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ABSTRACT

Background: Copper homeostasis and cuproptosis play critical roles in various biological processes of cancer;
however, whether they can impact the prognosis of lung adenocarcinoma (LUAD) remain to be fully elucidated.
We aimed to adopt these concepts to create and validate a IncRNA signature for LUAD prognostic prediction.
Methods: For this study, the TCGA-LUAD dataset was used as the training cohort, and multiple datasets from
the GEO database were pooled as the validation cohort. Copper homeostasis and cuproptosis regulated genes
were obtained from published studies, and various statistical methods, including Kaplan-Meier (KM), Cox, and
LASSO, were used to train our gene signature CoCulLncSig. We utilized KM analysis, COX analysis, receiver
operating characteristic analysis, time-dependent AUC analysis, principal component analysis, and nomogram
predictor analysis in our validation process. We also compared CoCulLncSig with previous studies. We
performed analyses using R software to evaluate CoCulncSig's immunotherapeutic ability, focusing on eight
immune algorithms, TMB, and TIDE. Additionally, we investigated potential drugs that could be effective in
treating patients with high-risk scores. Additionally qRT-PCR examined the expression patterns of CoCuLncSig
IncRNAs, and the ability of CoCuLncSig in pan-cancer was also assessed.

Results: CoCulncSig containing eight IncRNAs was trained and showed strong predictive ability in the validation
cohort. Compared with previous similar studies, CoCulncSig had more prognostic ability advantages.
CoCulncSig was closely related to the immune status of LUAD, and its tight relationship with checkpoints IL10,
IL2, CD4OLG, SELP, BTLA, and CD28 may be the key to its potential immunotherapeutic ability. For the high
CoCulncSig score population, we found 16 drug candidates, among which epothilone-b and gemcitabine may
have the most potential. The pan-cancer analysis found that CoCuLncSig was a risk factor in multiple cancers.
Additionally, we discovered that some of the CoCuLncSig IncRNAs could play crucial roles in specific cancer
types.

Conclusion: The current study established a powerful prognostic CoCuLncSig signature for LUAD that was also
valid for most pan-cancers. This signature could serve as a potential target for immunotherapy and might help
the more efficient application of drugs to specific populations.
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INTRODUCTION

Lung cancer is the leading cancer diagnosis and cause
of cancer-related deaths worldwide [1, 2]. In 2020, there
were 2.2 million new cases of lung cancer and 1.8
million deaths attributed to this disease, accounting for
18% of all cancer-related deaths [1, 2]. Unfortunately,
lung cancer-related deaths are projected to increase
globally to approximately 3 million annually by 2035
due to the high prevalence of tobacco use and aging
populations [1, 2]. The most common type of lung
cancer is lung adenocarcinoma (LUAD) [1, 2].
Treatment strategies for LUAD can be divided into
five categories: surgery, chemotherapy, radiotherapy,
targeted therapy, and immunotherapy [3-5]. Despite
ongoing updates to clinical management strategies for
LUAD, issues such as a low early diagnosis rate and
unsatisfactory long-term patient survival persist [3-5].
Therefore, it is imperative to identify a new clinical
model that can precisely diagnose and prognose LUAD,
delve deeper into the molecular mechanisms underlying
its development, and generate novel ideas for targeted
therapies.

Cells tightly regulate their copper homeostasis through
a network of copper-dependent proteins, which main-
tain the intracellular copper content within specific
ranges [6]. Maintaining copper homeostasis is essential
to avoid the adverse effects of both copper deficiency
and copper overload [6]. An imbalance in copper levels
in the body has been correlated with several diseases,
including cancer [6]. Copper plays a crucial role in
cell signaling and contributes to cancer development
by promoting cell proliferation, angiogenesis, and
metastasis [6]. Studies have found elevated levels of
copper in lung cancer tissue, and research suggests that
high serum copper levels in patients with lung cancer
are linked to tumor stage and disease progression [7].
Tsvetkov et al. discovered a novel form of regulated cell
death, called cuproptosis, which is induced by
intracellular copper [6, 8]. This unique pathway of cell
death is distinguishable from established cell death
mechanisms by the aggregation of lipidated mito-
chondrial enzymes and the loss of Fe-S protein [6, 8].
The discovery of cuproptosis opens up new possibilities
for potential applications in cancer therapy. Evidence
suggests that copper complexes can be targeted for
therapeutic use in cancer treatment [9]. However, the
precise mechanism of cuproptosis remains unclear,
and its association with LUAD requires further
investigation. Considering the critical roles of copper
homeostasis and cuproptosis in cancer progression, the
corresponding related gene signatures are expected
to bring new insights into LUAD clinical treatment
and more clues to reveal the underlying molecular
mechanisms.

IncRNAs are RNA molecules that are longer than 200
nucleotides and do not provide instructions for making
proteins [10, 11]. They are known to have significant
roles in a variety of biological processes such as gene
regulation, chromatin modification, and epigenetic
regulation [10, 11]. Numerous studies have investigated
the possibility of using IncRNAs as indicators of lung
cancer in order to diagnose and forecast the disease [10,
11]. These studies have discovered many IncRNAs that
are abnormal in lung cancer and show promise as
diagnostic and prognostic biomarkers. For example,
lung cancer tissues exhibit elevated levels of HOTAIR
[12] and MALAT1 [13], which can facilitate the
growth, invasion, and metastasis of lung cancer.
Furthermore, a high degree of HOTAIR and MALAT1
expression is linked to unfavorable prognoses in
individuals with lung cancer [12, 13]. Considering their
potential as indicators of lung cancer, IncRNAs could
be utilized as therapeutic interventions for LUAD.
Further research on IncRNAs is needed to investigate
their potential.

The goal of this research is to develop a prognostic
signature for copper homeostasis and cuproptosis
regulated IncRNAs in LUAD. The study involved
validating the prognostic potential of the signature in a
large independent group and comparing its
effectiveness to similar previous studies. Using gRT-
PCR, we also confirmed the differential expression of
signature IncRNAs in normal and tumor lung tissues.
Moreover, the study explored the potential of
immunotherapy and identified certain checkpoints
(such as 1L10, IL2, CD40LG, SELP, BTLA, and
CD28) that could serve as indicators for the signature,
and potentially be used in immunotherapy for patients
with LUAD. The research identified several agents that
could be possible treatment options for high-risk
patients and evaluated the potential of the signature in
pan-cancer.

MATERIALS AND METHODS

Exploring datasets for this study and data
preprocessing

In the present study, we utilized expression data and
clinical characterization of patients with LUAD from
the TCGA-LUAD project, which was acquired through
the Xena Hub online portal (https://xenabrowser.net/)
and served as the training cohort. To validate our
results, we utilized the Gene Expression Omnibus
(GEO, https://www.ncbi.nlm.nih.gov/geo/) to gather
validation data. Our search on GEO was tailored to
identify a dataset related to “lung adenocarcinoma”,
where we filtered out any results that did not contain
expression and survival data to create our candidate
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dataset. We opted for GSE29013, GSE30219,
GSE31210, GSE37745, and GSE50081 datasets from
GEO. It is essential to highlight that these GEO datasets
underwent preprocessing before being used. To carry
out preprocessing, we utilized the R package
“inSilicoMerging” [14] to merge them, and we
eliminated batch effects using the approach established
by Johnson et al. [15]. The preprocessed GEO data was
utilized as the validation cohort.

Consensus clustering for clusters that identified by
copper homeostasis and cuproptosis correlated genes
(CoCu clusters)

We selected 11 copper homeostasis-regulated genes
[6], STEAP1, SLC31Al1l, CCS, SOD1, ATOXI1,
ATP7A, ATP7B, COX17, COX11, SCO1, and MT-
CO1, and 10 cuproptosis-regulated genes [8], FDX1,
LIAS, PDHA1L, PDHB, MTF1, LIPT1, DLD, DLAT,
GLS, and CDKN2A from previous studies. Applying
the Pearson test to the copper homeostasis-regulated
genes in the LUAD population and setting the
threshold as |coefficientl > 0.6 to yield copper
homeostasis-correlated genes. The same method and
threshold were applied to the cuproptosis-regulated
genes and outputted cuproptosis-correlated genes. We
then went to the intersection of the above correlated
genes and put them into an algorithm of consensus
clustering (“ConsensusClusterPlus” R package) to
classify the LUAD:s in the training cohort. We selected
the optimal value of k for forming our CoCu clusters
by evaluating the cumulative distribution function
(CDF) plot, intragroup consistency plot, and Kaplan-
Meier (KM) curve. KM curve was made possible by
using the R packages “survival” and ‘“survminer”.
Additionally, we employed several R packages,
including “GSEABase”, “reshape2”, “limma”,
“ggpubr”, and “GSVA”, to execute the single-sample
gene set enrichment analysis (ssGSEA) and generate
visualizations. We utilized the “limma” R package
with an FDR threshold of less than 0.05 to identify the
differentially expressed genes identified among CoCu
clusters (CoCu-DEGs) among the CoCu clusters.
Kyoto Encyclopedia of Genes and Genomes (KEGG)
analysis was then conducted on CoCu-DEGs for
discovering potential pathways. To perform KEGG
analysis, we employed the KEGG API (https://www.
keqqg.jp/kega/rest/keggapi.html) to retrieve the most
up to date KEGG Pathway gene annotations as a
reference for gene mapping. The R package
“clusterProfiler” (version 3.14.3) was utilized for
conducting enrichment analysis on specific operations.
The minimum gene set was set to 5, while the
maximum gene set was set to 5000. Results were
deemed statistically significant when the P value was
less than 0.05 and the FDR was less than 0.25.

Development of CoCu-DEG cluster and copper
homeostasis and cuproptosis regulated INncRNA
signature (CoCuLncSig)

We categorized patients in the training cohort based on
CoCu-DEGs and generated KM curves to evaluate
survival disparities across the CoCu-DEG clusters. To
assess the level of differentiation among the different
clusters, we utilized principal component analysis (PCA)
by using “scatterplot3d” package in R. Then we
conducted the ssSGSEA and generated visualizations.
Next, we employed the “limma”, “GSEABase”,
“GSVA”, and “pheatmap” R packages to perform
GSVA to identify the top significant KEGG pathways
among the CoCu-DEG clusters. We observed the
distribution of 21 copper homeostasis/cuproptosis-
regulated genes (STEAP1, SLC31Al, CCS, SOD1,
ATOX1, ATP7A, ATP7B, COX17, COX11, SCO1,
MT-CO1, FDX1, LIAS, PDHA1, PDHB, MTF1,
LIPT1, DLD, DLAT, GLS, and CDKN2A) across
CoCu-DEG clusters using boxplot. We explored the
IncRNA that were differentially expressed between the
CoCu-DEG clusters (DELs) with an FDR threshold of
less than 0.05. Subsequently, we conducted univariate
Cox and KM analyses on DELSs to identify the ones that
showed potential prognostic significance with a p-value
of less than 0.05. The CoCulLncSig was constructed
using prognostic DELs and a least absolute shrinkage
and selection operator (LASSO) to prevent overfitting.
The “glmnet” R package was used to ascertain the
model, with the penalty parameter (1) corresponding to
the partial likelihood deviance and tested using tenfold
cross-validation. The R package outputted the
composition of the CoCuLncSig and the coefficient of
each IncRNA. The risk score was calculated by
summing the expression level of each InCRNA in the
CoCulLncSig multiplied by its corresponding coefficient.

Validation of the CoCulLncSig in an independent
cohort

After assigning a risk score to each LUAD in our study
using the formula above, we categorized the population
into high and low-risk groups using their medians. In
order to evaluate CoCuLncSig’s predictive, accuracy,
and discriminative abilities, a variety of bioinformatic
analyses were conducted on all populations within the
study. These analyses included Cox analysis, receiver
operating characteristic (ROC) analysis, time-dependent
AUC (tAUC) analysis, and survival nomogram using
continuous variables, as well as KM analysis and PCA
analysis using categorical variables. The validation
process was carried out in R software, utilizing several
R packages such as “timeROC”, “survival”,
“survminer”, “rms”, “scatterplot3d”, “forestplot”,
“limma”, “reshape2”, “ggplot2”, “ggpubr”, and
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“regplot”. To perform Gene Set Enrichment Analysis
(GSEA) [16] for CoCulLncSig, we obtained the
“c2.cp.kegg.v7.4.symbols.gmt” [17] subset from
http://www.gsea-msigdb.org/gsea/downloads.jsp to
assess associated pathways and molecular mechanisms.
In our GSEA analysis, we established the minimum
gene set as 5, the maximum gene set as 5000, and
performed 1000 resamples. We deemed results to be
statistically significant if they had a P-value < 0.05 and
an FDR < 0.25.

Identification of the immunological status of the
CoCuLncSig

The R package “ESTIMATE” utilizes the gene
expression levels of the training cohort to compute
stromal, immune, and ESTIMATE scores for individual
patients [18]. We evaluated the correlation between
CoCulLncSig and the above category scores using
statistical analysis methods like the Pearson coefficient
and the Wilcoxon rank sum test. With R package
“lIOBR,” immuno-oncology exploration can be
facilitated, tumor-immune interactions can be explored,
and precision immunotherapy can be expedited [19].
The R package “IOBR” or its algorithms included,
namely CIBERSORT [20], CIBERSORT-ABS [20],
quanTlseq [21], TIMER [22], MCPCounter [23], xCell
[24], EPIC [25], and IPS [26] were applied to assess
immune-infiltrating levels of every LUAD in the
TCGA-LUAD. To assess the relationship between
CoCulLncSig and immune-infiltrating levels, we
employed the Pearson coefficient and the Wilcoxon
rank sum test, and the outcomes were presented as
lollipop plots and heatmaps. We summarized the
aforementioned findings through Venn and cloud
diagrams, and assessed the immune function of
CoCulLncSig utilizing the ‘ssGSEA’ function available
in the ‘gsva’ R package.

Identification of  CoCuLncSig’s role in
immunotherapy and its potential checkpoint targets

Mariathasan’s study [27] signature provided us with a set
of genes associated with the immune checkpoint blocker
(ICB) response, while Xu et al.’s web portal [28] gave

us gene sets linked to the steps of the tumor immune cycle.

As the immune microenvironment influences both ICB
responses and immune cycle steps, we aimed to leverage
this information to investigate the potential role
of CoCulLncSig in LUAD immunity. Specifically,
we conducted analyses to examine the correlations
between CoCulLncSig and ICB responses, as well as
CoCuLncSig and tumor immune cycle steps. We utilized
the R language package “maftools” to generate a visual
representation of the mutational landscape of genes within
the training cohort. To evaluate the correlation between

the risk score and the tumor mutational burden (TMB)
[29], a commonly used indicator of immunotherapy
sensitivity that measures the frequency of specific
mutations in tumor genes, we employed a combination of
Pearson’s coefficient and the Wilcoxon rank sum test
in our study. By utilizing markers of T cell dysfunction
and data on T cell exclusion, the Tumor Immune
Dysfunction and Exclusion (TIDE) framework models
how tumors evade detection by the immune system [30—
32]. We also determined the correlation between our
signature and the TIDE using Pearson’s coefficient and
Wilcoxon rank sum. To assess immunotherapy capacity in
the CoCuLncSig, we obtained TCGA-LUAD immuno-
therapy response data from the TIDE portal and done
visualization using a ridgeline plot and percent stacked
column chart. In our study, we chose a set of 60 immune
checkpoints that had been previously investigated, which
included 24 inhibitory and 36 stimulatory checkpoints
[33] (Supplementary Table 1). To evaluate the
relationships between our CoCulLncSig and the 60
selected immune checkpoints, we conducted integration
analysis including Pearson coefficient and Wilcoxon rank-
sum analyses. We sought to determine if our CoCuLncSig
could serve as a guide for immunotherapy. To this end,
we utilized the KM and Cox analysis to assess the
outcome predictive value of 60 immune checkpoints.
Using a Venn diagram, we summarized the results to
identify potential checkpoints with targeting ability related
to that of the CoCuLncSig. We gathered immunotherapy-
related data from various published immune datasets and
analyzed the effects of identified checkpoints on
immunotherapy outcomes. This particular step was
carried out through the “regulator prioritization” module
in the TIDE online tool [31].

Drug selection for patients with high CoCulLncSig
score LUAD

Data regarding drug susceptibility in cancer cell lines
(CCLs) was downloaded from two sources, namely the
Cancer Therapeutics Response Portal (CTRP) at
https://portals.broadinstitute.org/ctrp  and  PRISM
Repurpose at https://depmap.org/portal/prism/. The
CTRP evaluated 481 compounds across 835 CCLs,
while PRISM Repurpose assessed 1448 compounds
across 482 CCLs. In both datasets, the drug sensitivity
was determined by the area under the dose-response
curve (AUC), with lower values indicating greater
sensitivity. Our study involves the analysis of drug
response data from CTRP and PRISM to identify
feasible drug candidates from the high-scoring group.
To do this, we compared drug responses between
patients with the highest and lowest decile risk scores
and used a threshold of log,FC > 0.05 to screen for
drugs with lower AUC in high-scoring patients [34]. To
select compounds with a negative correlation between
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AUC values and risk scores, we performed Spearman
correlation analysis. We set our screening threshold at a
Spearman correlation coefficient [34] of less than —0.3.

Validation of drug candidates

Additional validation analyses were conducted on the
results of the drug candidate, which involved reviewing
the data of clinical trial and published experimental
evidence, and the use of Connectivity Map (CMap) to
further confirm its potential in LUAD [34]. CMap is a
tool that generates and examines large perturbed
datasets, aiding in the comprehension of human disease
and speeding up the identification of new treatments.
CMap’s datasets, processing, and analysis capabilities
are utilized to advance drug research [34]. In this study,
we employed CMap analysis as a supplementary
approach to explore the potential efficacy of the
identified drug candidates in LUAD. A total of 2429
compounds were available for analysis on the CMap
online analysis portal (https:/clue.io/query). We
conducted a differential expression analysis to compare
tumor and normal samples. We then selected the top
150 up-regulated and the top 150 down-regulated genes
based on the fold difference results and submitted them
for analysis on the CMap online analysis portal. Each
compound’s CMap result is represented as a value
between —100 and 100, with a result closer to -100
indicating a greater potential for therapeutic power.

Comparing CoCulLncSig with previous studies

In order to conclude whether our study is more robust
than previous, we searched PubMed using keywords
“copper IncRNA signature lung adenocarcinoma” or
“cuproptosis IncRNA signature lung adenocarcinoma”
to find candidate study. We included the research that
contained a IncRNA signature and the related
coefficient. Because most of the candidate studies did
not upload raw data or used different or unmentioned
data preprocessing methods, therefore, to ensure
the standard consistency of the comparison, we use
the official TCGA data for analysis here, which are
TCGA-LUAD_PanCanAtlas from Genomic Data
Commons, Pan-Cancer Atlas (https://gdc.cancer.gov/
about-data/publications/pancanatlas), and TCGA-
LUAD_Count, TCGA-LUAD_FPKM_UQ, and TCGA-
LUAD_FPKM from Genomic Data Commons Data
Portal (https://portal.gdc.cancer.gov/). For specific
comparative analysis, we used Cox regression analysis.

CoCulLncSig’s expression pattern determination by
gRT-PCR and its pan-cancer ability assessment

To investigate the expression status of CoCulncSig
IncRNAs in real-life scenarios, we conducted gRT-PCR

on clinical obtained human tissue samples from our
facility. We collected nine LUAD tissues and their
corresponding adjacent normal tissues from nine
clinical patients. This approach was approved by the
Ethics Review Committee of the First Affiliated
Hospital of Zhengzhou University, and informed
consent was obtained from all patients prior to surgery.
None of the patients had received any kind of therapy
before undergoing the surgical operation. Tissue
samples were immediately frozen and stored in liquid
nitrogen after extraction during the surgery. The TRIzol
reagent  (Invitrogen, Thermo Fisher  Scientific
corporation, USA) was used to extract total RNA from
sample  tissues, following the manufacturer’s
instructions. The extracted RNA (1 pg) was reverse
transcribed using the PrimeScript RT reagent Kit
(TAKARA BIO INC., Shiga, Japan). The resulting
cDNA was used in triplicate for gRT-PCR, performed
with SYBR® Premix Ex Taq™ (Perfect Real-Time)
(TAKARA BIO INC., Shiga, Japan). The gRT-PCR
conditions involved 40 cycles of 95°C for 30 s, 95°C for
10 s, and 60°C for 30 s. The internal reference used was
GAPDH and the primer sequences are listed in Table 1.
Gene expression was quantified using the 274ACt
method. The statistical analyses were conducted using
GraphPad Prism 9.0 software (GraphPad Software, Inc.,
La Jolla, CA, USA). The data were presented as mean +
standard deviation, and the unpaired Student’s t-test was
utilized to compare two groups. Statistical significance
was indicated by p values < 0.05.

To evaluate the pan-cancer potential of CoCuLncSig,
we obtained the TCGA pan-cancer datasets from
Genomic Data Commons, Pan-Cancer Atlas (https://gdc.
cancer.gov/about-data/publications/pancanatlas). We
applied our CoCuLncSig to pan-cancer visualizing the
risk score distribution and determining our signature’s
prognosis impacts on cancers using Cox regression. R
packages of “ggplot2”, “survival”, “cowplot”, and
“ggpubr” were making this demonstration possible.
We also assessed whether the IncRNAs in
CoCuLncSig are differentially expressed between
tumors and normal tissues. R packages “ggplot2”,
“clusterProfiler”, “ComplexHeatmap”, and “limma”
were adopted for the calculation and visualization. Then
we conducted the prognostic ability determination for
CoCulLncSig IncRNAs using R packages “survival” and
“pheatmap”.

Novelty and impact statements

This study utilized a novel approach by leveraging the
publicly available online repository (with a total sample
size of > 1000 cases) to develop CoCuLncSig, an eight-
IncRNA signature related to copper homeostasis and
cuproptosis that can predict LUAD prognosis. We also
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Table 1. Prognostic LncRNAs obtained from LASSO Cox regression model and their primer sequences.

Sequence (5'-3")

Gene Symbol Coefficient

Forward Reverse
AL691432.2 —0.479622606 AGGCTCTCCAGGACAAGTGA GGCTCTCTCCAACAACAAGC
AC093010.2 —0.36577691 GGTGAGCCTGAGAGTTGAGG AGCAGAGGGTGAAGGAGACA
AC107464.3 —0.212021473 GGCAAGAGAATGCTGGTCTC TCTTTTCTCATGCCCCTCTG
AC025278.1 —0.109850151 CGTTCACCTCTTTTCCAAGC TGACCTGGTTGTCAGGATGA
COLCA1 —0.079334536 GACAAGTTTGGCTCCTGCTC CCTCTGTGGACCATTCCTGT
AC026471.3 —0.008162688 CACTCCACCTCCACAGGAGT ACTTCAGCTTCGCTGGACAT
LINCO01833 0.16143488 ACCTCACACTCCACCCAAAG ATTATGCCTGTGGGCACTTC
ITGB1-DT 0.278740024 AGTTGCGTCCTGCTTTTGAT CAATCATCGAATCGACATGC

confirmed the CoCuLncSig’s power by comparing it
with previous studies. The CoCulLncSig IncRNAS’
expression patterns were measured using human tissues
and qRT-PCR. We identified the specific targets of
CoCulLncSig that played vital roles in immunotherapy
and highlighted potential therapeutic agents that may be
effective for high-risk score LUADs.

Availability of data and materials

The study utilized a combination of publicly available
databases and original data. The TCGA data used for
the model training was downloaded from Xena Hub
online portal (https://xenabrowser.net/), and GEO data
for model wvalidation, GSE29013, GSE30219,
GSE31210, GSE37745, and GSE50081, were obtained
from https://www.ncbi.nlm.nih.gov/geo. Additionally,
data for drug prediction was sourced from the CTRP
database, which can be accessed at https://portals.
broadinstitute.org/ctrp, as well as the PRISM database,
which was downloaded from https://depmap.org/portal/
prism. For comparison and pan-cancer assessments, we
obtained official TCGA data Genomic Data Commons,
Pan-Cancer Atlas (https://gdc.cancer.gov/about-
data/publications/pancanatlas) and Genomic Data
Commons Data Portal (https://portal.gdc.cancer.qov/).
The raw data generated from the gRT-PCR used in the
study is available upon request from the corresponding
author.

RESULTS
Characteristics of LUADs included in the study

The general flowchart of our study is illustrated in
Figure 1. To construct the training cohort, we included
500 LUAD patients from TCGA-LUAD, while the
validation cohort comprised of 554 LUAD patients
from five GEO datasets (GSE29013, GSE30219,
GSE31210, GSE37745, and GSE50081), selected
based on our predefined criteria. Prior to the analysis,
we merged the five GEO datasets and removed any

batch effects, as demonstrated in Figure 2A. The
UMAP plot revealed that the samples from each dataset
were distinct prior to the removal of batch effects.
However, after utilizing Johnson et al.’s batch effect
removal method [15], the datasets displayed
interleaving, which suggests that the technique was
effective in removing the batch effect. Table 2 presents
the clinical data of the patients included in each cohort
of this study.

Construction of CoCu clusters in LUADs using
consensus clustering

1280 copper homeostasis-correlated genes and 1278
cuproptosis-correlated genes were obtained, and a total
of 110 genes were in their intersection (Figure 2B). An
algorithm of consensus clustering classified training
cohort LUADs into 2, 3, 4, 5, 6, 7, 8, 9, and 10
clusters, respectively, based on the 110 copper
homeostasis/cuproptosis correlated genes. We ob-
served the CDF plot for the downward trend of the
curve, finding that when k = 4, 5, or 6 may potentially
arouse our interest (Figure 2C). In addition, we
examined the intragroup consistency of each group by
checking the consensus values, and the results
indicated that when K is 5, the clusters have the highest
average consistency. When Kk is 4, the consistency of
the cluster ranked the second highest (Figure 2C).
Based on the evidence, we are more interested in the
clustering situation when k = 4, 5, and 6. In Figure 2D
upper parts, we plotted the clustering diagrams for k =
4, 5, and 6. It could be seen that when k = 5, the
clustering was relatively neat and well gathered. Next,
we constructed the KM curve for each k value (Figure
2D, lower parts), and found that the p value was
smaller than the others’ when k = 5, which indicated
that the survival difference was the most pronounced.
We then take the cluster with k = 5 as our copper
homeostasis/cuproptosis related (CoCu) cluster (Figure
2E). Furthermore, there were statistically significant
differences in five CoCu clusters of LUAD patients in
terms of clinical factors like gender, race, tumor stage,
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and smoking history (Figure 2E). The ssGSEA method
was used to determine the infiltration levels of various
immune cell populations in the five CoCu clusters.
Figure 2F illustrates that the distribution of all 23 types
of immune cells across the clusters differed
significantly from a statistical perspective. By
comparing the five CoCu clusters, we carried out an
analysis to find differentially expressed genes and
identified 72 CoCu-DEGs (Supplementary Table 2).
The KEGG was performed using these 72 CoCu-DEGs
and demonstrated the top ten pathways related to the
CoCu cluster, which were VEGF signaling pathway,
Parkinson disease, Alzheimer disease, Huntington
disease, oxidative phosphorylation, alpha-Linolenic acid
metabolism, linoleic acid metabolism, ether lipid
metabolism, thermogenesis, and ovarian steroidogenesis
(Figure 2G).

Two CoCu-DEG clusters
CoCulLncSig generated

determined and a

Using CoCu-DEG as a basis, we attempted to classify
the training cohort LUADs into 2, 3, 4,5, 6, 7, 8, 9, and
10 clusters, respectively (Figure 3A, upper-left). We
examined the intragroup consistency of each group by
checking the consensus values, and the results indicated
that when Kk is 2, the clusters have the highest average
consistency (Figure 3A, upper-left). We plotted the
clustering diagram for k = 2, showing the clustering was
relatively neat and well gathered (Figure 3A, upper-
right). Next, we constructed the KM curve for k = 2
cluster, finding that the survival difference in clusters
was statistically significant (Figure 3A, lower-left).
Based on the results of PCA, it was observed that
clusters C1 and C2 were distinctly separated from each

Training Prognosis Predictive evaluation Functions
o . ( N £ 0%
Training cohort ROC GSEA -
(TCGA-LUAD, n=500) o \j C3PRISM | o
+ zm & // PR K o cmon o E
Copper homeostasis - ":
and cuproptosis Time FP X
regulated 21 genes 32l
: EB| . g
E g _ I [ 2
Survival (% §ML O g
comparison ' ' ?(ﬂ* 3
a \ ég Time K Points PC1 °
- Study 1 © =
(5 s y Q
S -Study 2 >
L 2 L <
§ g % g _\ - ;;_ i R \ % § = _* o
ol 51774 / * B
(= o ' l‘.-" - \ )
2= 3 TRAINING 'c CoCulLncSig | S 5
Q5| -|loeceoe score “ °° £
= g =
3 q:) E oc@ o00e VAL'DATlON é Q
30| 3 g @
% e Oce e0e 3 8
(S 2N7] Pan-cancer o a
— - O R
S ] ce®e &5 | E
o w| 58 [ ™ orug 1 [l (@)
= o X 2 P Immunotherapy O 2 . »n
a5 R R o4+ g , score e
g ‘t;; 0'§O'§0'§ Illllll.l Gene 1 I
B cell Risk —
© 3 3 * Gene 2 Validation cohort
° 2 & ——— (multiple datasets
S 2 o . n=554)
e o Boell = g Gene 4 +
o ) :
S P cosr 4+ S| oS qRT-PCR
A exe o Risk e Gene 6 | | validation (Human
\ /L - LUAD tissues)
Immune status and immunotherapy Validation

Figure 1. Flowchart of the main steps, design, and analysis process of this study [80]. Abbreviations: TCGA: The Cancer Genome
Atlas; LUAD: lung adenocarcinoma; CoCulncSig: copper homeostasis and cuproptosis regulated IncRNA signature; HR: hazard ratio; ROC:
receiver operating characteristic; AUC: area under the ROC curve; TP: true positive rate; FP: false positive rate; PC: principal component;
GSEA: gene set enrichment analysis; CMap: Connectivity Map; DEGs: differentially expressed genes; qRT-PCR: quantitative real-time PCR.
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Figure 2. Removal of batch effects for the validation cohort and construction of the CoCu cluster. (A) The validation cohort is
visually compared before and after the elimination of batch effects. The UMAP plot displayed at the top depicts the combined state of the
GEO dataset before removing the batch effect. Conversely, the UMAP plot in the lower section illustrates that after removing the batch
effect from the merged dataset, the samples are interwoven, providing proof of the effectiveness of batch effect removal. (B) 110 genes
that correlate to both copper homeostasis and cuproptosis-regulated genes were identified using a Venn diagram. (C) CDF plot (left)
showing the downward trend of the curve. Consensus plot (right) showing the consensus value at specific k value. (D) Based on the
evidence provided from CDF and consensus plots, we were more interested in the clustering situation when k = 4, 5, and 6. Clustering
diagrams (upper) for k = 4, 5, and 6. KM curves (lower) for each k value. (E) The heatmap depicts the correlation between CoCu clusters,
clinical parameters, and 110 genes associated with copper homeostasis and cuproptosis. The asterisks indicate statistical differences
between CoCu clusters. In the heatmap, each row corresponds to a specific gene, while each column corresponds to a particular sample. (F)
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The box plots illustrate notable variations in the distribution of all 23 immune cell types across the 5 CoCu clusters, indicating statistical
significance. (G) KEGG that was performed using 72 CoCu-DEGs showing the top enriched pathways. CoCu clusters: clusters identified by
copper homeostasis and cuproptosis correlated genes; CoCu-DEGs: differentially expressed genes identified among CoCu clusters; UMAP:
Uniform Manifold Approximation and Projection; CDF: cumulative distribution function; KM: Kaplan—Meier estimator; DEGs: differentially
expressed genes; KEGG: Kyoto Encyclopedia of Genes and Genomes; A statistically significant P-value was defined as being less than 0.05;
The following notation was used: * for P-values less than 0.05, ™ for P-values less than 0.01, and *** for P-values less than 0.001.

other (Figure 3A, bottom right). Considering these pieces
of evidence, we propose that the clusters at k = 2, namely
the CoCu-DEG clusters (Figure 3B), can be the focus of
our study. Notably, the analysis revealed that LUAD
patients in the CoCu-DEG cluster exhibited significant
differences in terms of gender and tumor stage (Figure
3B). Further, by utilizing ssSGSEA, we were able to
determine the extent of infiltration of various types of
immune cells within the CoCu-DEG clusters. Figure 3C
depicted that among the CoCu-DEG clusters, 15 distinct
immune cells, namely Activated B cell, Activated CD4 T
cell, Activated dendritic cell, CD56dim natural killer cell,
Eosinophil, Gamma delta T cell, Immature B cell,
Immature dendritic cell, Mast cell, Natural killer T cell,
Natural killer cell, Neutrophil, T follicular helper cell,
Type 1 T helper cell, and Type 2 T helper cell, were
significantly distributed. To identify the key KEGG
pathways between the CoCu-DEG clusters, we
conducted GSVA (Figure 3D, Supplementary Table 3).
Surprisingly, KEGG_PROTEASOME, KEGG_DNA
REPLICATION, KEGG_PARKINSONS_DISEASE,
KEGG_OXIDATIVE_PHOSPHORYLATION, KEGG_
CELL_CYCLE, KEGG_PENTOSE_PHOSPHATE
PATHWAY, KEGG_HUNTINGTONS_DISEASE,
KEGG_PYRIMIDINE_METABOLISM, KEGG
ALZHEIMERS_DISEASE, and KEGG PORPHYRIN
_AND_CHLOROPHYLL_METABOLISM ranked as
the top 10 pathways. Notably, we looked at the
distribution of 21 copper homeostasis/cuproptosis-
regulated genes across CoCu-DEG clusters and found
15 genes (STEAP1, SLC31Al1, SOD1, ATOX1,
ATP7A, COX17, MT-CO1, FDX1, DLD, DLAT,
PDHA1, PDHB, MTF1, GLS, and CDKN2A) were
related to the clusters (Figure 3E).

6646 DELs were identified based on our predefined
criteria. Subsequent KM and Cox analyses were
performed to screen these DELs, and only 15 of them
met our criteria (Supplementary Table 4). Further
narrowing down of the results was done using LASSO
analysis on these 15 DELs, which identified eight
IncRNAs and their corresponding coefficients (Figure
4A, Table 1). To explore the relationships among CoCu
clusters, CoCu-DEG clusters, risks, and vital status, a
Sankey diagram was created (Figure 4B). We also
observed significant differences in risk scores among
the CoCu clusters (Figure 4C). Interestingly, the risk
scores among the CoCu-DEG clusters were also
significantly different. We next tested the expression
situation of the 21 copper homeostasis/cuproptosis-

regulated genes in the high- and low-risk groups finding
14 genes (STEAP1L, SLC31A1, CCS, ATP7A, COX11,
SCO1, MT-CO1, FDX1, LIAS, LIPT1, PDHAL,
PDHB, MTF1, and GLS) significantly differently
expressed (Figure 4D). Among the 14 genes found, only
STEAPL was up-regulated, while the remaining genes
were down-regulated in the high-risk group. In addition,
we have shown the association between the 21 copper
homeostasis/cuproptosis-regulated genes and each
CoCulLncSig IncRNA, which is illustrated in
Supplementary Figure 1A.

Validation results demonstrated robust prognostic
ability of CoCulL.ncSig

The fundamental performance of our CoCulLncSig
in both the training and validation cohorts is
demonstrated in Supplementary Figure 1B, 1C,
respectively. In our analysis of KM, we made survival
predictions for whole-time, 3-year, and 5-year periods.
The results indicated that both the high-risk LUADS in
the training cohort (Figure 5A, upper) and those in the
validation cohort (Figure 5A, lower) had a worse
prognosis than those in the low-risk groups.
Additionally, the KM curve presented in Sup-
plementary Figure 2A of the supplementary material
illustrates the prognostic ability of each CoCuLncSig
IncRNA in the two cohorts. This curve reveals that
ITGB1-DT and LINCO01833 were associated with a
worse prognosis for LUADs, while AL691432.2,
AC093010.2, AC107464.3, AC025278.1, COLCAL,
and AC026471.3 were associated with improved
outcomes in LUADs. Our analysis then determined
whether the risk score was a reliable predictor of
outcomes for LUAD patients, independent of clinical
parameters such as age, gender, race, ethnicity, tumor
stage, tumor origin, etc. To this end, univariate and
multivariable analyses were performed, as illustrated in
Figure 5B. The risk scores displayed significant
prognostic ability (p < 4.20e-05) in univariate Cox
regression analysis for both the training and validation
cohorts. In the training cohort, the risk score had a
hazard ratio of 3.43 (95% ClI: 2.22-5.29, p = 2.54e-08)
in multivariate Cox analysis, while in the validation
cohort, the risk score had a hazard ratio of 1.84 (95% CI:
1.28-2.64, p = 9.37e-04). These results indicate that the
risk score performed well in both cohorts and can be
considered an independent prognostic  factor.
Interestingly, while the ‘age’ factor showed independent
prognostic power in the validation cohort, it did not
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Table 2. The clinical baseline conditions of the cohorts and patients included in the study.

Characteristics

Training cohort

(TCGA-LUAD, n = 500)

Validation cohort

(GSE29013, GSE30219, GSE31210,
GSE37745, and GSE50081, n = 554)

Age
<65
>65
Unknown
Gender
Female
Male
Race
White
Non-White
Unknown
Ethnicity
Hispanic or Latino
Non-Hispanic or Latino
Unknown
Tumor stage
Stage |
Stage |1
Stage 11
Stage IV
Unknown
Prior malignancy
Yes
No
Tissue origin
Upper lobe lung
Non-upper lobe lung
Smoking history
Ever
Never
Unknown
Vital status
Alive
Dead

219 (43.8%)
271 (54.2%)
10 (2%)

270 (54%)
230 (46%)

386 (77.2%)
60 (12%)
54 (10.8%)

7 (1.4%)
381 (76.2%)
112 (22.4%)

268 (53.6%)
119 (23.8%)
80 (16%)
25 (5%)

8 (1.6%)

79 (15.8%)
421 (84.2%)

291 (58.2%)
209 (41.8%)

415 (83%)
71 (14.2%)
14 (2.8%)

318 (63.6%)
182 (36.4%)

315 (56.86%)
239 (43.14%)
0

265 (47.83%)
289 (52.17%)

NA
NA
NA

NA
NA
NA

339 (61.19%)
108 (19.49%)
21 (3.79%)
4 (0.72%)
82 (14.8%)

NA
NA

NA
NA

216 (38.99%)
139 (25.09%)
199 (35.92%)

348 (62.82%)
206 (37.18%)

have any independent predictive power in the training
cohort. In Supplementary Figure 2B of the sup-
plementary material, we have provided an analysis of
the results and visualization for each CoCuLncSig
IncRNA using univariate Cox regression. ROC analysis
(Figure 5C) and tAUC (Figure 5D) were utilized to
evaluate the accuracy of the model. The CoCulLncSig
AUC in the training cohort was determined to be 0.737,
0.657, and 0.652 at one year, three years, and five years,
respectively, as indicated by the ROC curves. In the
validation cohort, the AUC was found to be 0.693,

0.646, and 0.632 at one year, three years, and five years,
respectively. The CoCuLncSig model’s accuracy was
continuously assessed using tAUC. In the training
cohort (Figure 5D, left), our risk score was found to
be in close proximity to the tumor stage, as determined
by tAUC. This was also observed in the validation
cohort (Figure 5D, right), where the model’s tAUC
was also comparable to the tumor stage, which has
been regarded as the gold standard for prognosis
prediction. Remarkably, when we combined our risk
score with the tumor stage for tAUC, the predictive
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Figure 3. Two CoCu-DEG clusters identified. (A) The development process of CoCu-DEG clusters, and its KM and PCA performance. 72
CoCu-DEGs were applied for the clusters’ generation. Consensus plot (top left) showing the consensus value at specific k value. Clustering
diagrams for k = 2 displaying at the top right. KM curves for k = 2 is at the lower left and PCA plot is at the lower right for k = 2. (B) The
heatmap depicts the correlation between CoCu-DEG clusters, clinical parameters, and 72 CoCu-DEGs. The asterisks indicate statistical
differences between CoCu clusters. In the heatmap, each row corresponds to a specific gene, while each column corresponds to a particular
sample. (C) The box plots illustrate variations in the distribution of 23 immune cell types across the two CoCu-DEG clusters. The asterisks
indicate distribution statistical differences between clusters. (D) A heatmap was used to visualize the enrichment of KEGG pathways that
were present between the CoCu-DEG clusters, which was carried out utilizing the R package “GSVA.” (E) Box plots show the distribution of
21 copper homeostasis/cuproptosis-regulated genes across CoCu-DEG clusters. CoCu clusters: clusters identified by copper homeostasis
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and cuproptosis correlated genes; CoCu-DEGs: differentially expressed genes identified among CoCu clusters; CoCu-DEG clusters: clusters
identified by CoCu-DEGs; DEGs: differentially expressed genes; KM: Kaplan—Meier estimator; PCA: Principal component analysis; KEGG:
Kyoto Encyclopedia of Genes and Genomes; In Figure 3, statistical significance was defined as a P-value < 0.05; Results with P-values

greater than or equal to 0.05 were considered not significant (ns), while those with P-values less than 0.05, 0.01, and 0.001 were denoted

* kx

by *, ™", and """, respectively.

AUC of the combination was consistently above 0.7 in
the training cohort (Figure 5D, left) and outperformed
other factors at all time points in the validation cohort
(Figure 5D, right). These findings indicate that our
CoCulLncSig risk score’s accuracy is comparable to
that of the tumor stage and an excellent complement to
it. Figure 5E of the study showed that there was
significant heterogeneity between high-risk and low-
risk patients in the study cohorts based on the results
of PCA. This suggests that the risk score model is
effective in distinguishing these two groups.
Furthermore, a nomogram (Figure 5F) was developed
using clinical parameters such as age, tumor stage,

gender, smoking history, tissue origin, prior
malignancy, and risk score. This nomogram has the
potential to assist in determining the 1-year, 3-year, and
5-year prognosis status of clinical patients. The
predictive accuracy of the nomogram was confirmed by
the calibration curve (Figure 5G). The GSEA analysis
demonstrated the most vital ten CoCulLncSig related
KEGG pathways were related to alpha-Linolenic acid
metabolism, gonadotropin-releasing hormone signaling
pathway, long-term  depression, linoleic  acid
metabolism, vascular smooth muscle contraction,
proximal tubule bicarbonate reclamation, dilated
cardiomyopathy, ether lipid metabolism, hypertrophic
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Figure 4. The establishment of the risk model CoCuLncSig and its basic performance demonstration. (A) This visualization
depicts the reduction of dimensionality for prognostic IncRNAs through the use of the LASSO algorithm. The left section of the visualization
displays the LASSO coefficient profile for the examined prognostic IncRNAs, while the right section illustrates the LASSO regression process
employing ten-fold cross-validation and minimal Lambda to identify eight prognostic IncRNAs. (B) The relationship between CoCu clusters,
CoCu-DEG clusters, risks, and vital status in general is illustrated by the Sankey diagram. The diagram reveals that a notable portion of the
C1 clusters in CoCu-DEG display high-risk scores, while the majority of its C2 clusters exhibit low-risk scores. (C) The box plots on the left
panel demonstrate distinct statistical variations in the distributions of risk scores across the five CoCu clusters. On the right panel, the box
plots exhibit statistically different distributions of risk scores in the two CoCu-DEG clusters. (D) Box plots display expression pattern of the
21 copper homeostasis/cuproptosis-regulated genes in the high- and low-risk groups. CoCulLncSig: copper homeostasis and cuproptosis
regulated IncRNA signature; CoCu clusters: clusters identified by copper homeostasis and cuproptosis correlated genes; CoCu-DEGs:
differentially expressed genes identified among CoCu clusters; CoCu-DEG clusters: clusters identified by CoCu-DEGs; DEGs: differentially
expressed genes; LASSO: least absolute shrinkage and selection operator; A P-value less than 0.05 was considered significant for statistical
analysis; The notation * represents P-value less than 0.05, ™" represents P-value less than 0.01, *** represents P-value less than 0.001, and
**** represents P-value less than 0.0001.
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Univariate Cox regression

Multivariable Cox regression
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. Whole-time prediction 3-year prediction HR L95 H95 P HR L95 H95 P
% 1.007 1 p=1.327e-06 Training cohort
Zors Age 101 099 1.02 2.94e-01 101 099 1.03 2.88e-01
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Figure 5. The stability and applicability of CoCuLncSig were validated in the study cohorts. (A) The prognostic value of
CoCulncSig was demonstrated through Kaplan-Meier analysis in both the training and validation cohorts, which also affirms its broad
applicability. By using their median CoCulLncSig risk scores, patients were stratified into high- and low-risk groups, and Kaplan-Meier
analysis revealed significant differences in survival between the two groups. (B) Univariate and multivariate Cox proportional hazards
models were built, incorporating risk scores and several clinical variables. #: the types of variables involved in the studied cohorts. The types
of variables included in the analysis were defined as follows: Gender (male vs. female), Race (white vs. non-white), Ethnicity (Hispanic or
Latino vs. non-Hispanic or Latino), Prior malignancy (yes vs. no), Tumor origin (upper lobe lung vs. non-upper lobe lung), and Smoking
history (ever vs. never). (C) ROC curves. Our signature’s accuracy in predicting LUAD outcomes at 1-year, 3-year, and 5-year intervals was
evaluated using ROC curves. (D) The purpose of the tAUC analysis was to continually assess the prognostic precision of our signature
relative to other clinical measures over successive time intervals. An increase in the AUC size is indicative of a more robust predictive
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accuracy of the model. (E) The principal component analysis visualization clearly indicates that the signature is capable of distinguishing the
LUAD population. (F) A nomogram model was created that predicts the clinical outcome of LUAD patients using seven factors: risk score,
tumor stage, age, grade, smoking history, prior malignancy, and tissue origin. This model forecasts the overall survival of patients for 1, 3,
and 5 years in the TCGA-LUAD cohort. The significance of the results was indicated using asterisks, where " represents a p-value of < 0.05
and *™" represents a p-value of < 0.001. (G) 1-, 3-, and 5-year overall survival calibration plots for LUAD patients based on the predictive
nomogram model. These plots depict the predicted survival rate on the X-axis and the actual survival rate of LUAD patients on the Y-axis.
The 45° line on the graph indicates the optimal predicted value. A curve that closely follows the 45° line indicates better results. (H) The
GSEA analysis identified 10 KEGG pathways with the strongest association with CoCulLncSig. These pathways’ significance thresholds were
established as p-value < 0.05 and FDR < 0.25. CoCulLncSig: copper homeostasis and cuproptosis regulated IncRNA signature; L95: 95%
confidence interval lower; H95: 95% confidence interval higher; HR: hazard ratio; AUC: area under the ROC curve; ROC: receiver operating
characteristic; tAUC: time-dependent AUC; TCGA: The Cancer Genome Atlas; GSEA: Gene Set Enrichment Analysis; LUAD: lung
adenocarcinoma; OS: overall survival; KEGG: Kyoto Encyclopedia of Genes and Genomes; FDR: false discovery rate; A statistical significance

was deemed to be present when the P-value was less than 0.05.

cardiomyopathy, and arachidonic acid metabolism
(Figure 5H).

CoCulLncSig is linked to LUAD immune status

According to the consensus among the research
community, cancer is characterized as a dynamic
ecosystem in which malignant and noncancerous cells
in the tumor microenvironment collaborate to facilitate
the advancement of the disease. As a result, in order to
properly examine LUAD, it is imperative to thoroughly
investigate its tumor microenvironment. We utilized
data from the TCGA cohort and the R language package
“ESTIMATE” finding that the high-risk group exhibited
decreased stromal, immune, and ESTIMATE scores.
Additionally, all scores demonstrated a negative
correlation with CoCuLncSig, as illustrated in Figure
6A. By utilizing eight mainstream immune informatics
algorithms and employing the Pearson correlation
coefficient test and Wilcoxon rank sum test analysis
methods, we were able to visually represent the
relationship between CoCulLncSig and various immune
components through a lollipop (Figure 6B) and heatmap
(Figure 6C). To simplify the findings and present
crucial information to readers, a Venn diagram (Figure
6D) was used to intersect the results, revealing that CD4
T cells, Memory B cells, Macrophages, Myeloid
dendritic cells, and Mast cells are most likely to connect
CoCuLncSig and LUAD immune status. Regarding
CoCulLncSig’s immune function, the immune functions
of the high-score group, such as CCR, Check-point,
HLA, T_cell_co-inhibition, T_cell_co-stimulation, and
Type_Il_IFN_Response, were comparatively weak
compared to the low-risk group (Figure 6E). These
results suggest that CoCuL.ncSig may have a connection
to the immune status of LUAD.

CoCulLncSig participates in immunotherapy and
targets immune checkpoints

The top 10 ICB response pathways that CoCulLncSig
correlated with were progesterone mediated oocyte
maturation, oocyte meiosis, cell cycle, p53 signaling

pathway, viral carcinogenesis, pyrimidine metabolism,
mismatch repair, Fanconi anemia pathway, homologous
recombination, and spliceosome (Figure 7A, Sup-
plementary Table 5). CoCuLncSig correlated with some
of the tumor immune cycle steps, which the top 10
ranked were Step 4 CD4 T cell recruiting, Step 4
Basophil recruiting, Step 4 Eosinophil recruiting, Step 5
Infiltration of immune cells into tumors, Step 2 Cancer
antigen presentation, Step 4 TH17 cell recruiting, Step 4
MDSC recruiting, Step 4 Neutrophil recruiting, Step 1
Release of cancer cell antigens, and Step 4 B cell
recruiting (Figure 7B, Supplementary Table 6). The
relationship between CoCulLncSig and ICB response
and the involvement of the tumor immune cycle steps
further imply its potential connection to certain immune
checkpoint treatments.

In the training cohort, we analyzed the mutation profile
of all tumor samples and depicted the top 20 genes with
the most significant mutations in Figure 7C. TP53 was
identified as the most frequently mutated gene, with a
prevalence of around 47.6%, followed by TTN at 45.3%
and CSMD3 at 36.4%. Our findings revealed that
missense mutations were the most commonly observed
variant classification across all mutation types.

According to the Wilcoxon test results, the group with a
higher risk score exhibited elevated TMB levels (Figure
7D, upper-left), and a positive correlation was observed
between risk score and TMB (Figure 7D, upper-right).
Immunotherapy may confer longer-lasting clinical
benefits for patients with higher TMB [35, 36]. Based
on our analysis, it is plausible that our model’s high-
scoring LUADs could benefit from immunotherapy.
Furthermore, our findings suggest that patients with
high-risk scores had lower TIDE scores, and there was
an inverse correlation between TIDE scores and risk
scores (Figure 7D, lower panel). Patients with higher
TIDE scores are more likely to experience immune
evasion [30-32], implying that the high-risk population
in our model could benefit more from immunotherapy.
This finding aligns with our aforementioned discovery
regarding TMB. To testify the immunotherapy trend
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Figure 6. Extensive examination to investigate the correlation between CoCulncSig and the tumor microenvironment
status, immune cell infiltration, and immune function. (A) Boxplots compared the distribution of immune, stromal, and ESTIMATE
scores between high and low-risk groups. The correlation of risk score with immune, stromal, and ESTIMATE scores was depicted using
scatterplots. (B) Lollipop plots visualize the correlation of immune cell infiltration with CoCulLncSig scores. Here, the R language package
“IOBR” generates the immune cell infiltration based on the training cohort data. (C) The heatmap demonstrates the immune cell infiltration
distributions in high and low CoCulLncSig score population. (D) A Venn diagram (upper plot) depicts the intersection between the outcomes
of the correlation analysis and the distributional differences. Word clouds (lower plot) were utilized to emphasize crucial immune cell-
infiltrating cell types that emerged from this intersection. (E) The violin plots display variations in the immune function distribution
between the high-risk and low-risk LUADs. CoCuLncSig: copper homeostasis and cuproptosis regulated IncRNA signature; LUAD: lung
adenocarcinoma; A P-value below 0.05 was deemed as statistically significant. “ indicates non-significance, “*” represents a P-value
below 0.05, “**” signifies a P-value below 0.01, “***” denotes a P-value below 0.001, and “****” indicates a P-value below 0.0001.
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Figure 7. Demonstration of the relationship between the CoCulLncSig and immunotherapy [80]. Correlation between risk score
and ICB response signature (A) and correlation between risk score and each step of the tumor immune cycle (B). (C) A waterfall plot
displays the mutational landscape of the 20 most frequently mutated genes in LUAD. Furthermore, the plot showcases the variations in
mutations of these genes between the high-risk and low-risk LUADs. (D) Boxplots on the left show the difference in the distribution of TMB
and TIDE among high-risk and low-risk patients by the Wilcoxon rank sum test. On the right side, scatterplots depict the correlations
between risk scores and TMB and TIDE, evaluated by Pearson analysis. (E) The ridgeline plot (left) presents the distribution of risk score
variation in nonresponse and response LUADs. The proportion (right) of patients with response and nonresponse to immunotherapy in the
high and low CoCulncSig score groups. (F) Lollipop plots visualize the correlation between CoCulncSig and immune checkpoints.
Correlation was detected by Pearson’s coefficient test. (G) Violin plots showing differences in expression of immune checkpoint genes
between high and low risk groups. Differences in expression were analyzed using the Wilcoxon rank sum test. (H) Cox analysis was
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performed to reveal the prognostic potential of the 60 checkpoint genes. The Cox results showed that 15 checkpoint genes had prognostic
ability. (1) KM analysis evaluated whether high-expression and low-expression checkpoint genes had the predictive ability for LUAD
outcomes. The KM results demonstrated that 8 out of 60 checkpoint genes could discriminate LUAD prognosis. (J) The Venn diagram
merges findings from correlation analysis, difference distribution analysis, Cox analysis, and KM analysis to identify the checkpoint genes
associated with CoCulLncSig and impacting the prognosis of LUAD. (K) A heatmap has been generated to display published datasets’ relative
immunotherapy scores for six checkpoint genes. The checkpoint genes, ranked in order of their immunotherapy score from high to low, are
IL10, IL2, CD4OLG, SELP, BTLA, and CD28. The immunotherapy scores have been subjected to zero-mean normalization. CoCulLncSig: copper
homeostasis and cuproptosis regulated IncRNA signature; KM: Kaplan—Meier estimator; TMB: Tumor mutational burden; ICB response:
immune checkpoint blockers response; TIDE: Tumor Immune Dysfunction and Exclusion; ns: not significant; rSeg: r segment; pSeg: p-value
segment; sign: significant; pos: positively; neg: negatively; LUAD: lung adenocarcinoma; Asterisks denote statistical significance levels; in
this context, the significance levels for p-values are as follows: *p-value < 0.05 **p-value < 0.01 ***p-value < 0.001 "**p-value < 0.0001; A

p value < 0.05 was used as the threshold for statistical significance.

among CoCulLncSig risk score, we obtained
immunotherapy response data of the TCGA-LUAD
from the TIDE web portal and displayed them in the
form of ridgeline plot and percent stacked column chart,
as exhibited in Figure 7E. The ridgeline plot indicated
that the response population has a higher risk score
distribution than the nonresponse cases. The stacked
column chart showed the high-risk population had a
higher percentage of responses than that in the low-risk
group.

In our study, we conducted a literature review to
identify immune checkpoint genes, selecting a total of
60 based on previous research [33]. To analyze their
relationship with the risk score, we utilized Pearson
correlation coefficient analysis and displayed the results
using lollipop plots (Figure 7F). As demonstrated in
Figure 7F and Supplementary Table 7, 44 of the 60
genes showed a significant association with the risk
score. The top 5 were CD40LG (coefficient =
—0.504060342, p = 1.41E-33), TNFRSF14 (coefficient
= —0.438304706, p = 6.89E-25), SELP (coefficient =
—0.425936122, p = 1.87E-23), ADORA2A (coefficient
—0.422734376, p = 4.30E-23), and BTLA (coefficient

—0.419675547, p = 9.45E-23) (Figure 7F,
Supplementary Table 7). Violin plots were used to
visualize the Wilcoxon test, which compared the
distribution difference of 60 checkpoints between high-
risk and low-risk groups (Figure 7G). The analysis
revealed that 44 checkpoint genes exhibited a
differential distribution.

To identify prognostic genes among the 60 checkpoints,
we employed Cox analysis and KM analysis. Cox
analysis indicated that LUAD prognosis was linked to
15 checkpoint genes (Figure 7H), while KM analysis
demonstrated that 8 out of 60 checkpoint genes were
capable of distinguishing LUAD prognosis significantly
(Figure 71). To further investigate the checkpoints that
have a strong association with CoCulLncSig and
significantly influence prognosis, we utilized conducted
lollipop diagrams, violin diagrams, Cox analysis, and
KM analysis, and employed a Venn diagram to intersect
the results. The Venn diagram revealed that CD40LG,

BTLA, SELP, IL2, CD28, and IL10 are the most
noteworthy checkpoints (Figure 7J). In order to gain a
better understanding of how these six checkpoint genes
may impact immunotherapy, we utilized a heatmap
visualization to assess their effectiveness (Figure 7K).
Our analysis revealed that IL10, IL2, CD40LG, SELP,
BTLA, and CD28 were ranked in decreasing order
of immunotherapy scores. These findings suggest
that investigating the potential crosstalk between
CoCulLncSig and immunotherapy should be a focus of
future exploration.

Selecting potentially effective drugs and validating
them for high-risk score LUADs

After removing duplicate entries, the combined CTRP
and PRISM datasets comprised 1770 unique
compounds. One hundred sixty compounds were
common to both datasets, as depicted in Figure 8A and
summarized in Supplementary Table 8. By utilizing
both CTRP and PRISM data, we integrated two distinct
methodologies to pinpoint potential therapeutic agents
for LUADs with elevated risk scores (Figure 8B). These
approaches produced eight CTRP-derived agents
(including paclitaxel, leptomycin B, nakiterpiosin,
fluorouracil, SB-743921, 3-CI-AHPC, STF-31, and
parbendazole) (Figure 8C, upper) and eight PRISM-
derived compounds (including cabazitaxel, epothilone-
b, vincristine, gemcitabine, SGI-1776, dolastatin-10,
echinomycin, and MP1-0479605) (Figure 8D, upper).

While 16 potential compounds demonstrated increased
drug sensitivity in high-risk patients, relying solely on
the above analysis is insufficient to conclude that these
compounds are effective. Additional validation is
necessary to provide more convincing evidence for our
conclusion. Therefore, we proceeded with further
validation analyses to evaluate the therapeutic
potential of the 16 candidate compounds in high-risk
score LUAD patients (Figure 8C lower, Figure 8D
lower, Supplementary Table 9). According to the CMap
analysis findings, two compounds, namely epothilone-
b and gemcitabine, exhibited a CMap score of less
than —95, indicating their potential as promising
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of effectively treating LUAD. Additionally, we
conducted a thorough search of the PubMed database
https://www.ncbi.nlm.nih.gov/pubmed/) to find in vivo
or in vitro studies supporting the efficacy of drug

therapeutic options for LUAD. The fold-change values
depicting elevated expression of drug target genes
in tumor tissue as opposed to normal tissue suggest
that these drug candidates have a higher likelihood

A c
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Figure 8. Identification of candidate drugs for high CoCuLncSig risk score patients. (A) The data for our drug prediction comes
from the CTRP and PRISM databases, and the Venn diagram shows the compounds they include. (B) The flowchart shows the steps we
explored in the drug databases of CTRP and PRISM, respectively, mainly including the Wilcoxon rank sum and the Spearman correlation
statistical algorithms. (C) A collection of potential drugs has been discovered in the CTRP drug database. The top portion displays eight drug
candidates that were identified through Spearman correlation and differential drug response analyses. The lower section presents the
validation of the most encouraging LUAD therapeutics with high CoCulncSig scores, using evidence from various sources. (D) The PRISM
drug database has revealed a set of potential drug candidates. The top section displays eight drug candidates that were identified through
Spearman correlation and differential drug response analyses. The lower section showcases the validation process for the most promising
LUAD therapeutics with high CoCulLncSig scores, drawing on evidence from various sources. CoCulLncSig: copper homeostasis and
cuproptosis regulated IncRNA signature; LUAD: lung adenocarcinoma; FC: fold change; #: fold change differences of drug targets between
tumor and normal tissue (> O represents up-regulated in tumor tissue); ***P-value < 0.001; In the analysis, a P-value of less than 0.05 was
considered statistically significant, denoted by an asterisk.
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Table 3. The characteristics of the similar categories of studies from predecessors [37-47].

Authors

Published data

Journal name

Xiaocong Mo et al.

Shaohui Wang et al.

Fangwei Wang et al.

Wei Ye et al.

Zhuning Wang et al.
Shouzheng Ma et al.

Huang Di et al.

Ran Chen et al.

Pengpeng Zhang et al.

Linfeng Li et al.
Yu Wang et al.

July 22, 2022
August 30, 2022
September 1, 2022

October 7, 2022

October 14, 2022
October 31, 2022
December 9, 2022

January 7, 2023

January 17, 2023
February 11, 2023
February 11, 2023

Frontiers in Oncology
Frontiers in Pharmacology

World Journal of Surgical Oncology
MEDICINE

Journal of Immunology Research
Translational Lung Cancer Research
MEDICINE

Clinical and Translational Oncology

Frontiers in Oncology
Scientific Reports

Scientific Reports

Signature Study PMID
7-IncRNA signature PMID: 35936736
6-IncRNA signature PMID: 36110528
16-IncRNA signature PMID: 36050740
EreTAR S i 572137
8-IncRNA signature PMID: 36281357
7-IncRNA signature PMID: 36386454
10-IncRNA signature PMID: 36626411
(ro confficintgiven)  PMID: 36509650
7-IncRNA signature PMID: 36733364
7-IncRNA signature PMID: 36774446
8-IncRNA signature PMID: 36774418

(Candidates,

Furthermore,
https://www.clinicaltrials.gov/ to search for lung cancer

we

utilized

survival

analysis

of

TCGA-LUAD_FPKM_UQ, and overall survival and
disease-specific

TCGA-

clinical trials related to the drug candidates. Our
findings, presented in Figure 8C, Figure 8D, and
Supplementary Table 9, indicate that epothilone-b and
gemcitabine exhibit promising results for the treatment
of high-risk score LUAD, based on their outstanding in
silico and in vitro performance.

CoCulLncSig is better than similar previous studies
in survival predictions

In order to conclude whether our study is more robust
than previous, we searched PubMed and initially eleven
studies [37-47] were found (Table 3). However, Wei
Ye et al. and Ran Chen et al. ‘s study did not provide
the coefficient details of their signatures, which were
excluded from our choices. Finally, nine studies [37—40,
42, 43, 45-47] were listed as candidates for comparison
with our signature (Table 3). To compare previous
signatures with ours, we performed Cox regression
analysis for overall, disease-specific, and progression-
free survival using four formats of official TCGA data
(Figure 9), respectively. The analysis confirmed that
CoCuLncSig has solid predictive ability in overall,
disease-specific, and progression-free survival in four
testing cohorts (p < 3.31e-04) (Figure 9). In particular,
our signature occupies the first place in terms of p value
in overall survival and disease-specific survival analysis
of TCGA-LUAD_PanCanAtlas, TCGA-LUAD_Count,
and TCGA-LUAD_FPKM_UQ, and progression-free
survival analysis of TCGA-LUAD_FPKM (Figure 9).
CoCulLncSig ranked 2nd in terms of p value in
progression-free  survival analysis of TCGA-
LUAD_PanCanAtlas, = TCGA-LUAD_Count, and

LUAD_FPKM (Figure 9). It’s worth noting that our
signature didn’t rank third or worse in the comparisons.
From the statistical significance comparison plots
(Figure 9, right), we can see that the study that closest
to our signature is from Shouzheng Ma et al., but they
only ranked first in the progression-free survival
analysis of TCGA-LUAD_Count and TCGA-LUAD
FPKM_UQ with a slight advantage, and in other
comparisons in a later position.

Validation of CoCulLncSig in human tissues and
pan-cancer

Our gRT-PCR validation revealed differential
expression of seven IncRNAs between LUAD and
normal lung tissues (Figure 10A). Specifically,
LINC01833 and ITGB1-DT were upregulated in LUAD
tissues, while the remaining five IncRNAs were
downregulated in cancer samples. Interestingly, our
earlier analysis in Supplementary Figure 2 indicated
that the upregulation of LINC01833 and ITGB1-DT in
cancer tissues had a negative impact on LUAD
prognosis. Conversely, our analysis in Supplementary
Figure 2 confirmed that the downregulation of the other
five IncRNAs had a protective effect on prognosis. The
concurrence of the expression patterns and prognostic
abilities further validates the efficacy of our developed
CoCulLncSig and offers valuable insights for future in-
depth studies. It is worth noting that we did not find
differential expression of AC025278.1 in tumors and
normal tissues. We speculate that it is due to the size of
the sample or the reason for the race, but the specific
reason remains to be explored.
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To test the effectiveness of our CoCulLncSig in pan-
cancer, we called the TCGA-LUAD_PanCanAtlas
dataset. According to the calculation formula of the
CoCuLncSig, the risk score distribution in pan-cancer
was obtained, as shown in Figure 10B. We also called
Cox regression to evaluate whether CoCulLncSig can
impact the overall, disease-specific, and progression-free
survival of pan-cancer. As a result, we found that our
signatures were unfavorably influencing 25 of 32 kinds
of cancer survival in terms of overall, disease- specific,
and progression-free survival. What is very interesting is
that our signature showed stable protectable effects on
overall, disease-specific, and progression-free survival in
READ, LGG, and THCA, which is worthy of further
research. We analyzed the LUAD_PanCanAtlas dataset
to explore the expression difference of the INCRNAs, as
shown in Figure 10C. The plots hinted that the IncCRNAs,
AC026471.3, AL691432.2, COLCAL, ITGB1-DT, and
LINCO01833 ranked the different expression ability. The
cancer types of KICH, KIPAN, KIRC, KIRP, and

NSCLC may more strongly tell the eight IncRNAs’
differences between tumor and normal samples. The
survival heatmap in Figure 10D showed that the ITGB1-
DT and LINCO01833 might have an unfavorable impact
on most parts of the pan-cancer population. In contrast,
the remaining IncRNAs mostly protected the outcomes.
Our preliminary investigation into the potential of
CoCulLncSig and eight IncRNAs in pan-cancer has
provided valuable insights and highlighted their
significance, thereby paving the way for further research
in other cancers. However, there are still several obscure
factors that require in-depth examination.

DISCUSSION

Copper homeostasis refers to the maintenance of copper
levels within the body at a stable and appropriate level
[6]. This involves a delicate balance between copper
uptake, distribution, utilization, and elimination [6].
Disruptions in copper homeostasis have been implicated

Overall survival

Disease-specific survival

Progression-free survival

Statistical significance

HR 95L 95H P HR_ 95L  95H p HR_ 95L  95H ) comparison (p)
TCGA-LUAD_PanCanAtlas
~e— CoCuLncSig 144 131 158 548E-14 146 129 165 1.06E-09 121 110 132 6.72E-05 14
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Figure 9. Comparison of previous signatures [37-47] with CoCulLncSig by performing Cox regression analysis for overall,
disease-specific, and progression-free survival using four formats of official TCGA data. CoCulncSig: copper homeostasis and

cuproptosis regulated IncRNA signature.
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in various human diseases, including cancer [48]. In
cancer, copper is required for angiogenesis, the process
of blood vessel formation that supplies tumors with
nutrients and oxygen, and copper chelation therapy is
being explored as a potential cancer treatment [48].
Cuproptosis refers to a recently discovered form of cell
death triggered by copper, which is predominantly
observed in cells that rely on oxidative phosphorylation
as their primary metabolic process for energy
production [6]. Numerous studies have indicated the
crucial involvement of cuproptosis in cancer,
particularly in its response to chemotherapy and
radiation therapy [49, 50]. In some cases, cancer cells
can become resistant to chemotherapy and radiation
therapy by activating survival pathways that block
apoptotic cell death. Furthermore, copper accumulation
in cancer cells can also induce immunogenic cell death,
which can trigger an immune response against the
tumor [51]. This mechanism can potentially enhance the
efficacy of immunotherapies and lead to better
outcomes for cancer patients. Overall, understanding the
roles of copper homeostasis and cuproptosis in cancer
may lead to the development of new therapeutic
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strategies for cancer treatment, including the targeting
of copper metabolism and the induction of cuproptosis
as a means of enhancing the efficacy of existing
treatments.

Further attention should be given to the study of joint
modulators of copper homeostasis and cuproptosis in
the progression and prognosis of LUAD disease, as
currently there are no existing studies on the topic.
Establishing an effective classifier for the treatment,
prediction, follow-up, and other clinical work of
LUAD:s is crucial due to the heterogeneity of patients
and the significant difference in their prognostic results.
Our study employed a combination of public database
mining and experimental validation, as well as the latest
concept of copper homeostasis and cuproptosis to
establish the LUAD clinical model, CoCuLncSig. By
utilizing advanced algorithms and statistics, we were
able to confirm the broad applicability and effectiveness
of our signature. CoCuLncSig targets immune function
and key immune molecules, such as I1L10, IL2,
CD40LG, SELP, BTLA, and CD28. Our screening of
1770 compounds resulted in the identification of
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Figure 10. The qRT-PCR validation of expression pattern of CoCulLncSig IncRNAs in human tissues and the prognostic
potential assessments of CoCuLncSig by pan-cancer analysis. (A) Boxplots showing the expression of CoCuLncSig IncRNAs measured
by gRT-PCR in LUAD and adjacent tissues. (B) CoCulLncSig score distribution in pan-cancer and its impact on overall survival, disease specific
survival, and progression free survival of each cancer type. (C) Heatmap depicts the variance in expression of CoCuLncSig IncRNAs between
normal and tumor tissues across pan-cancer. The histogram at the top illustrates the count of genes exhibiting significant differential
expression. Genes that are markedly upregulated and downregulated are identified with red and green markers, respectively. (D) Heatmap
shows the prognostic ability of CoCulLncSig IncRNAs in pan-cancer. CoCulLncSig: copper homeostasis and cuproptosis regulated IncRNA

signature.
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effective drugs for patients with high CoCulLncSig
scores, and multidimensional validation of these drugs
confirmed their efficacy. We also compared our
CoCulLncSig and previous similar studies, described
real-world expression patterns of the eight INcCRNAs
using qRT-PCR, and assessed the performance of the
signature and its INcRNAs in pan-cancer.

Table 1 displays the signature we have devised in this
study, comprising of eight IncRNAs: AL691432.2,
AC093010.2, AC107464.3, AC025278.1, COLCA1,
AC026471.3, LINC01833, and ITGB1-DT. In this study,
validation through gRT-PCR confirmed that 7 out of 8
IncRNAs in our signature exhibited differential expression
in tumor and normal tissue samples (Figure 10A). While
public data mining indicated that AC025278.1 was also
differentially expressed in tumor and normal, we did not
observe a significant difference in the human tissue
samples used in our qRT-PCR. This discrepancy may be
due to differences in ethnic distribution between our
samples and those in the public database. However,
further research is required to ascertain the specific
reasons. Based on the analysis depicted in Supplementary
Figure 2 of this study, it was found that LUAD prognosis
is adversely affected by LINC01833 and ITGB1-DT,
whereas the remaining IncRNAs included in the
CoCulLncSig have a protective effect on prognosis.
Furthermore, pan-cancer analysis has identified
AC026471.3, AL691432.2, COLCAL, ITGB1-DT, and
LINCO01833 as the top five IncRNASs in our signature
exhibiting the most significant difference between pan-
cancer tumors and normal tissue (Figure 10C). This
finding may pique the interest of researchers and offer
valuable insights for future investigations. Notably, our
study highlights ITGB1-DT and LINC01833 as InCRNAs
with a significant impact on the prognosis of more cancer
types, warranting further attention in future research
compare with other IncRNAs in the signature (Figure
10D). The IncRNA LINC01833 was a particular point of
interest in this study due to its distinct differential
expression in tumor and normal tissues, as well as its
prognostic potential in cancer. LINC01833 is a IncRNA
that is located on chromosome 2. It regulates various
cellular processes, including cell proliferation, differen-
tiation, and apoptosis. Multiple studies have demonstrated
that LINCO01833 can stimulate cancer cell proliferation,
migration, and invasion in various cancer types [52, 53].
Specifically, LINC01833 can promote these activities by
modulating the MiR-519e-3p/S100A4 axis and has shown
promise as a biomarker for predicting cancer patient
prognosis [52, 53]. In lung cancer tissues, LINC01833 is
upregulated and has been linked to tumor progression and
unfavorable prognosis [52, 53]. Nonetheless, additional
research is necessary to gain a comprehensive
understanding of how LINCO01833 operates in lung
cancer.

Considerable effort has been invested in validating the
accuracy of our model, including a comparative analysis
with previous studies. To accomplish this, we gathered
all published studies [37—40, 42, 43, 45-47] that were
similar to our research and evaluated their performance,
along with our model, on the official TCGA data
(Figure 9). By constructing Cox models and analyzing
three different outcome endpoint data sets, namely OS,
DSS, and PFS, we determined that our model generally
outperformed previously published models. These
findings suggest that our model has significant
advantages over existing models. In addition, our study
of pan-cancer has revealed that our signature negatively
impacts the prognosis of 25 out of 32 cancers,
specifically concerning OS, DSS, and PFS (Figure 10B).
Taken together, our model not only has a stronger
prognostic ability for LUAD, but also has predictive
ability for many other types of cancer.

Tumor immunotherapy utilizes the immune system to
combat cancer cells and is a form of cancer treatment.
By tailoring treatment to an individual’s cancer type and
immune system, immunotherapy has the potential to
produce more effective and personalized outcomes [54].
Combining immunotherapy with other therapies like
chemotherapy and radiation may enhance results [55].
Immunotherapy represents a highly promising and
exciting area of oncology research, with the potential to
transform cancer treatment and improve patient
outcomes [55]. Immunotherapy’s primary obstacle is
determining the suitability of a particular biomarker for
a patient and devising a treatment plan that maximizes
benefits [56]. This study sheds light on how immune
checkpoints and CoCulLncSig are related, which can
help determine the most effective immunotherapy
methods for specific populations. The results of our
study indicate that the CoCuLncSig score is strongly
linked to TMB and TIDE, suggesting that CoCuLncSig
could be a useful tool for guiding immunotherapy.
Additionally, we identified six specific checkpoints
(IL10, IL2, CD40LG, SELP, BTLA, and CD28) that are
associated with CoCulLncSig, further supporting its
potential role in guiding immunotherapy. In our selected
cohort for immunotherapy, we evaluated the
effectiveness of these checkpoints, and IL10, IL2, and
CD40LG emerged as the top three checkpoints in terms
of their immunotherapy capacity, listed in descending
order (Figure 7K). IL-10 is a versatile cytokine that
plays multiple roles in the immune system [57]. On one
hand, it is required for the proper function of T-helper
cells and for immune surveillance by T cells [58]. IL-10
also suppresses cancer-associated inflammation, making
it a key player in the host’s fight against cancer [59].
However, IL-10 is also involved in tumor immune
escape, as it is an immunosuppressive cytokine [60]. In
addition, 1L-10 is known for its potent anti-
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inflammatory properties and its ability to dampen
immune responses to both self and foreign antigens
[59]. IL-10 signaling blockade has been shown to
enhance vaccine-induced T cell responses and prevent
tumor growth [61]. NSCLC patients undergoing
immunotherapy may benefit from monitoring 1L-10
levels as a potential indicator of immune-related
adverse events [62]. Activated CD4+ and CD8+ T cells
secrete IL-2, a cytokine with important functions in
regulating immune responses and promoting the
expansion of T cells that recognize activating antigens
[63]. IL-2 plays a critical role in the activation of the
immune system and has been shown to be capable of
mediating tumor regression as a monotherapy, making it
a potential way to eradicate cancer [64]. In 1992, a
laboratory-made form of IL-2 was the first immuno-
therapy approved to treat cancer, but its intravenous
administration causes severe side effects, limiting its
use [65]. However, in China, IL-2 has been approved
since 1998 for the treatment of malignant pleural
effusion [66]. Additionally, a meta-analysis has shown
that IL-2 combination therapy is efficacious in treating
NSCLC, improving overall survival without significant
toxic reactions [67]. CD40LG, also known as CD154, is
a protein that belongs to the TNF superfamily and is
primarily found on activated T cells [68]. Initially, it
was recognized for its critical role in T cell-dependent
humoral responses by interacting with CD40, but later
studies showed that it is also involved in cell-mediated
immunity and inflammation [69]. CD154 can interact
with CD40 alone or in combination with integrin
receptors, contributing to the development of chronic
inflammatory-related diseases [70]. Despite its
involvement in disease development, CD154 has high
potential for cancer treatment [69]. It activates anti-
tumoral immunity and can induce apoptosis of tumor
cells by engaging CD40 [69]. Animal models and
clinical assessments have demonstrated the significant
role of CD154 in cancer immunotherapy [71].

Due to the high degree of heterogeneity among
individuals with LUAD, it is challenging to effectively
treat all cases using a single approach [72]. Current
treatment methods for advanced LUAD are not equipped
with corresponding biomarkers, rely on population-
based approaches, and have limited treatment outcomes
[72]. The primary objective of this research is to identify
personalized drug or small molecule therapeutic
strategies for individual patients, which is crucial for
optimizing therapeutic efficacy. Our developed
CoCulLncSig model offers prognostic insights for
patients with LUAD and can aid in precision oncology
by guiding targeted therapies such as small-molecule
drugs. We have pinpointed 16 drug candidates that
demonstrate potential efficacy in the high-CoCuLncSig-
scoring population. After several validations, we have

found that Epothilone B and gemcitabine exhibit strong
therapeutic potential with robust supporting evidence.
Epothilone B has the potential to be an effective
anticancer drug as it hinders cell division by interfering
with microtubulin function [73]. Although microtubules
are crucial for cell division, Epothilone B’s binding at
the interface of two tubulin subunits hampers the general
dynamics of microtubules [73]. Additionally, Epothilone
B has been granted approval for treating metastatic
breast cancer [74] and has exhibited encouraging clinical
activity in a phase Il trial conducted among NSCLC
patients [75]. Gemcitabine is a chemotherapy drug used
to treat different types of cancer, including bladder and
breast cancer. In the 1980s, Larry Hertel synthesized
gemcitabine for antiviral purposes, which later received
FDA approval in 1998 as a treatment for NSCLC [76,
77]. Research involving gemcitabine monotherapy in
over 400 patients has consistently reported response
rates exceeding 20%, and it has been well tolerated in
advanced NSCLC [78, 79]. Gemcitabine and Epothilone
B are both widely recognized for their effectiveness in
treating NSCLC [75, 78, 79]. However, research on
Epothilone B in NSCLC is currently limited. Our study
aims to contribute to the existing evidence by
demonstrating the potential benefits of Epothilone B in
our high-scoring patients, providing a fresh perspective
for further investigation. Despite the considerable
amount of data on gemcitabine in NSCLC patients, the
drug’s effectiveness varies due to the heterogeneity of
tumors [72]. Nevertheless, our study provides valuable
guidance for the use of gemcitabine, indicating that
high-scoring patients may be more responsive to the
drug. Further exploration and research are needed to
support our findings.

This study has limitations. Despite the validation of
CoCulLncSig’s stable prognostic power in another large
independent cohort and the confirmation of its stronger
predictive ability through comparison with similar
published studies, the data source in this study were
solely obtained from open-access databases. Even
though qRT-PCR conducted on human tissue samples
has validated the differential expression of CoCuLncSig
IncRNAs in tumor and normal tissues, the mechanisms
behind this signature remain unclear. As such, more
studies focusing on in vivo and in vitro experiments are
urgently needed to provide further evidence supporting
CoCulLncSig’s potential role in copper homeostasis,
cuproptosis, and its clinical significance.

CONCLUSION

The current research has developed a IncRNA signature,
CoCuLncSig, associated with copper homeostasis and
cuproptosis. This signature has been constructed to
predict the prognosis of LUAD, and its stability and
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superiority have been confirmed by independent
validation and comparison with previous studies. gRT-
PCR assessment has also confirmed the differential
expression of CoCuLncSig IncRNAs. The study
highlights the significant role of CoCuLncSig in LUAD
immune function and its potential for precision
immunotherapy. Furthermore, our study identifies
possible immunotherapeutic targets and drugs closely
associated with CoCulLncSig, which could guide
targeted therapy based on population characteristics. In
conclusion, this study provides new insights into
prognostic prediction and highlights the integration of
immunotherapy personalization and precision therapy.
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Supplementary Figure 1. The profile of the signature IncRNAs. (A) The heatmap shows the signature’s eight IncRNAs’ correlations
with 21 copper homeostasis/cuproptosis-regulated genes. (B, C) The distributions of the risk score, survival status, survival time, and eight
IncRNAS’ levels for LUAD cases in the training cohort and validation cohort.
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Training cohort
AC025278.1 0.4336 0.2332 0.8059 8.24e-03
AC026471.3 0.7099 0.5558 0.9066 6.05¢-03
AC093010.2 0.4958 0.3338 0.7364 5.09e-04
AC107464.3 0.5263 0.3776 0.7335 1.50e-04
AL691432.2 0.3118 0.1909 0.5094 3.27e-06
COLCA1 0.5885 0.4660 0.7432 8.46e-06
ITGB1-DT 1.7068 1.3467 2.1630 9.75e-086
LINC01833 1.3259 1.1330 1.5517 4.38e-04
Validation cohort
AC025278.1 0.1209 0.0179 0.8178 3.03e-02
AC026471.3 0.7368 0.5631 0.9639 2.59e-02
AC093010.2 0.5310 0.3664 0.7695 8.25e-04
AC107464.3 0.2870 0.1100 0.7487 1.07e-02
AL691432.2 0.7969 0.6520 0.9741 2.67e-02
COLCA1 0.8001 0.6883 0.9300 3.68¢-03
ITGB1-DT 1.5734 1.0012 24725 4.94e-02
LINC01833 3.0241 1.3133 6.9634 9.31e-03
-8 -4 0 4 8
log,HR

Supplementary Figure 2. The Kaplan-Meier analysis (A) and univariate Cox models (B) established in the studied cohorts testing the
predictive ability of each of the eight signature IncRNAs. Patients were grouped based on their median risk score. The Kaplan-Meier method
compared the survival difference between high and low-risk patients, and the log-rank test examined the significance.
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Supplementary Tables

Please browse Full Text version to see the data of Supplementary Table 3, 8 and 9.

Supplementary Table 1. 60 immune checkpoints obtained from previous studies.

ID Type
VSIR Inhibitory
VTCN1 Inhibitory
VEGFB Inhibitory
VEGFA Inhibitory
TNFSF9 Stimulaotry
TNFSF4 Stimulaotry
TNFRSF9 Stimulaotry
TNFRSF4 Stimulaotry
TNFRSF18 Stimulaotry
TNFRSF14 Stimulaotry
TNF Stimulaotry
TLR4 Stimulaotry
TIGIT Inhibitory
TGFB1 Inhibitory
SLAMF7 Inhibitory
SELP Stimulaotry
PRF1 Stimulaotry
PDCD1 Inhibitory
LAG3 Inhibitory
KIR2DL3 Inhibitory
KIR2DL1 Inhibitory
ITGB2 Stimulaotry
L4 Inhibitory
L2RA Stimulaotry
L2 Stimulaotry
L1B Stimulaotry
L1A Stimulaotry
L13 Inhibitory
L12A Inhibitory
L10 Inhibitory
FNG Stimulaotry
FNA2 Stimulaotry
FNA1 Stimulaotry
001 Inhibitory
COSLG Stimulaotry
ICOS Stimulaotry
ICAM1 Stimulaotry
HMGB1 Stimulaotry
HAVCR2 Inhibitory
GZMA Stimulaotry
ENTPD1 Stimulaotry
EDNRB Inhibitory
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CXCL9
CXCL10
CX3CL1
CTLA4
CD80
CD70
CD40LG
CD40
CD28
CD276
CD274
CD27
CCL5
BTN3A2
BTN3A1
BTLA
ARG1
ADORA2A

Stimulaotry
Stimulaotry
Stimulaotry
Inhibitory
Stimulaotry
Stimulaotry
Stimulaotry
Stimulaotry
Stimulaotry
Inhibitory
Inhibitory
Stimulaotry
Stimulaotry
Stimulaotry
Stimulaotry
Inhibitory
Inhibitory
Inhibitory

Supplementary Table 2. Seventy-two differentially expressed genes identified between five CoCu clusters.

1D

JMID7-PLA2G4B

STARD9
AC020978.9
AC008764.2
GPRASP1
AC018665.1
TUBGCP6
AL031714.1
AL022328.1
AC009120.3
AL450263.1
AC009120.2
AC079336.5
AC116366.2
AL031709.1
CKS1B

STX16-NPEPL1

MASP2
CR559946.2
AL022328.3
AC004890.2
AC006001.3
LINC00106
MRPL15
AC005154.4
PLA2G4B
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AC008897.1
AC116366.1
RN7SKP70
AC098851.1
AC003070.1
PFDN4
PWARS
AL031600.1
TNS1
CGNL1
ZNF767P
AC108449.2
ARMC2-AS1
HERC2P2
COX5B
AL353588.1
ROMO1
GOLGASR
LY6G5B
ERICH6B
SLC5A4
AC003957.1
ANAPC11
MRPL27
ATP5ME
C190rf53
ZNF540
GCC2
DEPDC1
ATP13A4
CENPX
NBEAL1
PHACTR2P1
CDC20
GADD45GIP1
COX8A
RP11-164P12.4
ESCO2
ATP5MC1
REL

BAZ2B
RP11-701H24.5
RSF1
ALKBH7
FMC1
SMIM29
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Supplementary Table 3. KEGG pathways identified by GSVA between two CoCu-DEG clusters.

Supplementary Table 4. The KM and Cox analysis screened the DELs and found 15 DELs meet our criteria for further
LASSO.

ID KM_pvalue HR HR_95L HR_95H Cox_pvalue
AC009120.2 0.038352 0.56660 038906 0.82515 0.003056
AC020659.1 0.048046 063086 053533 089157 0.004484
AC025278.1 0.038672 043355 023324 080589 0.008237
AC026471.3 0.015271 070985 053578 090064 0.006052
AC093010.2 0.001083 049578 033380 073636 0.000509
AC107464.3 0.004118 052626 037760 073345 0.00015
AL353622.1 0.04654 059920 0.42650 081183 0.003152
AL691432.2 0.000232 034181 019088 0.50943 3.27E-06
AP002026.1 0.016943 0556833 038513 080941 0.002098
COLCAL 0.003529 058849 0.40601 074316 8.46E-06
CYP2B7P 0.00346 072541 062020 080953 0.000453
ITGB1-DT 0.000232 1.70676 133072 216304 9.75E-06
LINC01833 0.001948 1.32589 113295 1.59169 0.000438
TSPOAP1-AS1 0.033550 047930 031515 072894 0.000586
ZNF710-AS1 0.01814 055092 030467 083229 0.004626

Supplementary Table 5. Correlations identified between CoCulncSig and the immune checkpoint blocker response
signature.

ID r p sign absR rSeg pSeg

Alcoholism 0.317842 3.36E-13 pos 0.317842 0.5 <0.001
Base_excision_repair 0.458873 2.09E-27 pos 0.458873 0.5 <0.001
Cell_cycle 0.551933 3.32E-41 pos 0.551933 0.75 <0.001
Cytokine-cytokine_receptor_interaction —0.174487 8.78E-05 neg 0.174487 0.25 <0.001
DNA_replication 0.488969 2.06E-31 pos 0.488969 0.5 <0.001
Fanconi_anemia_pathway 0.512925 6.71E-35 pos 0.512925 0.75 <0.001
Homologous_recombination 0.494461 3.45E-32 pos 0.494461 0.5 <0.001
MicroRNAs in cancer 0.380949 1.03E-18 pos 0.380949 0.5 <0.001
Mismatch_repair 0.518448 9.61E-36 pos 0.518448 0.75 <0.001
Nucleotide_excision_repair 0.463601 5.21E-28 pos 0.463601 0.5 <0.001
Oocyte_meiosis 0.574946 2.47E-45 pos 0.574946 0.75 <0.001
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p53_signaling_pathway 0.536263 1.42E-38 pos 0.536263 0.75 <0.001
Progesterone-

mediated_oocyte_maturation 0.597046 1.29E-49 pos 0.597046 0.75 <0.001
Proteasome 0.284891 8.62E-11 pos 0.284891 0.5 <0.001
Pyrimidine_metabolism 0.528358 2.69E-37 pos 0.528358 0.75 <0.001
RNA_degradation 0.396127 3.11E-20 pos 0.396127 0.5 <0.001
Spliceosome 0.492619 6.30E-32 pos 0.492619 0.5 <0.001
Systemic_lupus_erythematosus 0.266495 1.41E-09 pos 0.266495 0.5 <0.001
Viral_carcinogenesis 0.53229 6.29E-38 pos 0.53229 0.75 <0.001

Supplementary Table 6. Correlations identified between CoCuLncSig and the tumor immune cycle steps.

ID r p sign absR rSeg pSeg
Step_1_Release_of cancer_cell_antigens 0.165305 0.000205 pos 0.165305 0.25 <0.001
Step_2_Cancer_antigen_presentation —0.221413 5.71E-07 neg 0.221413 0.25 <0.001
Step_3_Priming_and_activation —0.102557 0.021816 neg 0.102557 0.25 <0.05
Step_4_B_cell_recruiting -0.162754 0.000258 neg 0.162754 0.25 <0.001
Step_4_Basophil_recruiting 0.314476 6.12E-13 pos 0.314476 0.5 <0.001
Step_4_CD4_T_cell_recruiting —0.359971 9.63E-17 neg 0.359971 0.5 <0.001
Step_4_CD8_T_cell_recruiting —0.004226 0.924908 neg 0.004226 0.25 ns
Step_4_Dendritic_cell_recruiting —-0.010722 0.810987 neg 0.010722 0.25 ns
Step_4_Eosinophil_recruiting 0.307629 2.02E-12 pos 0.307629 0.5 <0.001
Step_4_Macrophage_recruiting —0.00854 0.848934 neg 0.00854 0.25 ns
Step_4_MDSC_recruiting 0.181006 4.68E-05 pos 0.181006 0.25 <0.001
Step_4_Monocyte_recruiting 0.024725 0.581244 pos 0.024725 0.25 ns
Step_4_Neutrophil_recruiting 0.180514 4.91E-05 pos 0.180514 0.25 <0.001
Step_4_NK_cell_recruiting 0.017849 0.690518 pos 0.017849 0.25 ns
Step_4_T_cell_recruiting —0.151569 0.000673 neg 0.151569 0.25 <0.001
Step_4_TH1_cell_recruiting 0.085 0.05752 pos 0.085 0.25 ns
Step_4_TH17_cell_recruiting —0.184121 3.44E-05 neg 0.184121 0.25 <0.001
Step_4_Th2_cell_recruiting —0.086891 0.052168 neg 0.086891 0.25 ns
Step_4_TH22_cell_recruiting -0.110149 0.013726 neg 0.110149 0.25 <0.05
Step_4_Treg_cell_recruiting —0.100488 0.024637 neg 0.100488 0.25 <0.05
Step_5_Infiltration_of _immune_cells_into_tumors —0.24098 4.88E-08 neg 0.24098 0.25 <0.001
Step_6_Recognition_of_cancer_cells_by_T_cells 0.102157 0.022339 pos 0.102157 0.25 <0.05
Step_?_Killing_of_cancer_cells —0.003032 0.946074 neg 0.003032 0.25 ns

Supplementary Table 7. Correlations identified between CoCulLncSig and 60 immune checkpoint genes using the
Pearson correlation coefficient.

Genes cor pvalue
ADORA2A —0.422734376 4.30E-23
ARG1 —0.295481493 1.56E-11
BTLA —0.419675547 9.45E-23
BTN3Al —0.310095462 1.32E-12
BTN3A2 —0.248063616 1.90E-08
CCL5 —0.128477904 0.004007163
C02? —0.334905757 1.43E-14
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CD274 —0.063518361 0.156134943
CD276 0.081440831 0.068829414
Cc028 —0.370361517 1.06E-17
C040 —0.192512989 1.46E-05
CO40LG —0.504060342 1.41E-33
CO70 0.000305993 0.99455441
COoBO —0.296297197 1.37E-11
CTLA4 —0.306745955 2.36E-12
CX3CL1 —0.367033739 2.17E-17
CXCL10 0.04858284 0.278246571
CXCL9 —0.074801613 0.094767141
EDNRB —0.352046529 4.92E-16
ENTPD1 —0.29612718 1.41E-11
GZMA —0.094800545 0.034067326
HAVCR2 —0.185886992 2.88E-05
HMGB1 —0.051846811 0.247187926
ICAM1 —0.317627504 3.50E-13
ICOS —0.26315788 2.30E-09
ICOSLG —0.207058275 3.03E-06
001 —0.077338556 0.084059493
FNA1 0.047107532 0.293119117
FNA2 0.045016288 0.315096852
FNG —0.025642875 0.567287385
L10 —0.191580669 1.61E-05
L12A —0.143913472 0.001252
L13 —0.249069387 1.66E-08
L1A 0.124791538 0.005200089
L1B —0.086803407 0.052405482
L2 —0.37708981 2.43E-18
L2RA —0.110953556 0.013048004
L4 —0.366527201 2.41E-17
TGB2 —0.307862593 1.94E-12
KIR2DL1 —0.072705502 0.104413161
KIR2DL3 —0.061740117 0.168076463
LAG3 —0.150219132 0.000752406
PDCD1 —0.176593722 7.18E-05
PRF1 —0.191238621 1.67E-05
SELP —0.425936122 1.87E-23
SLAMF7 —0.149814436 0.000777867
TGFB1 —0.248568211 1.77E-08
TIGIT —0.254435724 7.91E-09
TLR4 —0.246665425 2.29E-08
TNF —0.280494229 1.71E-10
TNFRSF14 —0.438304706 6.89E-25
TNFRSF18 —0.122333533 0.006164353
TNFRSF4 —0.192245883 1.50E-05
TNFRSF9 —0.095476734 0.032805198
TNFSF4 0.033482287 0.455050103
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TNFSF9
VEGFA
VEGFB
VSIR
VTCN1

0.04738705
—0.146499297
—0.220307603

—0.29320105
—0.074043816

0.290261217
0.001018496
6.52E-07
2.27E-11
0.098168796

Supplementary Table 8. Lists of drugs in CTRP and PRISM.

Supplementary Table 9. List of potential therapeutic agents for LUAD patients with high-risk scores.
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