, 

AC093010.2, AC107464.3, AC025278.1, COLCA1, 

AC026471.3, LINC01833, and ITGB1-DT. In this study, 

validation through qRT-PCR confirmed that 7 out of 8 

lncRNAs in our signature exhibited differential expression 

in tumor and normal tissue samples (Figure 10A). While 

public data mining indicated that AC025278.1 was also 

differentially expressed in tumor and normal, we did not 

observe a significant difference in the human tissue 

samples used in our qRT-PCR. This discrepancy may be 

due to differences in ethnic distribution between our 

samples and those in the public database. However, 

further research is required to ascertain the specific 

reasons. Based on the analysis depicted in Supplementary 

Figure 2 of this study, it was found that LUAD prognosis 

is adversely affected by LINC01833 and ITGB1-DT, 

whereas the remaining lncRNAs included in the 

CoCuLncSig have a protective effect on prognosis. 

Furthermore, pan-cancer analysis has identified 

AC026471.3, AL691432.2, COLCA1, ITGB1-DT, and 

LINC01833 as the top five lncRNAs in our signature 

exhibiting the most significant difference between pan-

cancer tumors and normal tissue (Figure 10C). This 

finding may pique the interest of researchers and offer 

valuable insights for future investigations. Notably, our 

study highlights ITGB1-DT and LINC01833 as lncRNAs 

with a significant impact on the prognosis of more cancer 

types, warranting further attention in future research 

compare with other lncRNAs in the signature (Figure 

10D). The lncRNA LINC01833 was a particular point of 

interest in this study due to its distinct differential 

expression in tumor and normal tissues, as well as its 

prognostic potential in cancer. LINC01833 is a lncRNA 

that is located on chromosome 2. It regulates various 

cellular processes, including cell proliferation, differen-

tiation, and apoptosis. Multiple studies have demonstrated 

that LINC01833 can stimulate cancer cell proliferation, 

migration, and invasion in various cancer types [52, 53]. 

Specifically, LINC01833 can promote these activities by 

modulating the MiR-519e-3p/S100A4 axis and has shown 

promise as a biomarker for predicting cancer patient 

prognosis [52, 53]. In lung cancer tissues, LINC01833 is 

upregulated and has been linked to tumor progression and 

unfavorable prognosis [52, 53]. Nonetheless, additional 
research is necessary to gain a comprehensive 

understanding of how LINC01833 operates in lung 

cancer.  

Considerable effort has been invested in validating the 

accuracy of our model, including a comparative analysis 

with previous studies. To accomplish this, we gathered 

all published studies [37–40, 42, 43, 45–47] that were 

similar to our research and evaluated their performance, 

along with our model, on the official TCGA data 

(Figure 9). By constructing Cox models and analyzing 

three different outcome endpoint data sets, namely OS, 

DSS, and PFS, we determined that our model generally 

outperformed previously published models. These 

findings suggest that our model has significant 

advantages over existing models. In addition, our study 

of pan-cancer has revealed that our signature negatively 

impacts the prognosis of 25 out of 32 cancers, 

specifically concerning OS, DSS, and PFS (Figure 10B). 

Taken together, our model not only has a stronger 

prognostic ability for LUAD, but also has predictive 

ability for many other types of cancer. 

 

Tumor immunotherapy utilizes the immune system to 

combat cancer cells and is a form of cancer treatment. 

By tailoring treatment to an individual’s cancer type and 

immune system, immunotherapy has the potential to 

produce more effective and personalized outcomes [54]. 

Combining immunotherapy with other therapies like 

chemotherapy and radiation may enhance results [55]. 

Immunotherapy represents a highly promising and 

exciting area of oncology research, with the potential to 

transform cancer treatment and improve patient 

outcomes [55]. Immunotherapy’s primary obstacle is 

determining the suitability of a particular biomarker for 

a patient and devising a treatment plan that maximizes 

benefits [56]. This study sheds light on how immune 

checkpoints and CoCuLncSig are related, which can 

help determine the most effective immunotherapy 

methods for specific populations. The results of our 

study indicate that the CoCuLncSig score is strongly 

linked to TMB and TIDE, suggesting that CoCuLncSig 

could be a useful tool for guiding immunotherapy. 

Additionally, we identified six specific checkpoints 

(IL10, IL2, CD40LG, SELP, BTLA, and CD28) that are 

associated with CoCuLncSig, further supporting its 

potential role in guiding immunotherapy. In our selected 

cohort for immunotherapy, we evaluated the 

effectiveness of these checkpoints, and IL10, IL2, and 

CD40LG emerged as the top three checkpoints in terms 

of their immunotherapy capacity, listed in descending 

order (Figure 7K). IL-10 is a versatile cytokine that 

plays multiple roles in the immune system [57]. On one 

hand, it is required for the proper function of T-helper 

cells and for immune surveillance by T cells [58]. IL-10 

also suppresses cancer-associated inflammation, making 

it a key player in the host’s fight against cancer [59]. 
However, IL-10 is also involved in tumor immune 

escape, as it is an immunosuppressive cytokine [60]. In 

addition, IL-10 is known for its potent anti-
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inflammatory properties and its ability to dampen 

immune responses to both self and foreign antigens 

[59]. IL-10 signaling blockade has been shown to 

enhance vaccine-induced T cell responses and prevent 

tumor growth [61]. NSCLC patients undergoing 

immunotherapy may benefit from monitoring IL-10 

levels as a potential indicator of immune-related 

adverse events [62]. Activated CD4+ and CD8+ T cells 

secrete IL-2, a cytokine with important functions in 

regulating immune responses and promoting the 

expansion of T cells that recognize activating antigens 

[63]. IL-2 plays a critical role in the activation of the 

immune system and has been shown to be capable of 

mediating tumor regression as a monotherapy, making it 

a potential way to eradicate cancer [64]. In 1992, a 

laboratory-made form of IL-2 was the first immuno-

therapy approved to treat cancer, but its intravenous 

administration causes severe side effects, limiting its 

use [65]. However, in China, IL-2 has been approved 

since 1998 for the treatment of malignant pleural 

effusion [66]. Additionally, a meta-analysis has shown 

that IL-2 combination therapy is efficacious in treating 

NSCLC, improving overall survival without significant 

toxic reactions [67]. CD40LG, also known as CD154, is 

a protein that belongs to the TNF superfamily and is 

primarily found on activated T cells [68]. Initially, it 

was recognized for its critical role in T cell-dependent 

humoral responses by interacting with CD40, but later 

studies showed that it is also involved in cell-mediated 

immunity and inflammation [69]. CD154 can interact 

with CD40 alone or in combination with integrin 

receptors, contributing to the development of chronic 

inflammatory-related diseases [70]. Despite its 

involvement in disease development, CD154 has high 

potential for cancer treatment [69]. It activates anti-

tumoral immunity and can induce apoptosis of tumor 

cells by engaging CD40 [69]. Animal models and 

clinical assessments have demonstrated the significant 

role of CD154 in cancer immunotherapy [71]. 

 

Due to the high degree of heterogeneity among 

individuals with LUAD, it is challenging to effectively 

treat all cases using a single approach [72]. Current 

treatment methods for advanced LUAD are not equipped 

with corresponding biomarkers, rely on population-

based approaches, and have limited treatment outcomes 

[72]. The primary objective of this research is to identify 

personalized drug or small molecule therapeutic 

strategies for individual patients, which is crucial for 

optimizing therapeutic efficacy. Our developed 

CoCuLncSig model offers prognostic insights for 

patients with LUAD and can aid in precision oncology 

by guiding targeted therapies such as small-molecule 
drugs. We have pinpointed 16 drug candidates that 

demonstrate potential efficacy in the high-CoCuLncSig-

scoring population. After several validations, we have 

found that Epothilone B and gemcitabine exhibit strong 

therapeutic potential with robust supporting evidence. 

Epothilone B has the potential to be an effective 

anticancer drug as it hinders cell division by interfering 

with microtubulin function [73]. Although microtubules 

are crucial for cell division, Epothilone B’s binding at 

the interface of two tubulin subunits hampers the general 

dynamics of microtubules [73]. Additionally, Epothilone 

B has been granted approval for treating metastatic 

breast cancer [74] and has exhibited encouraging clinical 

activity in a phase II trial conducted among NSCLC 

patients [75]. Gemcitabine is a chemotherapy drug used 

to treat different types of cancer, including bladder and 

breast cancer. In the 1980s, Larry Hertel synthesized 

gemcitabine for antiviral purposes, which later received 

FDA approval in 1998 as a treatment for NSCLC [76, 

77]. Research involving gemcitabine monotherapy in 

over 400 patients has consistently reported response 

rates exceeding 20%, and it has been well tolerated in 

advanced NSCLC [78, 79]. Gemcitabine and Epothilone 

B are both widely recognized for their effectiveness in 

treating NSCLC [75, 78, 79]. However, research on 

Epothilone B in NSCLC is currently limited. Our study 

aims to contribute to the existing evidence by 

demonstrating the potential benefits of Epothilone B in 

our high-scoring patients, providing a fresh perspective 

for further investigation. Despite the considerable 

amount of data on gemcitabine in NSCLC patients, the 

drug’s effectiveness varies due to the heterogeneity of 

tumors [72]. Nevertheless, our study provides valuable 

guidance for the use of gemcitabine, indicating that 

high-scoring patients may be more responsive to the 

drug. Further exploration and research are needed to 

support our findings. 

 

This study has limitations. Despite the validation of 

CoCuLncSig’s stable prognostic power in another large 

independent cohort and the confirmation of its stronger 

predictive ability through comparison with similar 

published studies, the data source in this study were 

solely obtained from open-access databases. Even 

though qRT-PCR conducted on human tissue samples 

has validated the differential expression of CoCuLncSig 

lncRNAs in tumor and normal tissues, the mechanisms 

behind this signature remain unclear. As such, more 

studies focusing on in vivo and in vitro experiments are 

urgently needed to provide further evidence supporting 

CoCuLncSig’s potential role in copper homeostasis, 

cuproptosis, and its clinical significance. 

 

CONCLUSION 
 

The current research has developed a lncRNA signature, 

CoCuLncSig, associated with copper homeostasis and 

cuproptosis. This signature has been constructed to 

predict the prognosis of LUAD, and its stability and 
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superiority have been confirmed by independent 

validation and comparison with previous studies. qRT-

PCR assessment has also confirmed the differential 

expression of CoCuLncSig lncRNAs. The study 

highlights the significant role of CoCuLncSig in LUAD 

immune function and its potential for precision 

immunotherapy. Furthermore, our study identifies 

possible immunotherapeutic targets and drugs closely 

associated with CoCuLncSig, which could guide 

targeted therapy based on population characteristics. In 

conclusion, this study provides new insights into 

prognostic prediction and highlights the integration of 

immunotherapy personalization and precision therapy. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. The profile of the signature lncRNAs. (A) The heatmap shows the signature’s eight lncRNAs’ correlations 

with 21 copper homeostasis/cuproptosis-regulated genes. (B, C) The distributions of the risk score, survival status, survival time, and eight 
lncRNAs’ levels for LUAD cases in the training cohort and validation cohort. 
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Supplementary Figure 2. The Kaplan-Meier analysis (A) and univariate Cox models (B) established in the studied cohorts testing the 
predictive ability of each of the eight signature lncRNAs. Patients were grouped based on their median risk score. The Kaplan-Meier method 
compared the survival difference between high and low-risk patients, and the log-rank test examined the significance. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Table 3, 8 and 9. 

 

Supplementary Table 1. 60 immune checkpoints obtained from previous studies. 

ID Type 

VSIR Inhibitory 

VTCN1 Inhibitor y 

VEGFB Inhibitory 

VEGFA Inhibitory 

TNFSF9 Stimulaotry 

TNFSF4 Stimulaotry 

TNFRSF9 Stimulaotry 

TNFRSF4 Stimulaotry 

TNFRSF18 Stimulaotry 

TNFRSF14 Stimulaotry 

TNF Stimulaotry 

TLR4 Stimulaotry 

TIGIT Inhibitory 

TGFB1 Inhibitory 

SLAMF7 Inhibitory 

SELP Stimulaotry 

PRF1 Stimulaotry 

PDCD1 Inhibitory 

LAG3 Inhibitory 

KIR2DL3 Inhibitory 

KIR2DL1 Inhibitory 

ITGB2 Stimulaotry 

L4 Inhibitory 

L2RA Stimulaotry 

L2 Stimulaotry 

L1B Stimulaotry 

L1A Stimulaotry 

L13 Inhibitory 

L12A Inhibitory 

L10 Inhibitory 

FNG Stimulaotry 

FNA2 Stimulaotry 

FNA1 Stimulaotry 

0 0 1 Inhibitory 

COSLG Stimulaotry 

ICOS Stimulaotry 

ICAM1 Stimulaotry 

HMGB1 Stimulaotry 

HAVCR2 Inhibitory 

GZMA Stimulaotry 

ENTPD1 Stimulaotry 

EDNRB Inhibitory 
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CXCL9 Stimulaotry 

CXCL10 Stimulaotry 

CX3CL1 Stimulaotry 

CTLA4 Inhibitory 

CD80 Stimulaotry 

CD70 Stimulaotry 

CD40LG Stimulaotry 

CD40 Stimulaotry 

CD28 Stimulaotry 

CD276 Inhibitory 

CD274 Inhibitory 

CD27 Stimulaotry 

CCL5 Stimulaotry 

BTN3A2 Stimulaotry 

BTN3A1 Stimulaotry 

BTLA Inhibitory 

ARG1 Inhibitory 

ADORA2A Inhibitory 

 

 

Supplementary Table 2. Seventy-two differentially expressed genes identified between five CoCu clusters. 

ID 

JMJD7-PLA2G4B  

STARD9  

AC020978.9  

AC008764.2  

GPRASP1  

AC018665.1  

TUBGCP6  

AL031714.1  

AL022328.1  

AC009120.3  

AL450263.1  

AC009120.2  

AC079336.5  

AC116366.2  

AL031709.1  

CKS1B 

STX16-NPEPL1  

MASP2  

CR559946.2  

AL022328.3  

AC004890.2  

AC006001.3  

LINC00106  

MRPL15  

AC005154.4  

PLA2G4B  
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AC008897.1  

AC116366.1  

RN7SKP70  

AC098851.1  

AC003070.1  

PFDN4 

PWAR5  

AL031600.1  

TNS1  

CGNL1  

ZNF767P 

AC108449.2  

ARMC2-AS1  

HERC2P2  

COX5B  

AL353588.1  

ROMO1  

GOLGA8R  

LY6G5B  

ERICH6B  

SLC5A4  

AC003957.1  

ANAPC11  

MRPL27  

ATP5ME 

C19orf53  

ZNF540  

GCC2  

DEPDC1  

ATP13A4  

CENPX  

NBEAL1  

PHACTR2P1  

CDC20  

GADD45GIP1  

COX8A 

RP11-164P12.4 

ESCO2  

ATP5MC1  

REL  

BAZ2B 

RP11-701H24.5  

RSF1 

ALKBH7  

FMC1  

SMIM29 
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Supplementary Table 3. KEGG pathways identified by GSVA between two CoCu-DEG clusters. 

 

Supplementary Table 4. The KM and Cox analysis screened the DELs and found 15 DELs meet our criteria for further 
LASSO. 

ID KM_pvalue HR HR_95L HR_95H Cox_pvalue 

AC009120.2 0.038352 0.56660 
0.38906 

8 
0.82515 0.003056 

AC020659.1 0.048046 
0.69086 

3 
0.53533 

6 
0.89157 

4 
0.004484 

AC025278.1 0.038672 
0.43355 

4 
0.23324 

1 
0.80589 

9 
0.008237 

AC026471.3 0.015271 
0.70985 

7 
0.55578 

1 
0.90664 

6 
0.006052 

AC093010.2 0.001083 
0.49578 

2 
0.33380 

1 
0.73636 

6 
0.000509 

AC107464.3 0.004118 
0.52626 

3 
0.37760 

3 
0.73345 

1 
0.00015 

AL353622.1 0.04654 
0.59920 

5 
0.42650 

5 
0.84183 

7 
0.003152 

AL691432.2 0.000232 
0.31181 

9 
0.19086 

3 
0.50943 3.27E-06 

AP002026.1 0.016943 
0.55833 

4 
0.38513 

9 
0.80941 

3 
0.002098 

COLCA1 0.003529 
0.58849 

3 
0.46601 

4 
0.74316 

2 
8.46E-06 

CYP2B7P 0.00346 
0.72841 

6 
0.61020 

1 
0.86953 

2 
0.000453 

ITGB1-DT 0.000232 1.70676 
1.34672 

9 
2.16304 

1 
9.75E-06 

LINC01833 0.001948 
1.32589 

5 
1.13295 

6 
1.55169 

1 
0.000438 

TSPOAP1-AS1 0.033559 
0.47930 

5 
0.31515 

7 
0.72894 

7 
0.000586 

ZNF710-AS1 0.01814 
0.55092 

3 
0.36467 

5 
0.83229 

3 
0.004626 

 

 
Supplementary Table 5. Correlations identified between CoCuLncSig and the immune checkpoint blocker response 
signature. 

ID r p sign absR rSeg pSeg 

Alcoholism 0.317842 3.36E-13 pos 0.317842 0.5 <0.001 

Base_excision_repair 0.458873 2.09E-27 pos 0.458873 0.5 <0.001 

Cell_cycle 0.551933 3.32E-41 pos 0.551933 0.75 <0.001 

Cytokine-cytokine_receptor_interaction −0.174487 8.78E-05 neg 0.174487 0.25 <0.001 

DNA_replication 0.488969 2.06E-31 pos 0.488969 0.5 <0.001 

Fanconi_anemia_pathway 0.512925 6.71E-35 pos 0.512925 0.75 <0.001 

Homologous_recombination 0.494461 3.45E-32 pos 0.494461 0.5 <0.001 

MicroRNAs in cancer 0.380949 1.03E-18 pos 0.380949 0.5 <0.001 

Mismatch_repair 0.518448 9.61E-36 pos 0.518448 0.75 <0.001 

Nucleotide_excision_repair 0.463601 5.21E-28 pos 0.463601 0.5 <0.001 

Oocyte_meiosis 0.574946 2.47E-45 pos 0.574946 0.75 <0.001 
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p53_signaling_pathway 0.536263 1.42E-38 pos 0.536263 0.75 <0.001 

Progesterone- 
mediated_oocyte_maturation 

0.597046 1.29E-49 pos 0.597046 0.75 <0.001 

Proteasome 0.284891 8.62E-11 pos 0.284891 0.5 <0.001 

Pyrimidine_metabolism 0.528358 2.69E-37 pos 0.528358 0.75 <0.001 

RNA_degradation 0.396127 3.11E-20 pos 0.396127 0.5 <0.001 

Spliceosome 0.492619 6.30E-32 pos 0.492619 0.5 <0.001 

Systemic_lupus_erythematosus 0.266495 1.41E-09 pos 0.266495 0.5 <0.001 

Viral_carcinogenesis 0.53229 6.29E-38 pos 0.53229 0.75 <0.001 

 

Supplementary Table 6. Correlations identified between CoCuLncSig and the tumor immune cycle steps. 

ID r p sign absR rSeg pSeg 

Step_1_Release_of_cancer_cell_antigens 0.165305 0.000205 pos 0.165305 0.25 <0.001 

Step_2_Cancer_antigen_presentation −0.221413 5.71E-07 neg 0.221413 0.25 <0.001 

Step_3_Priming_and_activation −0.102557 0.021816 neg 0.102557 0.25 <0.05 

Step_4_B_cell_recruiting −0.162754 0.000258 neg 0.162754 0.25 <0.001 

Step_4_Basophil_recruiting 0.314476 6.12E-13 pos 0.314476 0.5 <0.001 

Step_4_CD4_T_cell_recruiting −0.359971 9.63E-17 neg 0.359971 0.5 <0.001 

Step_4_CD8_T_cell_recruiting −0.004226 0.924908 neg 0.004226 0.25 ns 

Step_4_Dendritic_cell_recruiting −0.010722 0.810987 neg 0.010722 0.25 ns 

Step_4_Eosinophil_recruiting 0.307629 2.02E-12 pos 0.307629 0.5 <0.001 

Step_4_Macrophage_recruiting −0.00854 0.848934 neg 0.00854 0.25 ns 

Step_4_MDSC_recruiting 0.181006 4.68E-05 pos 0.181006 0.25 <0.001 

Step_4_Monocyte_recruiting 0.024725 0.581244 pos 0.024725 0.25 ns 

Step_4_Neutrophil_recruiting 0.180514 4.91E-05 pos 0.180514 0.25 <0.001 

Step_4_NK_cell_recruiting 0.017849 0.690518 pos 0.017849 0.25 ns 

Step_4_T_cell_recruiting −0.151569 0.000673 neg 0.151569 0.25 <0.001 

Step_4_TH1_cell_recruiting 0.085 0.05752 pos 0.085 0.25 ns 

Step_4_TH17_cell_recruiting −0.184121 3.44E-05 neg 0.184121 0.25 <0.001 

Step_4_Th2_cell_recruiting −0.086891 0.052168 neg 0.086891 0.25 ns 

Step_4_TH22_cell_recruiting −0.110149 0.013726 neg 0.110149 0.25 <0.05 

Step_4_Treg_cell_recruiting −0.100488 0.024637 neg 0.100488 0.25 <0.05 

Step_5_Infiltration_of_immune_cells_into_tumors −0.24098 4.88E-08 neg 0.24098 0.25 <0.001 

Step_6_Recognition_of_cancer_cells_by_T_cells 0.102157 0.022339 pos 0.102157 0.25 <0.05 

Step_?_Killing_of_cancer_cells −0.003032 0.946074 neg 0.003032 0.25 ns 

 

 

Supplementary Table 7. Correlations identified between CoCuLncSig and 60 immune checkpoint genes using the 
Pearson correlation coefficient. 

Genes cor pvalue 

ADORA2A −0.422734376 4.30E-23 

ARG1 −0.295481493 1.56E-11 

BTLA −0.419675547 9.45E-23 

BTN3A1 −0.310095462 1.32E-12 

BTN3A2 −0.248063616 1.90E-08 

CCL5 −0.128477904 0.004007163 

CO2? −0.334905757 1.43E-14 
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CD274 −0.063518361 0.156134943 

CD276 0.081440831 0.068829414 

CO28 −0.370361517 1.06E-17 

CO40 −0.192512989 1.46E-05 

CO40LG −0.504060342 1.41E-33 

CO70 0.000305993 0.99455441 

COBO −0.296297197 1.37E-11 

CTLA4 −0.306745955 2.36E-12 

CX3CL1 −0.367033739 2.17E-17 

CXCL10 0.04858284 0.278246571 

CXCL9 −0.074801613 0.094767141 

EDNRB −0.352046529 4.92E-16 

ENTPD1 −0.29612718 1.41E-11 

GZMA −0.094800545 0.034067326 

HAVCR2 −0.185886992 2.88E-05 

HMGB1 −0.051846811 0.247187926 

ICAM1 −0.317627504 3.50E-13 

ICOS −0.26315788 2.30E-09 

ICOSLG −0.207058275 3.03E-06 

001 −0.077338556 0.084059493 

FNA1 0.047107532 0.293119117 

FNA2 0.045016288 0.315096852 

FNG −0.025642875 0.567287385 

L10 −0.191580669 1.61E-05 

L12A −0.143913472 0.001252 

L13 −0.249069387 1.66E-08 

L1A 0.124791538 0.005200089 

L1B −0.086803407 0.052405482 

L2 −0.37708981 2.43E-18 

L2RA −0.110953556 0.013048004 

L4 −0.366527201 2.41E-17 

TGB2 −0.307862593 1.94E-12 

KIR2DL1 −0.072705502 0.104413161 

KIR2DL3 −0.061740117 0.168076463 

LAG3 −0.150219132 0.000752406 

PDCD1 −0.176593722 7.18E-05 

PRF1 −0.191238621 1.67E-05 

SELP −0.425936122 1.87E-23 

SLAMF7 −0.149814436 0.000777867 

TGFB1 −0.248568211 1.77E-08 

TIGIT −0.254435724 7.91E-09 

TLR4 −0.246665425 2.29E-08 

TNF −0.280494229 1.71E-10 

TNFRSF14 −0.438304706 6.89E-25 

TNFRSF18 −0.122333533 0.006164353 

TNFRSF4 −0.192245883 1.50E-05 

TNFRSF9 −0.095476734 0.032805198 

TNFSF4 0.033482287 0.455050103 
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TNFSF9 0.04738705 0.290261217 

VEGFA −0.146499297 0.001018496 

VEGFB −0.220307603 6.52E-07 

VSIR −0.29320105 2.27E-11 

VTCN1 −0.074043816 0.098168796 

 

 

Supplementary Table 8. Lists of drugs in CTRP and PRISM. 

 

Supplementary Table 9. List of potential therapeutic agents for LUAD patients with high-risk scores. 

 


