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INTRODUCTION 
 

Non-small cell lung cancer (NSCLC) is a malignancy 

with a notable prevalence and mortality rate, wherein the 

lung adenocarcinoma (LUAD) represents the foremost 

prevalent pathological subclass [1]. The amassing  

of molecular insights through burgeoning technologies  

has facilitated the development of targeted therapeutics 

alongside traditional interventions, such as surgery and 

chemotherapy. The 5-year relative survival rate of LUAD 
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ABSTRACT 
 

Background: Lung adenocarcinoma (LUAD) is one of the leading malignant cancers. Aggrephagy plays a critical role 
in key genetic events for various cancers; yet, how aggrephagy functions within the tumor microenvironment 
(TME) in LUAD remains to be elucidated. 
Methods: In this study, by sequential non-negative matrix factorization (NMF) algorithm, pseudotime analysis, 
cell-cell interaction analysis, and SCENIC analysis, we have shown that aggrephagy genes demonstrated various 
patterns among different cell types in LUAD TME. LUAD and Immunotherapy cohorts from public repository 
were used to determine the prognosis and immune response of aggrephagy TME subtypes. The aggrephagy-
deprived prognostic score (ADPS) was quantified based on machine learning algorithms. 
Results: The cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), and CD8+ T cells have 
various aggrephagy patterns, which enhance the intensity of intercellular communication and transcription 
factor activation. Furthermore, based on the signatures of the newly defined aggrephagy cell subtypes and 
expression profiles of large cohorts in LUAD patients, we determine that DYNC1I2+CAF-C1, DYNLL1+CAF-C2, 
PARK7+CAF-C3, VIM+Mac-C1, PARK7+Mac-C2, VIM+CD8+T_cells-C1, UBA52+CD8+T_cells-C2, TUBA4A+CD8+T_ 
cells-C3, and TUBA1A+CD8+T_cells-C4 are crucial prognostic factors for LUAD patients. The developed ADPS 
could predict survival outcomes and immunotherapeutic response across ten cohorts (n = 1838), and patients 
with low ADPS owned a better prognosis, lower genomic alterations, and are more sensitive to immunotherapy. 
Meanwhile, based on PRISM, CTRP, and CMAP databases, PLK inhibitor BI-2536, may be a potential agent for 
patients with high ADPS. 
Conclusions: Taken together, our novel and systematic single-cell analysis has revealed the unique role of 
aggrephagy in remodeling the TME of LUAD. As a newly demonstrated biomarker, the ADPS facilitates the 
clinical management and individualized treatment of LUAD. 
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patients, at 21%, mirrors the difficulties encountered  

in managing this aggressive malignancy, frequently 

detected at an advanced stage, whereby the disease has 

already metastasized to other regions of the body [2]. 

The difficulty in treating LUAD is often due to its 

resistance to traditional chemotherapy and radiation 

therapy, which could lead to different individual 

therapeutic responses and contribute to its poor survival 

rate. Tumor heterogeneity, including characterized  

by diverse TME patterns as well as cancer cell types, 

represents a significant contributor to reduced response 

rates and drug resistance [3]. Thankfully, advances in 

molecular biology, genomics, and proteomics might 

help unravel the complexity as well as heterogeneity at 

the molecular level, leading to new individualized 

strategies for LUAD treatment. 

 
Autophagy represents a highly conserved eukaryotic 

cellular recycling process that plays an indispensable 

role in the degradation of cytoplasmic organelles, 

proteins, as well as macromolecules, essential for the 

survival and maintenance of cells [4]. Significantly, 

autophagy serves as a sustainable source of biomolecules 

and energy to maintain homeostasis under stressful 

conditions, including those encountered within the tumor 

microenvironment [5]. Misfolded proteins accumulate 

in cells to form protein aggregates, which interfere  

with the normal physiological activities of cells and 

cause various human diseases [6, 7]. Aggrephagy is a 

specific clearance pathway for intracellular protein 

aggregates, which is a type of selective autophagy. It 

undertakes most of the tasks involved in degrading 

protein aggregates and plays a decisive role in the 

abnormal protein quality control system. This pathway 

has potential applications in the treatment of various 

diseases, like neurodegenerative diseases, muscular 

atrophy, and cancer [8]. Previous studies have indicated 

that protein misfolding and aggregation can impact  

the function of the p53 protein in cancer. When the  

p53 protein is mutated or aggregated, it can lose  

its functionality, leading to tumor progression [9– 

11]. Consequently, comprehending the mechanisms of 

aggrephagy has arisen as a promising approach for 

targeted therapy as well as holds potential for further 

research in drug development. Single-cell transcriptomics 

has uncovered the intricate intercellular crosstalk 

between diverse subtypes of cells in the TME and 

cancer cells, revealing a complex network of inter-

cellular signaling pathways that regulate tumor growth 

and progression [12]. The TME consists of a diverse 

range of cellular components, including CAFs, TAMs, 

T cells, and tumor cells. It is defined by a tumor-

promoting and immunosuppressive phenotype, charac-

terized by complex intercellular signaling networks that 

regulate the progression and growth of the tumor [13]. 

Meanwhile, TME has long been known as a nutrient-

depleted environment, study indicated that the autophagy 

of cancer cells rescued itself from T cell-mediated 

cytotoxicity by blocking cytokine-induced apoptosis 

[14]. Zhao et al. found that autophagy loss impedes 

CAFs activation via downregulation proline biosynthesis 

[15]. Additionally, wang et al. discovered that elevated 

TUBA1A, a classical aggrephagy markers, lead the 

worse clinical outcomes of gastric cancer patients, and 

be associated with the infiltration of macrophages in the 

TME [16]. PARK7, alternatively referred to as DJ-1, is 

overexpressed in a substantial 86% of individuals 

diagnosed with NSCLC. 72.2% predominantly exhibit 

PARK7 expression in the cytoplasm, and the heightened 

expression of this gene is strongly correlated with 

unfavorable clinical outcomes, including increased risk 

of recurrence and reduced overall survival rates for 

LUAD patients [17, 18]. However, there has been 

limited research investigating the cell-cell interactions 

between TME cell subtypes and prognosis associated 

with aggrephagy modification in LUAD. 

 

We explored the influence of aggrephagy on the main 

TME cells based on LUAD single-cell RNA sequencing 

data. Through NMF analysis of 44 aggrephagy genes, as 

previously described [19], it was discovered that distinct 

expression patterns of aggrephagy mRNA in various 

subpopulations of LUAD TME cells demonstrated 

extensive and diverse intercellular communication with 

epithelial cells, and associated with different immune 

characteristics, metabolic pathways, as well as 

transcription characteristics. Moreover, upon integration 

with the bulk RNA-seq data of sizable LUAD patient 

cohorts, we substantiated that multiple aggrephagy cell 

subtypes exerted a substantial influence on both the 

prognosis and response to immune checkpoint blockade 

(ICB) therapy. Based on this, we created and multi-

center assessed a 32-gene combined ADPS via machine 

learning algorithms. ADPS has shown strong predictive 

ability for survival outcomes, immunotherapy response, 

and drug efficacy in multiple multicenter cohorts. To 

our knowledge, this extensive single-cell analysis is the 

first to unveil the potential role of aggrephagy mRNA in 

mediating intercellular communication between TME 

cells and tumor cells, thus impeding the progression  

of LUAD. Furthermore, our findings provide crucial 

insights for early detection, prognostic assessment, risk 

stratification, and personalized therapeutic interventions 

in clinical settings. 

 

MATERIALS AND METHODS 
 

Data acquisition 

 

scRNA-seq data were obtained from the GEO database 

under accession number: GSE149655 [20]. LUAD bulk 

RNA-seq data including clinical traits were acquired 
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from the GDC portal of TCGA and GEO databases: 

TCGA-LUAD, GSE3141, GSE31210, GSE37745, 

GSE50081, and GSE68465. The six datasets of 1512 

patients were integrated and batch effects were adjusted 

by the Combat algorithm using the “sva” package [21]. 

Normal lung tissue data were available from the GTEx 

and TCGA databases. Two datasets treated with PD-

(L)1 and containing clinical traits were downloaded: 

IMvigor210 [22], and GSE78220 [23]. Supplementary 

Table 1 summarizes the data sources and details of this 

study. A total of 44 aggrephagy genes were downloaded 

from https://www.gsea-msigdb.org/gsea/msigdb/cards/ 

REACTOME_AGGREPHAGY. 

 

scRNA-seq data process 

 

The normalization, integration, dimension reduction, 

and clustering were performed stepwise using the 

Seurat pipeline with the R package “Seurat” [24]. Cell 

annotation was performed by referring to common 

tumor microenvironment cell markers, published studies 

[25, 26], the CellMarker website (http://xteam.xbio.top/ 

CellMarker/), and the PanglaoDB website (https:// 

panglaodb.se/). Normalization data from the Seurat 

object were analyzed by single-cell NMF based on 

aggrephagy gene expression [27]. Cells that expressed 

no aggrephagy-related genes and aggrephagy-related 

genes that had no expression in all cell types were 

removed during the analysis. The NMF method was  

set to snmf/r and a maximum of ten clusters was used. 

The FindAllMarkers function was employed to identify 

the markers of each NMF cluster for every cell type in 

LUAD. Clusters with aggrephagy genes with log2  

(fold change) exceeding 1.0 were termed (“Gene + Cell 

type”). Clusters with no characteristics of aggrephagy 

genes were termed “Non-Aggrephagy-Cell type”. 

Clusters with characteristics aggrephagy genes with 

log2 (fold change) less than 1 were termed “Unclear-

Cell type”. 

 

Pseudotime trajectory, cell-cell interaction analysis, 

and transcription factor analysis 

 

To explore the correlation between aggrephagy genes 

and cell pseudotime trajectories, we utilized the R 

package “Monocle2” to analyze scRNA data for all  

cell types in LUAD [28, 29]. In short, the Monocle 

object underwent size factor and dispersion estimation, 

followed by the identification of highly variable 

features. Afterward, dimensionality reduction was 

performed and cell ordering was carried out for the 

purpose of pseudotime visualization. Besides, cell-cell 

interactions were conducted using “CellChat”, an R 
package that identifies and quantifies intercellular 

communication between different cell types within a 

single-cell dataset [30]. Secreted signaling in humans 

was included in the cell-cell interaction analysis [31]. 

We utilized the “pySCENIC” package, which is a 

Python-based implementation of the SCENIC pipeline, 

to explore the transcription factor (TF) gene regulatory 

network in LUAD [32]. The scRNA-seq data of  

LUAD were subjected to analysis using two gene-motif 

rankings (hg19-tss-centered-10 kb and hg19-500 bp-

upstream) obtained from the RcisTarget database, with 

the aim of detecting transcription start sites (TSS)  

and gene regulatory networks. TFs with a Benjamini-

Hochberg false discovery rate (BH-FDR) <0.05 were 

selected for further investigation. 

 

Gene set scoring 

 

The package “GSVA” was utilized to perform  

single-sample gene set enrichment analysis (ssGSEA) 

for gene set scoring in bulk RNA sequencing data  

[33, 34]. GSVA was also employed to assess the 

previously established CAF-subtype in the single-cell 

RNA sequencing data [35]. The “AddModuleScore” 

function was utilized to evaluate the expression of  

M1-like/M2-like polarization markers derived from 

published studies [36]. The metabolic scores of dif-

ferent aggrephagy cell subtypes were calculated using 

“scMetabolism” package [37]. 

 

Survival analyses and ICB response prediction 

 

We utilized the “GSVA” package to calculate the gene 

signature scores of the aggrephagy cell subtypes across 

all LUAD cohorts. The relationship between aggrephagy-

related NMF signatures and patients’ prognosis was 

explored using the log-rank test and Cox proportional 

hazard regression. The “survminer” package was 

applied to plot Kaplan-Meier curves and determine the 

cutoff values of different NMF cell signatures in the 

different LUAD cohorts. Furthermore, we utilized the 

Tumor Immune Dysfunction and Exclusion (TIDE) 

algorithm available at http://tide.dfci.harvard.edu/ to 

obtain TIDE scores, which enabled us to predict the 

clinical response to ICB in LUAD cohorts. Prognosis-

associated genes were identified by performing univariate 

Cox regression analysis with a significance threshold  

of P < 0.05 on the aforementioned aggrephagy cell 

subtypes that were associated with prognosis. To 

compress the gene number and identify the variables 

that have the greatest impact on the target variable,  

we employed a two-step approach to analyze the data, 

beginning with a LASSO Cox regression analysis to 

shrink the coefficient estimates. Subsequently, a multi-

variate Cox regression analysis with stepwise regression 

method was performed to identify the most significant 
predictors of the prognosis [38]. Based on the results  

of the multivariate Cox model, ADPS was calculated 

using the following formula: ADPS = Σβ × Expi. 

https://www.gsea-msigdb.org/gsea/msigdb/cards/%20REACTOME_AGGREPHAGY
https://www.gsea-msigdb.org/gsea/msigdb/cards/%20REACTOME_AGGREPHAGY
http://xteam.xbio.top/%20CellMarker/
http://xteam.xbio.top/%20CellMarker/
http://tide.dfci.harvard.edu/
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Having established that i denotes a gene in the ADPS, 

expi represents the expression level of gene i, as well  

as βi stands for the coefficients of gene i. Then, we 

performed zero-mean normalization on the ADPS of  

the patients and categorized them into high ADPS and 

low ADPS groups. 

 
Development of potential therapeutic agents 

 

We followed the protocol outlined by Yang et al. [39] to 

identify potential agents for LUAD patients with high 

ADPS: (1) We downloaded drug sensitivity data for 

cancer cell lines (CCLs) from the Cancer Therapeutic 

Response Portal (CTRP, includes 481 compounds over 

835 CCLs, https://portals.broadinstitute.org/ctrp) and 

profiling relative inhibition simultaneously in mixtures 

(PRISM, includes 1448 compounds over 482 CCLs, 

https://www.theprismlab.org/) datasets, as well as 

expression data of CCLs from the Cancer Cell Line 

Encyclopedia (CCLE, https://portals.broadinstitute.org/ 

ccle/) database. (2) The CTRP and PRISM datasets 

possess AUC values, and decreased AUC values 

indicate heightened responsiveness to this compound. 

(3) Using the Wilcoxon rank-sum test, we conducted a 

differential analysis of drug response between the top 

10% (high ADPS group) and bottom 10% (low ADPS 

group) of samples. We set a threshold of log2FC >0.1  

to identify compounds with significantly lower AUC 

values in the high ADPS group. (4) Furthermore, we 

employed Spearman correlation analysis to detect 

compounds with AUC values that showed negative 

correlation coefficients (using a threshold of R < -0.4) 

for subsequent screening. (5) We further identified 

potential agents by taking the intersection of the 

compounds obtained from steps (3) and (4). In the  

end, according to differential expression analysis, we 

identified potential agents using Connectivity Map 

(CMap, https://clue.io/) [40] to further verify the agents 

derived from the CTRP and PRISM databases. 

 
Multi-omics alteration characteristics targeting ADPS 

 

GISTIC 2.0 analysis (https://gatk.broadinstitute.org) 

was applied to distinguish recurrently amplified and 

deleted regions for genomic alterations. TCGA GDC 

data Portal was used to download “maf” data for LUAD 

samples (VarScan2Variant Aggregation and Masking; 

https://portal.gdc.cancer.gov). The TMB score with high 

ADPS and low ADPS groups was further calculated 

according to the “maftools” package [41]. The fraction 

of genome alteration (FGA), the fraction of genome 

gained (FGG), as well as the fraction of genome lost 

(FGL), were calculated as follows: FGA = total CNV/all 

bases, FGG = gain bases/all bases, and FGL = loss 

bases/all bases. These metrics were used to evaluate the 

extent of genomic alterations in the samples. 

Statistical analysis 

 

A Wilcoxon rank-sum test was utilized to compare the 

continuous variables. Cox regression was performed 

using the “survival” package to analyze the relationship 

between variables and survival outcomes. The glm 

function was utilized for logistic regression to examine 

the relationship between variables and binary outcomes. 

The log-rank P test was utilized for the Kaplan-Meier 

analysis. The ROC curve was plotted via the “timeROC” 

package and the calibration curve was plotted using  

the “rms” package. Statistical significance was set at P 

< 0.05. 

 

Availability of data and materials 

 

The original contributions presented in the study are 

included in the Article/Supplementary Materials; further 

inquiries can be directed to the corresponding authors. 

 

RESULTS 
 

Heterogeneity of aggrephagy genes across cells 

 

The workflow chart illustrates the general design of  

this study (Figure 1A). We found that the aggrephagy 

score was significantly increased in normal samples 

compared LUAD samples analyzed via the ssGSEA 

algorithm (Figure 1B, P < 0.001). We then examined 

the landscape of aggrephagy on each cell type by  

using the scRNA-seq data of LUAD. After using the 

Seurat pipeline, a total of 12,554 cells were divided  

into 18 clusters (Figure 1C) and were annotated with 

major cell types based on classical marker genes, 

including mast cells, macrophages, plasma cells, T 

cells, stromal cells, epithelial cells, fibroblasts, and 

smooth muscle cells (Figure 1D). Marker genes for each 

cell population showed a clear separation between  

each cell type (Figure 1E). To further investigate 

whether aggrephagy activity was dynamic among  

TME in LUAD scRNA-seq level, we quantified 

aggrephagy score using ssGSEA, AUCell, Ucell, 

addmodulescore, and singsore algorithms (Figure 1F). 

Interestingly, the outcomes demonstrated relatively 

heightened aggrephagy score in smooth muscle cells, 

fibroblasts, epithelial, stromal, and macrophage, while 

lower in T, plasma, and mast cells. Moreover, a 

comparison between average aggrephagy score in 

LUAD and normal tissues unveiled intriguing 

observations: macrophage, plasma, T, epithelial, and 

fibroblasts within tumors exhibited notably low average 

aggrephagy score, while stromal cells exhibited notably 

high average aggrephagy score (Figure 1J). As a result 

of comparing the expression patterns of aggrephagy 

genes across cell types in LUAD, we found that 

aggrephagy genes also showed high heterogeneity 

https://portals.broadinstitute.org/ctrp
https://www.theprismlab.org/
https://portals.broadinstitute.org/%20ccle/
https://portals.broadinstitute.org/%20ccle/
https://clue.io/
https://gatk.broadinstitute.org/
https://portal.gdc.cancer.gov/
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Figure 1. Overview of aggrephagy gene expression in the scRNA-seq for LUAD. (A) The overall design of this study. (B) The GSVA 

scores based on the aggrephagy gene set were compared between normal and LUAD samples. (C) t-SNE plot colored by 18 cluster of cells. 
(D) Cell type annotations clustered by Seurat t-SNE in the scRNA-seq data. (E) Dot plot showing representative marker genes for each cell 
type. (F) Bubble plot showing aggrephagy scores for each cell type. (G) Dot plot showing the expression level of aggrephagy genes in all cell 
types. (H, I) Expression of example genes VIM (H), and TUBA1C (I) in different cell types. (J) The difference in average aggrephagy score in 
each cell type in normal and LUAD samples. *p < 0.05; **p < 0.01; ***p < 0.001. Abbreviation: ns: not significant. 
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among cell types (Figure 1G). For instance, VIM 

exhibited higher expression levels in fibroblasts, and 

plasma cells, while showed lower expression levels  

in T cells and macrophages (Figure 1H). TUBA1C  

is highly expressed in macrophages and epithelial cells, 

but shared lower expression levels in other cells (Figure 

1I), indicating the necessity for further investigation  

of aggrephagy genes by targeting specific cell types. 

 

Novel aggrephagy-mediated fibroblasts contribute to 

the TME of LUAD 

 

Recent research has recognized CAFs as a  

key factor in TME, and they are emerging as a  

research hotspot [42]. Advancements in single-cell  

analysis techniques have led to a more comprehensive 

comprehension of the diversity and role of CAFs.  

For instance, according to one of the most well-

established categorizations of CAFs, CAFs can be 

categorized as myCAF (myfibroblastic CAF), dCAF 

(development CAF), iCAF (inflammatory CAF), as 

well as pCAF (Pdpn CAF). Distinctive characteristics 

differentiate various subgroups of CAFs. Specifically, 

myCAF subset is situated in proximity to cancer cell 

nests and is characterized by elevated expression 

levels of both FAP+ and ꬰ-SMA. Conversely, the 

iCAF subset is localized far from cancerous cells and 

is marked by low expression levels of ꬰ-SMA but high 

expression levels of IL-6; the dCAF subset is 

distinguished by the activation of genes associated 

with diverse types of stem cells [43]. Similarly, to 

determine whether aggrephagy expression has an 

effect on CAFs, we performed a dimension reduction 

analysis. Pseudotime analysis reveals that aggrephagy 

genes are expressed at various developmental stages 

(Figure 2A). For instance, the early development 

stages of CAFs were characterized by the significant 

expression of TUBA4A, TUBA1C, and ARL13B, 

whereas TUBB4B, VIM, and TUBA1B were the 

feature of late development. Based on the NMF 

algorithm, CAFs were further divided into four  

clusters, and we identified that DYNC1I2+CAF−C1,  

DYNLL1+CAF−C2, PARK7+CAF−C3, as well as 

Non−Aggrephagy−CAF−C4 subtypes (Figure 2B, 

Supplementary Table 2). The developing status of 

NMF-based CAF clusters varied greatly as shown in 

pseudotime analysis (Figure 2C, 2D). Interestingly, 

using the Cellchat analysis, DYNC1I2+CAF−C1, 

DYNLL1+CAF−C2, and PARK7+CAF−C3 presented 

more and tighter connections with other cell types  

than Non-Aggre-CAF-C4 (Figure 2E–2G). GSVA  

was employed to derive scores for established  

classical CAF phenotype markers, with the aim of 
uncovering the possible phenotypes and functions of 

the aggrephagy CAF subtypes [44, 45] (Figure 2I). 

DYNC1I2+CAF−C1 showed the most prominent 

scores of pan-myCAF, pan-dCAF, and pan-pCAF, 

while PARK7+CAF−C3 exhibited the prominent 

scores of pan-iCAF. In contrast, Non-Aggrephagy-

CAF-C4 had the lowest score among all classical CAF 

subtypes. In addition, we also investigated important 

CAF phenotype markers, like pro-inflammatory genes, 

neo-angiogenic genes, and MMPs. From the pathway 

heatmap (Figure 2H), aggrephagy-CAF subtypes had a 

significantly different expression of common pathway 

genes. PARK7+CAF−C3 had significantly higher 

expression of MMPs, ECM, Neo-Angio, and pro-

inflammatory pathways genes, DYNC1I2+CAF−C1 

had significantly higher expression of TGFb and RAS 

pathways gens, while Non-Aggre-CAF-C4 had lower 

expression of above pathways genes. Ultimately, we 

compared TF regulation features and subtype-specific 

TFs between aggrephagy-related CAFs as well as  

non-aggrephagy-related CAFs. We found that the 

average activities of TFs including FOS and ATF3 

were exclusively higher in DYNC1I2+CAF−C1, while 

downregulated in DYNLL1+CAF−C2 except for 

FOXO3, NFIA, and CEBPB (Figure 2J). In aggregate, 

these discoveries imply that aggrephagy could exert  

a significant influence on CAF remodeling within the 

TME of LUAD. 

 

Aggrephagy participate in TAMs metabolism and 

polarization 

 

Subsequently, we investigated the potential impact of 

aggrephagy on the phenotypes and functions of  

TAMs. Throughout the pseudotime analysis, aggrephagy  

genes were observed to exhibit diverse expression  

patterns at different stages of macrophage development, 

implying their complex and dynamic roles in regulating  

the differentiation and function of macrophages  

(Figure 3A). NMF with aggrephagy genes separated 

macrophages into VIM+Mac−C1 and PARK7+Mac−C2 

(Figure 3B, Supplementary Table 3). The developing 

status of NMF-based TAM clusters varied greatly  

as shown in pseudotime analysis (Figure 3C, 3D).  

Further, VIM+Mac−C1 and PARK7+Mac−C2 had 

comparatively stronger interactions with other cellular 

components, especially with epithelial cells (Figure  

3E, 3F). We inferred the specific pathways of inter- 

cellular communication and found that mainly outgoing 

(secreting) of VIM+Mac−C1 and PARK7+Mac−C2 

were EGF and VISFATIN, and incoming (target) signal 

pathways were PTN and MK (Figure 3G). A tumor 

microenvironment induces metabolic reprogramming  

of macrophages, leading to protumor macrophages  

having an overactive metabolism [37], we conducted 

scMetabolism algorithm to explore the metabolic 
heterogeneity in different aggrephay TAM subtypes 

(Figure 3H). Interestingly, the result revealed that the 

two TAM subtypes exhibit unique metabolic activation 
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Figure 2. Aggrephagy genes modified the features of CAF. (A) Pseudotime trajectory analysis of aggrephagy genes in CAFs. (B) NMF 

clustering and annotation in CAFs classified by aggrephagy gene expression features. (C, D) The developing status of NMF-based CAF 
clusters obtained in pseudotime analysis. (E) A heat map summarizing the outgoing (secreting) and incoming (target) signal pathways of 
NMF-based aggrephagy-related CAF subtypes and other cell types. (F, G) The number (F, number of interactions) and weight (G, interaction 
weights/strength) of cell-cell interactions between Agg-related CAF subtypes and other cell types. (H) Heatmap showing the different 
average expression of common signaling pathway genes in the aggrephagy-related CAF subtypes, including collagens, ECM, MMPs, TGFb, 
Neo-Angio, Contractile, RAS and Proinflammatory. (I) Different aggrephagy-related CAF subtypes were correlated with the previous 
signatures. (J) Heatmap showing the significantly different activities of TFs among aggrephagy-related CAF subtypes by comparing the 
average AUC using pySCENIC in Python. 
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pathways, indicating that aggrephagy could be  

a critical modulator of metabolic regulation. For  

instance, PARK7+Mac−C2 was distinguished by the 

upregulation of multiple metabolic pathways such as 

glycolysis, TCA cycle, fatty acid degradation, as well 

as oxidative phosphorylation, while VIM+Mac−C1 was 

 

 
 

Figure 3. Tumor-associated macrophages (TAMs) differed in metabolism and polarization during aggrephagy. (A) Pseudotime 
trajectory analysis of aggrephagy genes in TAMs. (B) NMF clustering and annotation in TAMs classified by aggrephagy gene expression features. 
(C, D) The developing status of NMF-based TAM subtypes obtained in pseudotime analysis. (E, F) The number and weight of cell-cell 
interactions between aggrephagy-related TAM subtypes and other cell types. (G) A heat map summarizing the outgoing (secreting) and 
incoming (target) signal pathways of NMF-based aggrephagy-related TAM subtypes and other cell types. (H) Metabolic status of aggrephagy-
related TAM subtypes analyzed by scMetabolism. (I) M1-like/M2-like phenotype scoring among different aggrephagy-related TAM subtypes. 
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distinguished by the upregulation of fatty acid 

elongation and ether lipid metabolism. In addition,  

we computed the M1-like/M2-like polarization scores 

of different aggrephagy TAMs subtypes [46]. Notably, 

PARK7+Mac−C2 and VIM+Mac−C1 exhibited a pre-

ference for expressing genes that were upregulated in 

M1 macrophages, suggesting their enhanced M1-like 

anti-tumor functions (Figure 3I). 

 

Aggrephagy contributed to the subgroup formation 

in CD8+T cells 

 

As CD8+T cells are known to significantly impact 

tumor metastasis and treatment outcomes, we conducted 

a comprehensive analysis of these cells [47]. Likewise, 

Monocle2 revealed that aggrephagy genes occupy 

different developmental stages (Figure 4A). TUBA1A, 

concordant with CAFs, was highly expressed during 

late development, while PARK7 and UBA52 were 

expressed during early development. Furthermore, 

CD8+T cells were categorized as four clusters via the 

NMF algorithm, and the developing status of NMF-

based CD8+T cells varied greatly (Figure 4C, 4D, 

Supplementary Table 4), as well as named them as 

VIM+CD8+T cells C1, UBA52+CD8+T cells C2, 

TUBA4A+CD8+T cells C3, and TUBA1A+CD8+T 

cells C4, respectively (Figure 4B). Similarly, the 

aforementioned aggrephagy CD8+ T cells subtypes 

were found to have more extensive and robust 

interactions with other components of the TME, 

indicating their potential role in orchestrating the tumor 

immune microenvironment (Figure 4E). Furthermore, 

we inferred the specific pathways of intercellular com-

munication and found that VIM+CD8+T cells C1 and 

TUBA1A+CD8+T cells C4 presented stronger activity 

in the CD40 pathways compared to UBA52+CD8+T 

cells C2, TUBA4A+CD8+T cells C3 (Figure 4F). We 

computed the T exhaustion and T cytotoxic scores  

for these aggrephagy related CD8+ T cell subtypes, 

utilizing a previously published panel for calculating 

scores that evaluate overall functions and pheno- 

types. These scores play a crucial role in determining  

the effects of ICB and its significance in LUAD  

progression [48]. Interestingly, we found that UBA52+ 

CD8+T cells C2 showed higher T cytotoxic scores,  

TUBA4A+CD8+T cells C3 demonstrated higher T  

exhaustion scores but lower T cytotoxic scores, while  

VIM+CD8+T cells C1 and TUBA1A+CD8+T cells C4  

presented lower both scores (Figure 4G), indicating  

TUBA4A likely to be involved in CD8+T cell  

exhaustion, result in tumor immune escape. In  

addition, we performed a comparison of the mean  

expression levels of genes related to T cell function and  
immune checkpoint inhibitors across these subtypes of  

CD8+ T cells. Consequently, VIM+CD8+T cells C1,  

UBA52+CD8+T cells C2, TUBA4A+CD8+T cells C3, 

and TUBA1A+CD8+T cells C4 exhibited different 

immune function-related terms (Figure 4H). Ultimately, 

we investigated the regulatory mechanisms through 

network regulatory analysis. TUBA1A+CD8+T cells 

C4 demonstrated apparent activation of TFs including 

FOS, JUNB, FOSB, BCLAF1, and BATF (Figure 4H). 

In conclusion, our investigation has illustrated the role 

of aggrephagy in the restructuring of CD8+ T cells 

within the TME of LUAD. 

 

Aggrephagy-mediated TME remodeling contributes 

to prognosis and immunotherapy response in 

LUAD 

 

We have set out to investigate whether the newly 

defined aggrephagy subtypes have an impact on the 

survival rates of patients diagnosed with LUAD. Initially, 

we depicted the intercellular communication among all 

the aggrephagy-related subtypes, which elucidated all 

the possible connections between these subtypes (Figure 

5A). Then we utilized ssGSEA algorithm to compute 

the enrichment score of each aggrephagy subtype based 

on the corresponding differentially expressed genes 

(Supplementary Table 5) and investigated their prog-

nostic significance in LUAD patients across multiple 

cohorts. Through the implementation of univariate  

Cox regression analysis, we acquired the hazard ratio of 

each aggrephagy cell subtype in TCGA, GSE68465, 

GSE50081, GSE37745, GSE3141, GSE31210, Meta-

GEO, and Meta cohorts, which showed that PARK7-

Mac-C2, UBA52+CD8+T_cells−C2, PARK7+CAF- 

C3, and VIM+Mac-C1 were poor prognostic factors 

(Figure 5B, Supplementary Table 6). In addition, certain 

aggrephagy-related cell subtypes could distinguish the 

OS in TCGA, GSE68465, GSE50081, GSE37745, 

GSE3141, GSE31210, and Meta-GEO cohorts (Sup-

plementary Figure 1A–1AJ). Remarkably, all cell 

subtypes related to aggrephagy were able to differen-

tiate overall survival (OS) among meta-cohorts, which 

included 1512 patients with LUAD (Figure 5D–5L). 

Having established the potential role of aggrephagy in 

shaping the TME, we proceeded to investigate whether 

the aggrephagy-based patterns of TME had an impact  

on the response to ICB therapy. We employed the  

TIDE algorithm to predict the response of each patient  

to ICB therapy across multiple cohorts. Additionally,  

we observed that in the TCGA cohort, DYNC1I2+ 

CAF−C1, DYNLL1+CAF−C2, and PARK7+CAF−C3, 

TUBA4A+CD8+T_cells−C3 were downregulated in 

responders, suggesting that these cells may be linked  

to ICB resistance (Figure 5M), which was verified  

in other cohorts (Supplementary Figure 2). Utilizing 

logistic regression, we obtained the odds ratio value for 
response prediction, unveiling the detrimental impact  

of these cells (Figure 5C, Supplementary Table 7). 

To verify the presence of the above cell types, we 
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Figure 4. CD8+T cells differed in metabolism and polarization during aggrephagy. (A) Pseudotime trajectory analysis of 

aggrephagy genes in CD8+T cells. (B) NMF clustering and annotation in CD8+T cells classified by aggrephagy gene expression features. (C, D) 
The developing status of NMF-based CD8+T cells subtypes. (E) The number and weight of cell-cell interactions between aggrephagy-related 
CD8+T cells subtypes and other cell types. (F) A heat map summarizing the outgoing (secreting) and incoming (target) signal pathways of 
NMF-based aggrephagy-related CD8+T cells subtypes and other cell types. (G) Heatmap showing the comparison of CD8+T cell function 
signatures (exhaustion score and T cytotoxic score) between aggrephagy-related CD8+T cells subtypes. (H) Heatmap showing significantly 
different features among aggrephagy-related CD8+T cells subtypes, including Co-stimulations (left), Co-inhibitors (middle), and TFs (right). 
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used IHC to observe cellular localization of  

DYNC1I2, TUBA1A, TUBA4A, UBA52 and VIM. 

We discovered that some of the fibroblasts in stromal 

did express DYNC1I2. (Figure 6A, first panel). 

Similarly, TUBA1A+ T cells were observed, showing 

significant positivity, from which immune cells were 

 

 
 

Figure 5. Multiple aggrephagy cell subtypes influenced the prognosis and immunotherapy response of LUAD patients. (A) 
The landscape of all cell-cell communication within all identified aggrephagy subtypes. (B) A hazard ration of different aggrephagy subtypes 
in 8 LUAD cohorts. (C) Odd ratio produced by logistic regression of different subtypes in 8 cohorts. (D–L) All aggrephagy cell subtypes could 
distinguish the survival of patients in Meta cohort. (M) Various aggrephagy-related subtypes demonstrated significantly different 
infiltration in responders and non-responders of ICB in TCGA cohorts, as predicted by TIDE. Mann Whitney-Wilcoxon test was applied 
between responders and non-responders. *p < 0.05; **p < 0.01; ***p < 0.001. Abbreviation: ns: not significant. 
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Figure 6. Identification of the hub predictive genes to construct ADPS. (A) IHC staining images of five crucial aggrephagy genes. 

Panel1: DYNC1I2+ fibroblasts were marked with a red arrow. Protein was mainly expressed on cell membrane (source HPA. Patient ID: 448, 
female, age 76 years). Panel2: TUBA1A+ T cells were marked with a red arrow. Protein was mainly expressed on cytoplasmic/membranous 
(source HPA. Patient ID: 448, female, age 76 years). Panel3: TUBA4A+ T cells were marked with a red arrow. Protein was mainly expressed 
on cytoplasmic/membranous (source HPA. Patient ID: 2403, female, age 65 years). Panel4: UBA52+ T cells were marked with red arrows. 
Protein was mainly expressed in the nucleus (source HPA. Patient ID: 2393, female, age 54 years). Panel5: VIM + Macrophages were 
marked with red arrows. Protein was mainly expressed in the cytoplasmic/membranous (source HPA. Patient ID: 1421, female, age 76 
years). (B–I) Kaplan-Meier survival curves of the ADPS regarding OS in the TCGA (B), GSE3141 (C), GSE31210 (D), GSE37745 (E), GSE50081 
(F), GSE68465 (G), MetaGEO (H), and Meta cohorts (I). (J–Q) Time-dependent ROC curves of the ADPS regarding 1-, 3-, and 5-year OS in the 
TCGA (J), GSE3141 (K), GSE31210 (L), GSE37745 (M), GSE50081 (N), GSE68465 (O), MetaGEO (P), and Meta cohorts (Q). 
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seen to exude (Figure 6A, second panel). TUBA4A was 

expressed on the cell nuclear of some T cells, with 

stromal cell nearby (Figure 6A, third panel). As a highly 

conserved nuclear and cytoplasmic protein, UBA52  

was expressed in some T cells. As an immune cells, we 

also observed a high abundance of fibroblasts around 

UBA52+ T cells in pathological sections (Figure 6A, 

fourth panel). As we known, VIM was an epithelial-

mesenchymal transition biomarker, highly expressed in 

stromal cell and tumor cell. In pathological sections, we 

found VIM was expressed in some macrophages, with 

tumor cell nearby. (Figure 6A, fifth panel). 

 

Aggrephagy-derived prognostic score (ADPS) 

 

Subsequently, considering the concordant performances 

of aggrephagy subtypes in anticipating the overall 

survival outcomes as well as immunotherapy response in 

multiple LUAD cohorts, we retired marker genes and a 

total of 571 genes from aggrephagy-related subtypes 

were obtained (Supplementary Table 8). A total of 114 

genes were found to have prognostic value through the 

assessment of each gene using univariate Cox regression 

analysis (Supplementary Figure 3A). To streamline the 

number of genes, we utilized LASSO Cox regression 

analysis, which resulted in 32 remaining genes at a 

lambda value of 0.0252 (Supplementary Figure 3B,  

3C). The ADPS was ultimately generated by performing 

multivariate Cox regression analysis (Supplementary 

Figure 3D, Supplementary Table 9). We calculated the 

ADPS for each patient according to the expression as 

well as weighted regression coefficients of the ADPS-

related genes, and then partitioned them to high ADPS 

and low ADPS groups after z-mean normalization. K-M 

survival analyses revealed that the mortality rate in the 

high ADPS group was significantly higher than the low 

ADPS group in the training cohort (TCGA-LUAD, n = 

500, P < 0.005), and other seven validation cohorts 

GSE3141 (n = 111, P < 0.0001), GSE31210 (n = 226, P 

< 0.0001), GSE37745 (n = 106, P < 0.0001), GSE50081 

(n = 126, P < 0.0001), GSE68465 (n = 442, P < 0.0001), 

MetaGEO (n = 1012, P < 0.0001), and Meta cohort (n = 

1512, P < 0.0001) (Figure 6B–6I). Moreover, in the 

TCGA cohort, the ADPS exhibited excellent performance, 

with time-dependent AUCs of 0.77, 0.75, and 0.71 at 1, 

3, and 5 years ((Figure 6J). Comparable results were  

also acquired across the validation cohorts GSE3141 

(0.75/0.86/0.78), GSE31210 (0.94/0.90/0.94), GSE37745 

(0.76/0.75/0.77), GSE50081 (0.84/0.91/0.84), GSE68465 

(0.73/0.67/0.64), MetaGEO (0.75/0.75/0.70), as well as 

Meta cohort (0.73/0.75/0.7), respectively (Figure 6K–6Q). 

 

Predictive value of ADPS for immunotherapy 

 

In addition, we evaluated the prognostic significance 

of ADPS about immunotherapy, utilizing the real-

world cohort including IMvigor210 and GSE78220 

datasets. Within the IMvigor210 cohort, which 

consisted of 298 patients, responses to anti-PD-L1 

receptor blockers ranged from the complete response 

(CR) and partial response (PR) to stable disease (SD) 

and progressive disease (PD). A significant clinical 

benefit was observed in the low ADPS group of the 

IMvigor210 cohort compared with the high ADPS 

group (Figure 7A). CR/PR patients presented lower 

ADPS than SD/PD patients (Figure 7B, P < 0.0001). 

The low ADPS group displayed a higher percentage of 

CR/PR compared to the high ADPS group (Figure 7C). 

Survival differences between different ADPS groups 

were significant specifically in patients with Stage  

I+II (Figure 7D, P < 0.001), and in Stage III+IV 

patients (Figure 7E, P < 0.001). Our finding also 

indicated that patients with a low ADPS had a 

significantly better overall survival outcome compared 

to those with a high ADPS in the GSE78220 cohort 

(Figure 7F, P < 0.001). Besides, CR/PR patients also 

presented lower ADPS than SD/PD patients (Figure 

7G, P < 0.01). Additionally, a higher percentage of 

SD/PD was observed in the high ADPS group as 

compared to the low ADPS group (Figure 7H). In 

addition to the abundance of immune checkpoints, we 

also noted a significantly higher expression of these 

checkpoints in the low ADPS group as compared to 

the high ADPS group (Figure 7I). Utilizing the TIDE 

web tool, we discovered that the low ADPS group had 

notably lower TIDE scores and higher rates of 

immunotherapy response compared to the high ADPS 

group (Figure 7J). There was a significant positive 

correlation observed between ADPS and TIDE score 

(Figure 7K). Responders to ICIs were found to be 

more prevalent among patients belonging to the high 

ADPS group, as predicted by the TIDE algorithm 

(Figure 7L, P < 0.001). Parallel to these findings,  

the subclass mapping analysis (Submap, modules  

in GenePattern, https://cloud.genepattern.org) also 

revealed similarities in expression patterns between 

patients with low ADPS and those with melanoma who 

responded to immunotherapy [49, 50] (A melanoma 

dataset that responded to immunotherapy was selected 

as the reference, while default settings were applied) 

responding to ICB (Figure 7M). 

 

Immune landscape for ADPS 

 

To explore the immune characteristics reflected by the 

ADPS, we investigated the association between the 

ADPS and immune cell type, immune scores, stromal 

scores, as well as critical immune checkpoint scores. 

Figure 8A, 8B demonstrated that the group with low 
ADPS exhibited elevated levels of immune infiltrating 

cells as well as immune modulators. This suggests the 

presence of an inflamed yet relatively immune-supportive 

https://cloud.genepattern.org/
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Figure 7. Immunotherapy response prediction of the ADPS. (A) Kaplan-Meier survival curves of the ADPS regarding OS in the 

IMvigor210 cohort. (B) Differences in ADPS among immunotherapy responses in the Imvigor210 cohort. (C) Distribution of immunotherapy 
responses among ADPS groups in the Imvigor210 cohort. (D) Prognostic differences between ADPS groups in early stage (stage I+II) patients 
in the Imvigor210 cohort. (E) Prognostic differences between ADPS groups in advanced stage (stage III+IV) patients in the Imvigor210 
cohort. (F) Kaplan-Meier survival curves of the ADPS regarding OS in the GSE78220 cohort. (G) Differences in ADPS among immunotherapy 
responses in the GSE78220 cohort. (H) Distribution of immunotherapy responses among ADPS groups in the GSE78220 cohort. (I) Boxplot 
of relative expression levels at immune checkpoints between the high and low ADPS patients. (J) Boxplot of TIDE score between the high 
and low ADPS patients. (K) The relationship between the TIDE score and ADPS. (L) Contingency table between immunotherapy responses 
and ADPS groups based on TIDE algorithm. (M) Submap analysis of the two groups and 47 pretreated patients with comprehensive 
immunotherapy annotations. In submap analysis, a smaller p-value indicated a greater similarity of paired expression profiles. *p < 0.05; **p 
< 0.01; ***p < 0.001. Abbreviation: ns: not significant. 
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microenvironment, which may be more conducive to 

benefiting from immunotherapy [51]. The immune 

score, stromal score, and ESTIMATE score had a 

negative correlation to ADPS, respectively (Figure 

8C–8E). In parallel, patients in the low ADPS group 

had higher stromal, immune, and ESTIMATE scores 

 

 
 

Figure 8. Immune characteristics of the ADPS in the TCGA dataset. (A) The correlation between the ADPS and immune modulators. 

(B) Heatmap exhibiting the immune score, stromal score, critical checkpoints, and cell types calculated through CIBERSORT analysis of the 
high and low ADPS groups. (C–E) Correlations between ADPS and immune score (C), stromal score (D), and ESTIMATE score (E). (F) Boxplot 
of relative stromal, immune, and ESTIMATE score between high and low ADPS groups. (G) Boxplot of relative TRS score between high and 
low ADPS groups. (H) Boxplot of relative cytolytic activity between high and low ADPS groups. (I) Boxplot of relative Th1/IFN score between 
high and low ADPS groups. (J) Boxplot of relative infiltrate abundance of 28 immune cell types between high and low ADPS groups. *p < 
0.05; **p < 0.01; ***p < 0.001. Abbreviation: ns: not significant. 
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compared to the high ADPS group (Figure 8F). Besides, 

we compared the status of the TRS score, Cytolytic 

activity, and Th1/IFN Score, which was more related  

to a more immunoreactive microenvironment between 

the two ADPS score groups [52, 53]. The results 

revealed that all of these indicators were significantly 

upregulated in the low ADPS group (Figure 8G–8I). 

According to 28 immune cells infiltration [54] assessed 

by ssGSEA (Figure 8J) and CIBERSORT algorithm 

(Supplementary Figure 4A), we further confirmed that 

the low ADPS group had markedly higher overall 

infiltration abundance than the high ADPS group. Thus, 

we defined the high ADPS group as “immune-cold” 

tumors and the low ADPS group as “immune-hot” 

tumors. Considering the upregulation of immune-related 

characteristics observed within the group of patients 

with a low ADPS, we sought to delve deeper into the 

biological mechanisms responsible for this phenomenon. 

KEGG-based GSVA analysis indicated the ADPS had  

a strong positive correlation with many pathways 

facilitating tumor growth, such as the P53 signaling 

pathway, cell cycle, glycolysis, and WNT signaling, 

while the immunological pathways, such as B/T cell 

receptor signaling pathways, cytokine receptor inter-

action pathway showed a weaker correlation with 

ADPS (Supplementary Figure 4B). Additionally, we 

further explored the immune characteristics from gene 

level, as displayed in Figure 9A, 9B, most ADPS-

related genes were positively correlated with immune 

score as well as immune cell types. 

 

Searching for potential therapeutic agents for the 

high ADPS patients 

 

The CTRP and PRISM databases comprise gene 

expression as well as drug sensitivity profiles from 

hundreds of cancer cell lines (CCLs), providing an 

opportunity to construct a model for predicting drug 

response. After removing duplicates, a total of 1770 

unique compounds were obtained in the two datasets, 

with 160 compounds being shared between them 

(Figure 9C). Figure 9E demonstrates our strategic 

approach to developing potential agents for high  

ADPS patients. Subsequently, we implemented this 

methodology to pinpoint promising agent candidates for 

the high ADPS patients and generated three CTRP-

derived agents (BI-2536, paclitaxel, and SB-743921), as 

well as five PRISM-derived agents (cabazitaxel, 

epothilone−b, gemcitabine, ispinesib, and SNS−314). 

The AUC values of these agents, as estimated, showed a 

statistically significant negative correlation with ADPS 

scores and were significantly lower in the high ADPS 

group (Figure 9F–9I). Furthermore, we leveraged the 
differential expression profiles of LUAD patients as 

well as normal samples to identify potential candidate 

compounds using the Cmap tool. Specifically, we aimed 

to identify agents whose gene expression patterns  

were opposite to the LUAD-specific expression 

patterns, indicating potential efficacy in suppressing 

LUAD tumor growth (i.e., gene expression increased in 

tumor tissues but decreased by treatment of certain 

compounds). Following the cross-referencing of the 

results from CTRP and PRISM, we were left with a  

trio of prospective agents: BI-2536, a PLK inhibitor, 

paclitaxel, and gemcitabine (Figure 9D). Among them, 

BI-2536, with a CMap score of −87.58, exhibited high 

sensitivity in LUAD patients, implying its potential as a 

therapeutic agent for those with high ADPS. 

 

Multi-omics alteration characteristics targeting 

ADPS 

 

The differences in frequently altered chromosomes were 

detected in two ADPS groups (Figure 10A, 10B). We 

conducted an integrated analysis of mutations and  

copy number alterations (CNA, Figure 10C) to examine 

the genomic heterogeneity of the high and low ADPS 

groups. In the high ADPS group, we observed a higher 

frequency of mutations in classical tumor suppressor 

genes TP53 and CSMD3, as well as the oncogene 

KRAS, compared to the low ADPS group (Figure 10C). 

Additionally, compared to the low ADPS group, the 

high ADPS group showed significantly higher levels of 

amplification or deletion at the focal and chromosome 

arm levels, such as the amplification of 8q24.21, 

12p12.1, as well as the deletion of 11p15.5, and 9p21.3 

(Figure 10C). This finding was further supported at the 

gene level by the clear amplification of the oncogene 

MYC located at 8q24.21 and the distinct deletion of  

the tumor suppressor genes CDKN2A located at 9p21.3 

(Figure 10C). Furthermore, we explored the mutation 

frequency of 10 major oncogenic pathways [55] 

between the high and low ADPS groups, and result 

found that both groups had detectable mutations in most 

of the oncogenic pathways, such as RTK-RAS, PI3K, 

TP53, NOTCH, and Hippo pathways (Figure 10D, 

10E). We further explored the relationship between 

ADPS-related genes and LUAD by analyzing their 

correlations with different molecular signatures (Figure 

10F). Our findings showed that FHL1 and ADGRD1 

were strongly and positively correlated with mole- 

cular signatures associated with genomic instability  

in LUAD, including Aneuploidy Score, Homologous 

Recombination Defects, Fraction Altered, Number  

of Segments, as well as Nonsilent Mutation Rate. 

Additionally, the high ADPS group exhibited a higher 

TMB score in comparison to the low ADPS group 

(Figure 10G, P < 0.01). Only a small fraction of 

samples exhibited copy number variation (CNV) in the 
ADPS-related genes (Figure 10H). Additionally, we 

explored the single-nucleotide variant (SNV) mutations 

of the ADPS-related genes. It showed that COLA4A1, 
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COL1A2, and LUZP2 had SNV mutations in more 

samples (Supplementary Figure 4C). Finally, we 

investigated the co-occurrence probability between 

ADPS-related genes and the top 10 genes with the 

highest mutation frequency. Supplementary Figure 4D 

reveals significant co-occurrence probabilities between 

CACYBP and ENU1, as well as between RELA and 

AP2M. 

 

 
 

Figure 9. Identification of candidate agents with higher drug sensitivity in high ADPS group. (A) The correlation of gene 

expression and immune score. (B) The correlation of gene expression and immune cell types. (C) A Venn diagram for summarizing included 
compounds from CTRP and PRISM datasets. (D) Barplot of gemcitabine, paclitaxel, and BI-2536 CMap scores in patients with high ADPS. 
(E) Schematic outlining the strategy to identify agents with higher drug sensitivity in high ADPS patients. (F, G) The result of Spearman’s 
correlation analysis and differential drug response analysis of CTRP-derived compounds (F) and profiling relative inhibition simultaneously 
in mixtures (PRISM)-derived compounds (G). (H, I) The results of differential drug response analysis of CTRP -derived compounds (H) and 
PRISM -derived compounds (I), The lower the value of the y-axis, the greater the drug sensitivity. *p < 0.05; **p < 0.01; ***p < 0.001. 
Abbreviation: ns: not significant. 
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Nomogram based on ADPS and clinical features 

 

To better apply ADPS in a clinical setting and 

optimize its predictive performance, we performed 

univariate and multivariate Cox regression analysis to 

integrate clinicopathological characteristics as well as 

ADPS. ADPS was identified as the most significant 

independent prognostic factor of LUAD according to 

 

 
 

Figure 10. Multi-omics alteration characteristics of the ADPS in the TCGA dataset. (A, B) GISTIC 2.0-based chromosome 

amplifications and deletions in high (A) and low (B) ADPS groups. (C) Genomic alteration landscape according to ADPS. Tumor mutation burden 
(TMB), relative contribution of four mutational signatures, top 20 mutated genes and broad-level CNA (>20%). The proportion of the high and 
low ADPS groups in each alteration is presented in the right bar charts. (D, E) The mutation frequencies of nine common oncogenic pathways in 
the high ADPS (D) and low (E) groups. (F) Correlation heatmap of ADPS-related genes with Aneuploidy Score, Homologous Recombination 
Defects, Fraction Altered, Number of Segments, and Nonsilent Mutation Rate. (G) Difference of TMB score between high and low ADPS group. 
(H) CNV mutations (gain, loss, none) of ADPS-related genes. *p < 0.05; **p < 0.01; ***p < 0.001. Abbreviation: ns: not significant. 
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the results of univariate Cox analysis (hazard ratio (HR) 

= 2.718, 95% confidence interval (CI): 2.25–3.284, p < 

0.001), as well as multivariate Cox regression analysis 

(hazard ration (HR) = 2.687, 95% confidence interval 

(CI): 2.127–3.394, p < 0.001), respectively (Figure 11A, 

11B). The circos plot illustrated a significant correlation 

between ADPS and survival status, tumor stage, as well 

as TNM staging system in the TCGA cohort (Figure 

11C). Moreover, the ADPS showed superior predictive 

accuracy, as indicated by the higher C-index values, 

 

 
 

Figure 11. Prognostic value of the ADPS and nomogram construction. (A, B) Univariate Cox (A) and multivariate Cox (B) analysis of 

the ADPS and clinicopathological characteristics. (C) Circos plot of different clinical factors in two ADPS groups. (D) The C-index of the ADPS 
and various clinical factors in the TCGA, GSE31210, GSE37745, GSE50081, and GSE68465 datasets. (E) Calibration curves for 1, 3, and 
5 years of nomogram. (F) Decision curve for nomogram. (G) Nomogram model integrating the ADPS and stage was constructed. 
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compared to traditional clinical factors including  

age, gender, tumor stage, and TNM staging system,  

in various independent LUAD cohorts including  

TCGA, GSE31210, GSE37745, GSE50081, as well  

as GSE68465 (Figure 11D). Thus, a nomogram was 

created by integrating both the stage and ADPS,  

as illustrated in Figure 11G. The calibration plot 

illustrated the effective ability of the nomogram  

in predicting the actual survival outcomes (Figure 

11E). Furthermore, the decision curve analysis (DCA) 

indicated that the nomogram had a superior ability to 

identify high ADPS patients compared to both the 

ADPS as well as stage alone, as illustrated in Figure 

11F. TimeROC analysis indicated that the ADPS  

and nomogram had higher AUC values than other 

indicators (Supplementary Figure 4E). Our research 

further revealed that ADPS was significantly increased 

in the T stage (Supplementary Figure 4F), N stage 

(Supplementary Figure 4G), and tumor stage (Sup-

plementary Figure 4I), without significant differences 

in M stage (Supplementary Figure 4H). 

 

DISCUSSION 
 

To date, aggrephagy has escalatingly emerged as a 

hotspot in anti-tumor research, and several studies 

have revealed the correlation between aggrephagy 

modification and the pathogenesis of tumorigenesis  

[6, 56, 57]. Understanding the mechanisms behind  

this process could contribute to the development of 

new treatments for diseases associated with protein 

aggregation. However, no related study focuses on the 

potential tumorigenic role of aggrephagy-modified 

single cells. Multiple algorithms such as AUCell and 

addmodulescore suggested the entire aggrephagy score 

was significantly activated in various TME cells in 

LUAD, and aggrephagy classical genes also shared 

high heterogeneity among TME. So, comprehensively 

exploring how aggrephagy shapes and reprograms TME 

components is necessary. We further dissected the 

intricate intercellular interactions among aggrephagy-

associated TME subtypes in LUAD at the scRNA-seq 

level and validated the cell types through IHC. This 

study provides a novel perspective for understanding 

how the cell-specific expression patterns of aggrephagy 

genes shape the TME, thus affecting the prognosis and 

outcomes of immune checkpoint blockade therapy in 

individual LUAD patients. 

 

CAF, as a highly adaptable and dynamic constituent of 

the TME, exerts a crucial function in promoting cancer 

progression via intricate crosstalk with other cellular 

and non-cellular constituents within the TME [42]. 

According to their distinct molecular features, CAFs 

can be categorized into various subtypes, including 

pan-iCAFs, pan-myCAFs, pan-dCAFs, pan-nCAFs, as 

well as pan-pCAFs [35]. Until now, there has been no 

report on the expression patterns of aggrephagy in 

CAFs. This study identified four subtypes of CAFs: 

DYNC1I2+CAF-C1, DYNLL1+CAF-C2, PARK7+CAF-

C3, and Non-Aggre-CAF-C4, and further explored  

the interactions between these subtypes and other 

components in the TME. We found that aggrephagy-

related CAFs exhibited more extensive interaction with 

other components compared to non-aggrephagy-related 

CAFs. Additionally, we highlighted DYNC1I2+CAF−C1 

and PARK7+CAF−C3 because of their high cor-

relation with pan-dCAF, pan-iCAF, and pan-pCAF, 

along with elevated expression of well-recognized 

TGFb genes such as TGFB1, SULF1, and THBS2 in 

DYNC1I2+CAF−C1, as well as pro-inflammatory genes 

such as IL7, CCL2 and CXCL12 in PARK7+CAF−C3 

[58, 59]. We emphasized DYNC1I2+CAF−C1, 

DYNLL1+CAF−C2, as well as PARK7+CAF−C3 sub-

types due to their exceptional ability to differentiate 

LUAD patient survival. It is worth noting that the high 

DYNC1I2+CAF−C1, and DYNLL1+CAF−C2 score 

presented better survival, but the high PARK7+CAF−C3 

score presented dismal survival. Thus, we postulated 

that alterations in aggrephagy could potentially impact 

the functional and phenotypic properties of CAFs, 

leading to significant changes in the immunosup-

pressive TME that may have a consequential impact 

on the malignant progression and metastasis of LUAD. 

 
Recently, there has been growing interest in studying 

the role of aggrephagy in immune cell components  

of the TME, with particular attention focused on 

TAMs [60]. The TAMs were classified into two sub-

clusters based on NMF clustering, and both subclusters 

demonstrated broad communication with other TME 

constituents. The metabolic activity of TAMs has 

emerged as a critical factor influencing cancer 

progression and immune responses, with glucose, 

glutamine, and fatty acid metabolism being among the 

key metabolic pathways involved [61]. Interestingly, 

we showed that the two aggrephagy TAM subtypes 

have distinct metabolic statuses. Obvious activation of 

pathways such as oxidative phosphorylation, glycolysis/ 

gluconeogenesis, as well as TCA cycle were presented 

in PARK7+Mac−C2 subtype. We revealed that the 

functional and metabolic characteristics of TAMs  

are modulated by aggrephagy genes, pointing towards 

a potential mechanism of immune evasion facilitated 

by TAMs in the context of LUAD. In addition, 

aggrephagy-related subtypes of the four main T cell 

subtypes demonstrated varying degrees of T cell 

activity and inactivity. TF analysis revealed that 

aggrephagy-related subtype all manifested distinct TFs 

characteristics. For CAFs, TFs such as BHLHE40, 

FOXO3, ATF3, JUNB, FOSB, as well as CEBPB are 

notably activated in different aggrephagy-related CAF 
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subtypes. FOSB and JUNB, as constituents of the 

Activator Protein-1 (AP-1) family, hold a pivotal 

position in transcriptional control of multiple genes 

that govern a variety of cellular activities encompassing 

cell proliferation, differentiation, migration, immune 

surveillance, and survival [62]. Furthermore, for  

CD8 T cells, TUBA1A+CD8+ T cells C4 exhibited a 

unique TF gene signature, such as BATF, BCLAF1, 

FOSB, and JUNB. Zhang et al. demonstrated that 

depletion of BATF in diverse chimeric antigen 

receptor T cell models and mouse OT-1 cells results  

in enhanced resistance to exhaustion and superior 

efficacy in tumor eradication [63]. In conclusion,  

the modulation of distinct transcription factor (TF) 

regulatory networks by aggrephagy-mediated cell sub-

types may result in a reshaped and reprogrammed TME. 

Furthermore, our cell network analysis demonstrated 

the close connectivity and communication between 

these aggrephagy-mediated TME cells and tumor cells. 

Remarkably, aggrephagy-mediated CAFs and immune 

cell subtypes exhibited increased crosstalk with cancer 

epithelial cells, implicating that aggrephagy regulation 

may contribute to the establishment of an immuno-

suppressive microenvironment. 

 

Given the intricate intrinsic patterns of aggrephagy in 

TME cells, we conducted a comprehensive analysis to 

assess the correlation between the scores of these 

aggrephagy-related cell subtypes and both prognosis 

and immune response based on RNA-seq data from 

multiple centers. Clearly, the degree of aggrephagy 

gene dominance in TME cells exhibited significant 

prognostic differences in LUAD patients, and highly 

distinguished the immune response in patients treated 

with ICB therapy. These findings highlight the critical 

role of TME aggrephagy in LUAD, which warrants 

further investigation. Given the prognostic values of 

aggrephagy-related cell subtypes, we established a risk 

model named ADPS with 32 genes. It consisted of  

14 protective genes and 18 risk genes. Additionally, 

ADPS exhibited superior stability in the stratification 

of patients with different prognoses in multiple cohorts; 

hence, targeted clinical interventions for patients with 

varying levels of ADPS are necessary. A lower ADPS 

was found to be a significant predictor of increased 

sensitivity to immunotherapy in both the IMvigor210 

and GSE91061 cohorts, and this result was further 

validated by TIDE and Submap analyses. 

 

Furthermore, the comprehensive exploration of immune 

infiltration from multiple perspectives revealed that the 

low ADPS group demonstrated a greater abundance  

of immune cell types, such as activated CD8 T cells 
and CD4 T cells. It is widely acknowledged that  

the abundance of effector immune cells, like activated 

CD8 T cells and CD4 T cells may augment the anti-

tumor immunity and confer better immunotherapeutic 

outcomes [64, 65]. Consistently, the low ADPS group 

demonstrated an elevated expression of immune 

modulators, immune checkpoints, as well as biomarkers 

that reflect the presence of an immunoreactive micro-

environment, like CYT, TCR, and IFN-y. Furthermore, 

a decreased ADPS was associated with an activated 

cancer immunity cycle and several immunological 

pathways, indicating its potential utility in predicting 

response to immunotherapy. The concept of precision 

medicine necessitates the early identification of patients 

who would be responsive to diverse treatments for 

further personalized interventions. Due to the high 

sensitivity of the low ADPS patients to immunotherapy, 

we explored the integration of CTRP, PRISM, as well 

as CMap databases to create personalized drugs for 

patients with high ADPS [39, 40, 66]. Finally, BI-

2536, a PLK inhibitor, caught our attention. Zhou  

et al. found BI2536 inhibited lung cancer growth and 

promoted activation of T cells and DC cells [67]. 

Going forward, further clinical trials are needed to 

validate the potential of BI2536 in LUAD, particularly 

with high ADPS patients. Using a multi-omics 

approach, we conducted an in-depth investigation into 

the mutation and copy number variation (CNV) 

characteristics associated with ADPS. Our findings 

indicate that the high ADPS group exhibited elevated 

tumor mutational burden (TMB) and a higher frequency 

of mutations in the classical tumor suppressor gene 

TP53 and oncogene KRAS. These mutations have 

been previously linked to increased invasion and 

immune evasion in patients with LUAD, leading to a 

poorer prognosis [68, 69]. 

 

After conducting a thorough review of the literature, 

we discovered that CTBP2 expression was markedly 

elevated in LUAD tissues when compared to normal 

lung tissue, and that high levels of CTBP2 expression 

were linked to a poorer prognosis among LUAD 

patients [70]. The expression of CCT6A was found to 

be significantly correlated with both relapse-free and 

overall survival in patients with LUAD. Moreover, 

overexpression of CCT6A was observed to enhance 

cell growth and invasion in LUAD [71]. He et al. 

proposed a mechanism in which miR-3613-5p 

expression is induced by RELA through its direct 

interaction with JUN, thus activating the AKT/ 

mitogen-activated protein kinase (MAPK) pathway 

and promoting oncogenesis in LUAD [72]. HNRNPF, 

as a critical alternative splicing regulator, was asso-

ciated with worse survival of LUAD [73]. DSG2,  

a member of the cadherin superfamily, has been 

implicated in cell-cell adhesion and tumorigenesis. Jin 
et al. demonstrated that high expression of DSG2 is 

associated with poor prognosis in LUAD patients  

and promotes cell proliferation and migration, as well 
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as increases resistance to the EGFR tyrosine kinase 

inhibitor Osimertinib [74]. The overexpression of 

CACYBP has been shown to enhance the proliferative, 

invasive, and migratory capacities of LUAD cells,  

and it may represent a novel therapeutic target for 

advanced LUAD [75]. Furthermore, our study revealed 

robust biological associations between ADPS and 

mutations/TME in LUAD, underscoring the critical 

role of ADPS in both prognosis and the immune 

microenvironment. These findings highlight the 

potential of ADPS as a valuable clinical tool for the 

precision management and treatment of LUAD. 

 
As an initial investigation, our analysis has  

some notable limitations including the relatively  

low sequencing depth of scRNA-seq data and the 

limited sample size. As a result, further validation in 

larger patient cohorts is necessary to confirm our 

conclusions. Compared to bulk RNA-seq, the scRNA-

seq analysis of aggrephagy in LUAD is characterized 

by low coverage and a higher proportion of zero 

counts, which could potentially introduce bias to the 

NMF clustering method employed in our study. 

Additionally, it is regrettable that based on the HPA 

database, we only found the IHC results for some key 

aggrephagy-related genes. Further experiments are still 

required to validate other aggrephagy-related genes, 

and to further investigate their mechanism of affecting 

the TME. Quantitative ADPS scoring system included 

the 32 genes were found to be associated with multiple 

prognostic features of LUAD, suggesting their potential 

prognostic value, most of their precise roles in LUAD 

are still unclear and also require further functional 

experimental validation in the future. 

 
CONCLUSIONS 

 
We have identified specific aggrephagy cell subtypes 

of TME cells for the first time using the single-cell 

sequencing analysis method. Our findings reveal  

the aggrephagy-mediated intercellular communication 

within the tumor microenvironment, which plays a 

crucial role in regulating tumor growth and modulating 

the antitumor immune response. Based on machine-

learning algorithm, we have developed a robust and 

powerful signature that accurately predicts the prog-

nosis and immune response of individual LUAD 

patients, allowing for optimized decision-making and 

surveillance protocols. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Multiple aggrephagy cell subtypes influenced the prognosis of LUAD patients. The K-M curve 

analysis for aggrephagy-related cell subtypes of DYNC1I2+CAF (A), PARK7+Mac (B), PARK7+CAF (C), and VIM+CD8+T cell (D) in the TCGA 
cohort; DYNLL1+CAF (E), PARK7+CAF (F), VIM+CD8+T cell (G), VIM+Mac (H), and TUBA4A+CD8+T cell (I) in the GSE68465 cohort; 
DYNLL1+CAF (J), PARK7+CAF (K), PARK7+Mac (L), VIM+CD8+T cell (M), VIM+Mac (N), and UBA52+CD8+T cell (O) in the GSE50081 cohort; 
DYNC1I2+CAF (P), PARK7+CAF (Q), PARK7+Mac (R), TUBA1A+CD8+T cell (S), and TUBA4A+CD8+T cell (T) in the GSE37745 cohort; 
PARK7+Mac (U), VIM+CD8+T cell (V), and VIM+Mac (W) in the GSE3141 cohort; DYNC1I2+CAF (X), PARK7+Mac (Y), TUBA1A+CD8+T cell (Z), 
UBA52+CD8+T cell (AA), and VIM+Mac (AB) in the GSE31210 cohort; DYNC1I2+CAF (AC), DYNLL1+CAF (AD), PARK7+Mac (AE), 
TUBA1A+CD8+T cell (AF), TUBA4A+CD8+T cell (AG), UBA52+CD8+T cell (AH), VIM+CD8+T cell (AI), and VIM+Mac (AJ) in the metaGEO 
cohort. 
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Supplementary Figure 2. Multiple aggrephagy cell subtypes predicted outcomes of immune checkpoint blockade (ICB) 
therapy. *p < 0.05; **p < 0.01; ***p < 0.001. Abbreviation: ns: not significant. 
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Supplementary Figure 3. The construction of ADPS. (A) Volcano plot of prognosis-related genes identified from univariate Cox 

regression analysis. (B) The trajectory of each independent variable with lambda. (C) Plots of the produced coefficient distributions for the 
logarithmic (lambda) series for parameter selection (lambda). (D) The multivariate Cox coefficients for each gene in the ADPS. 
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Supplementary Figure 4. Multi-angle comprehensive analysis for ADPS. (A) The infiltration abundances of 22 immune cells 
between high and low ADPS groups using CIBERSORT algorithm. (B) KEGG-based GSVA analysis delineated the biological attributes of high 
and low ADPS groups. (C) Waterfall diagram of SNV mutations of ADPS-related genes. (D) Collinearity and mutual exclusion analysis of 
ADPS-related genes and the 10 most mutated genes. (E) Comparison of predictive capacity of clinicopathological features and the 
nomogram using time-ROC analysis. (F–I) Correlation of clinical characteristics including T stage (F), N stage (G), M stage (H), tumor stage 
(I), and ADPS. *p < 0.05; **p < 0.01; ***p < 0.001. Abbreviation: ns: not significant. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1, 2, 4, 5 and 8. 

 

Supplementary Table 1. Details of data sources. 

 

Supplementary Table 2. Feature genes of each NMF cluster in CAFs. 

 

Supplementary Table 3. Feature genes of each NMF cluster in TAMs. 

 p_val avg_log2FC pct.1 pct.2 cluster gene Name/Cell type 

VIM 0.000211 1.411586 0.595 0.154 0 VIM VIM+Mac-C1 

MT-ND5 0.00067 1.147509 0.952 0.923 0 MT-ND5 VIM+Mac-C1 

MT-ND4 0.003345 0.660753 0.952 1 0 MT-ND4 VIM+Mac-C1 

MT-ATP6 0.003482 0.668498 0.929 1 0 MT-ATP6 VIM+Mac-C1 

EEF2 0.005899 0.673139 0.929 0.808 0 EEF2 VIM+Mac-C1 

LYZ 0.006498 0.875906 0.69 0.423 0 LYZ VIM+Mac-C1 

DSG2 0.007983 0.971472 0.238 0 0 DSG2 VIM+Mac-C1 

C11orf96 0.009459 0.861673 0.643 0.462 0 C11orf96 VIM+Mac-C1 

TOX4 0.009773 1.003141 0.286 0.038 0 TOX4 VIM+Mac-C1 

PARK7 1.13E-05 1.208244 0.769 0.333 1 PARK7 PARK7+Mac-C2 

DGCR6L 1.96E-05 0.974723 0.5 0.048 1 DGCR6L PARK7+Mac-C2 

TSTD1 0.000156 0.979324 0.692 0.167 1 TSTD1 PARK7+Mac-C2 

TMEM9 0.000365 0.785661 0.346 0.024 1 TMEM9 PARK7+Mac-C2 

PSMA4 0.000406 0.865812 0.654 0.214 1 PSMA4 PARK7+Mac-C2 

PSMB3 0.000409 1.004955 0.538 0.143 1 PSMB3 PARK7+Mac-C2 

SMIM4 0.000426 0.763388 0.577 0.143 1 SMIM4 PARK7+Mac-C2 

CFAP298 0.000456 0.719377 0.269 0 1 CFAP298 PARK7+Mac-C2 

PSENEN 0.000984 0.581205 0.385 0.048 1 PSENEN PARK7+Mac-C2 

CMTM6 0.001005 0.774987 0.308 0.024 1 CMTM6 PARK7+Mac-C2 

MCUR1 0.001084 0.560481 0.308 0.024 1 MCUR1 PARK7+Mac-C2 

TUBA4A 0.001124 1.001012 0.346 0.048 1 TUBA4A PARK7+Mac-C2 

FH 0.001169 0.570502 0.308 0.024 1 FH PARK7+Mac-C2 

NARS2 0.001286 0.700944 0.231 0 1 NARS2 PARK7+Mac-C2 

CRTAP 0.001286 0.68988 0.231 0 1 CRTAP PARK7+Mac-C2 

DYNLL2 0.001286 0.654695 0.231 0 1 DYNLL2 PARK7+Mac-C2 

TMEM92 0.001286 0.53154 0.231 0 1 TMEM92 PARK7+Mac-C2 

PPIE 0.001693 0.693616 0.346 0.048 1 PPIE PARK7+Mac-C2 

PSMC4 0.001693 0.616486 0.346 0.048 1 PSMC4 PARK7+Mac-C2 

NRGN 0.001901 0.577685 0.5 0.119 1 NRGN PARK7+Mac-C2 

YWHAQ 0.001942 0.599586 0.654 0.238 1 YWHAQ PARK7+Mac-C2 

SEMA4A 0.001944 0.820897 0.385 0.071 1 SEMA4A PARK7+Mac-C2 

LSM4 0.002023 0.843285 0.423 0.095 1 LSM4 PARK7+Mac-C2 

QKI 0.00216 0.687433 0.269 0.024 1 QKI PARK7+Mac-C2 

SLC35C2 0.00216 0.658456 0.269 0.024 1 SLC35C2 PARK7+Mac-C2 

SMIM19 0.002199 0.628397 0.385 0.071 1 SMIM19 PARK7+Mac-C2 

DNPH1 0.002358 0.531032 0.346 0.048 1 DNPH1 PARK7+Mac-C2 

HIST1H1C 0.002408 1.004697 0.423 0.095 1 HIST1H1C PARK7+Mac-C2 

CALM2 0.002578 0.654472 1 0.69 1 CALM2 PARK7+Mac-C2 

SERINC3 0.002691 0.757213 0.308 0.048 1 SERINC3 PARK7+Mac-C2 

NUCB2 0.002891 0.682196 0.462 0.119 1 NUCB2 PARK7+Mac-C2 

GJA1 0.00291 0.67725 0.269 0.024 1 GJA1 PARK7+Mac-C2 

MTIF3 0.00291 0.572991 0.269 0.024 1 MTIF3 PARK7+Mac-C2 

DESI2 0.002979 0.559832 0.385 0.071 1 DESI2 PARK7+Mac-C2 

NDUFB2 0.003046 0.747608 0.692 0.262 1 NDUFB2 PARK7+Mac-C2 
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CDK4 0.003131 0.620115 0.269 0.024 1 CDK4 PARK7+Mac-C2 

CYC1 0.003243 0.797487 0.346 0.071 1 CYC1 PARK7+Mac-C2 

NDUFA4 0.003264 0.769977 0.846 0.476 1 NDUFA4 PARK7+Mac-C2 

UQCRB 0.003271 0.691112 0.923 0.595 1 UQCRB PARK7+Mac-C2 

GPRC5C 0.003287 0.632321 0.308 0.048 1 GPRC5C PARK7+Mac-C2 

C21orf2 0.003368 0.501911 0.269 0.024 1 C21orf2 PARK7+Mac-C2 

RAB11B 0.003479 0.521213 0.538 0.167 1 RAB11B PARK7+Mac-C2 

PLPP5 0.003559 0.655067 0.385 0.071 1 PLPP5 PARK7+Mac-C2 

TIMM10B 0.003567 0.658733 0.192 0 1 TIMM10B PARK7+Mac-C2 

MORN2 0.003567 0.601826 0.192 0 1 MORN2 PARK7+Mac-C2 

UBLCP1 0.003567 0.551008 0.192 0 1 UBLCP1 PARK7+Mac-C2 

TMEM129 0.003567 0.504385 0.192 0 1 TMEM129 PARK7+Mac-C2 

RAN 0.003633 0.719248 0.615 0.238 1 RAN PARK7+Mac-C2 

EIF3F 0.003655 0.569545 0.538 0.167 1 EIF3F PARK7+Mac-C2 

TAOK3 0.003748 0.654915 0.308 0.048 1 TAOK3 PARK7+Mac-C2 

RAP1A 0.004 0.606681 0.423 0.095 1 RAP1A PARK7+Mac-C2 

HMGCL 0.004001 0.526426 0.308 0.048 1 HMGCL PARK7+Mac-C2 

ATXN2 0.004268 0.657027 0.308 0.048 1 ATXN2 PARK7+Mac-C2 

EIF5A 0.004314 0.643102 0.692 0.286 1 EIF5A PARK7+Mac-C2 

HADHB 0.004643 0.577399 0.385 0.095 1 HADHB PARK7+Mac-C2 

PFN1 0.004726 0.704733 0.846 0.548 1 PFN1 PARK7+Mac-C2 

HMOX1 0.004852 0.508662 0.308 0.048 1 HMOX1 PARK7+Mac-C2 

MRPL42 0.004942 0.606266 0.346 0.071 1 MRPL42 PARK7+Mac-C2 

CDK2AP2 0.005013 0.962554 0.577 0.286 1 CDK2AP2 PARK7+Mac-C2 

MAGED1 0.005241 0.534179 0.346 0.071 1 MAGED1 PARK7+Mac-C2 

P3H2 0.005377 0.67345 0.5 0.143 1 P3H2 PARK7+Mac-C2 

MLF2 0.005384 0.567608 0.538 0.167 1 MLF2 PARK7+Mac-C2 

ARPC3 0.005721 0.589591 0.615 0.262 1 ARPC3 PARK7+Mac-C2 

PSMA5 0.005791 0.563824 0.385 0.095 1 PSMA5 PARK7+Mac-C2 

HDDC2 0.006115 0.58931 0.385 0.095 1 HDDC2 PARK7+Mac-C2 

NT5DC1 0.006149 0.649745 0.231 0.024 1 NT5DC1 PARK7+Mac-C2 

ADGRD1 0.006149 0.647112 0.231 0.024 1 ADGRD1 PARK7+Mac-C2 

CAPRIN1 0.006611 0.608691 0.231 0.024 1 CAPRIN1 PARK7+Mac-C2 

MT1X 0.006617 0.872285 0.423 0.119 1 MT1X PARK7+Mac-C2 

ENY2 0.0067 0.584781 0.5 0.167 1 ENY2 PARK7+Mac-C2 

ANXA7 0.006791 0.748266 0.462 0.143 1 ANXA7 PARK7+Mac-C2 

ZNF593 0.006964 0.519489 0.423 0.119 1 ZNF593 PARK7+Mac-C2 

HIP1R 0.007105 0.550525 0.231 0.024 1 HIP1R PARK7+Mac-C2 

MRPS26 0.007215 0.622555 0.308 0.071 1 MRPS26 PARK7+Mac-C2 

MRPL52 0.007583 0.58825 0.385 0.095 1 MRPL52 PARK7+Mac-C2 

CIB1 0.007611 0.716517 0.615 0.31 1 CIB1 PARK7+Mac-C2 

GCN1 0.007631 0.568252 0.231 0.024 1 GCN1 PARK7+Mac-C2 

SNF8 0.007631 0.506375 0.231 0.024 1 SNF8 PARK7+Mac-C2 

ME2 0.007631 0.503717 0.231 0.024 1 ME2 PARK7+Mac-C2 

SELENOM 0.008263 0.670829 0.654 0.381 1 SELENOM PARK7+Mac-C2 

ST3GAL5 0.008292 0.575376 0.462 0.167 1 ST3GAL5 PARK7+Mac-C2 

COX7A2 0.008756 0.618256 0.731 0.381 1 COX7A2 PARK7+Mac-C2 

BLVRB 0.0088 0.681885 0.615 0.238 1 BLVRB PARK7+Mac-C2 

CTSD 0.00922 0.731674 0.808 0.452 1 CTSD PARK7+Mac-C2 

IFT57 0.009459 0.782298 0.769 0.452 1 IFT57 PARK7+Mac-C2 

IGF2R 0.009644 0.704461 0.308 0.071 1 IGF2R PARK7+Mac-C2 

CHCHD2 0.009661 0.525212 0.846 0.524 1 CHCHD2 PARK7+Mac-C2 

UBE2S 0.009769 0.59751 0.154 0 1 UBE2S PARK7+Mac-C2 

CHMP7 0.009769 0.521948 0.154 0 1 CHMP7 PARK7+Mac-C2 

PIGF 0.009769 0.520695 0.154 0 1 PIGF PARK7+Mac-C2 

TRPT1 0.009769 0.507902 0.154 0 1 TRPT1 PARK7+Mac-C2 
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CGGBP1 0.009773 0.61168 0.346 0.095 1 CGGBP1 PARK7+Mac-C2 

FNIP1 0.009823 0.619406 0.269 0.048 1 FNIP1 PARK7+Mac-C2 

ZNF511 0.009823 0.590366 0.269 0.048 1 ZNF511 PARK7+Mac-C2 

PSMA2 0.009857 0.590351 0.385 0.095 1 PSMA2 PARK7+Mac-C2 

MGLL 0.009864 0.558292 0.615 0.286 1 MGLL PARK7+Mac-C2 

 

 

Supplementary Table 4. Feature genes of each NMF cluster in CD8+T cells. 

 

 

Supplementary Table 5. Differentially expressed genes (DEGs) in each aggrephagy subtype. 

 

 

Supplementary Table 6. Univariate Cox regression analysis in the TCGA, GSE3141, GSE3141, GSE37745, 
GSE50081, GSE68465, MetaGEO, and Meta cohorts. 

TCGA 

id HR HR.95L HR.95H p-value 

DYNC1I2+CAF-C1 2.581799054 0.604868 11.02007 0.200201 

DYNLL1+CAF-C2 4.077003236 0.404556 41.08693 0.233168 

PARK7+CAF-C3 0.802670531 0.104466 6.167338 0.832667 

VIM+CD8+T_cells-C1 0.183536583 0.051212 0.657767 0.009236 

UBA52+CD8+T_cells-C2 3.037373724 0.253424 36.40397 0.380636 

TUBA4A+CD8+T_cells-C3 2.073828361 0.069197 62.15291 0.674162 

TUBA1A+CD8+T_cells-C4 2.275863571 0.255933 20.23791 0.460759 

VIM+Mac-C1 1.63499456 0.235508 11.35083 0.618977 

PARK7+Mac-C2 0.875312247 0.107903 7.100527 0.90077 

GSE3141 

id HR HR.95L HR.95H p-value 

DYNC1I2+CAF-C1 2.007242198 0.16733 24.07832 0.582561 

DYNLL1+CAF-C2 0.968835927 0.049885 18.81621 0.983311 

PARK7+CAF-C3 1.956635837 0.080021 47.84294 0.680674 

VIM+CD8+T_cells-C1 0.232823649 0.040624 1.334361 0.101808 

UBA52+CD8+T_cells-C2 0.858300774 0.009532 77.28693 0.946942 

TUBA4A+CD8+T_cells-C3 0.813117539 0.010904 60.63317 0.925077 

TUBA1A+CD8+T_cells-C4 0.315129975 0.008938 11.11082 0.525245 

VIM+Mac-C1 0.823288349 0.157964 4.29087 0.817434 

PARK7+Mac-C2 12.6988644 0.041296 3905.024 0.384542 

GSE31210 

id HR HR.95L HR.95H p-value 

DYNC1I2+CAF-C1 20.1376868 0.21446 1890.92 0.195108 

DYNLL1+CAF-C2 2.927174004 0.049746 172.2432 0.605436 

PARK7+CAF-C3 3.486241245 0.009597 1266.455 0.677998 

VIM+CD8+T_cells-C1 1.431754564 0.074284 27.59557 0.812078 

UBA52+CD8+T_cells-C2 769.3726441 0.576163 1027372 0.070325 

TUBA4A+CD8+T_cells-C3 44.61804366 0.007434 267805.8 0.392181 

TUBA1A+CD8+T_cells-C4 214.9467924 0.189983 243191.3 0.134392 

VIM+Mac-C1 1610.479881 2.262259 1146485 0.027554 

PARK7+Mac-C2 15455.07325 37.59304 6353817 0.001684 



www.aging-us.com 14367 AGING 

GSE37745 

id HR HR.95L HR.95H p-value 

DYNC1I2+CAF-C1 0.128390992 0.003231 5.101943 0.274582 

DYNLL1+CAF-C2 0.133755798 0.004667 3.833287 0.239963 

PARK7+CAF-C3 0.009723816 8.47E-05 1.11609 0.055546 

VIM+CD8+T_cells-C1 0.382683171 0.044922 3.259984 0.379507 

UBA52+CD8+T_cells-C2 0.198820187 0.000245 161.6298 0.636573 

TUBA4A+CD8+T_cells-C3 0.000288953 9.14E-07 0.091323 0.005521 

TUBA1A+CD8+T_cells-C4 0.003347176 2.15E-05 0.520577 0.026864 

VIM+Mac-C1 0.248788483 0.022933 2.699033 0.252752 

PARK7+Mac-C2 0.000769389 1.10E-06 0.537409 0.031888 

GSE50081 

id HR HR.95L HR.95H p-value 

DYNC1I2+CAF-C1 0.737622411 0.036687 14.83047 0.842455 

DYNLL1+CAF-C2 0.532903037 0.015622 18.17822 0.726709 

PARK7+CAF-C3 0.011703745 4.57E-05 2.998346 0.115973 

VIM+CD8+T_cells-C1 0.075712218 0.007643 0.750048 0.027399 

UBA52+CD8+T_cells-C2 4.950905497 0.004651 5270.491 0.65287 

TUBA4A+CD8+T_cells-C3 0.107274024 0.00327 3.519127 0.210032 

TUBA1A+CD8+T_cells-C4 0.225455696 0.004102 12.39032 0.466177 

VIM+Mac-C1 0.917315219 0.03395 24.78576 0.959077 

PARK7+Mac-C2 2.65E-05 3.01E-08 0.02332 0.002317 

GSE68465 

id HR HR.95L HR.95H p-value 

DYNC1I2+CAF-C1 0.724513433 0.135067 3.886377 0.706904 

DYNLL1+CAF-C2 0.228289121 0.012141 4.292474 0.323763 

PARK7+CAF-C3 0.039698618 0.003022 0.521497 0.014071 

VIM+CD8+T_cells-C1 0.203946722 0.072489 0.573797 0.002591 

UBA52+CD8+T_cells-C2 0.477837403 0.013018 17.53924 0.687883 

TUBA4A+CD8+T_cells-C3 0.183298861 0.013166 2.551969 0.206694 

TUBA1A+CD8+T_cells-C4 1.211091094 0.103747 14.13772 0.878589 

VIM+Mac-C1 3.310688928 0.503132 21.78487 0.212989 

PARK7+Mac-C2 0.239756992 0.00661 8.695918 0.4357 

MetaGEO 

id HR HR.95L HR.95H p-value 

DYNC1I2+CAF-C1 0.152365738 0.049322 0.470686 0.001078 

DYNLL1+CAF-C2 0.14848377 0.022511 0.979421 0.047528 

PARK7+CAF-C3 0.825739866 0.153063 4.45469 0.823797 

VIM+CD8+T_cells-C1 0.079643086 0.03838 0.165268 1.10E-11 

UBA52+CD8+T_cells-C2 10.40697494 2.854632 37.94014 0.000386 

TUBA4A+CD8+T_cells-C3 0.009589995 0.001341 0.068575 3.66E-06 

TUBA1A+CD8+T_cells-C4 0.020902299 0.00466 0.093757 4.39E-07 

VIM+Mac-C1 2.372205799 0.762971 7.37559 0.135561 

PARK7+Mac-C2 368.5834853 76.27593 1781.083 1.94E-13 

Meta 

id HR HR.95L HR.95H p-value 

DYNC1I2+CAF-C1 0.319938207 0.132078 0.774998 0.011582 

DYNLL1+CAF-C2 0.238401367 0.047903 1.186461 0.079921 
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PARK7+CAF-C3 2.963187473 1.006161 8.726711 0.048711 

VIM+CD8+T_cells-C1 0.096224073 0.051225 0.180753 3.39E-13 

UBA52+CD8+T_cells-C2 13.37013396 4.244167 42.1191 9.47E-06 

TUBA4A+CD8+T_cells-C3 0.015943941 0.003321 0.076536 2.33E-07 

TUBA1A+CD8+T_cells-C4 0.163465178 0.082465 0.324029 2.13E-07 

VIM+Mac-C1 4.621473744 1.864315 11.45623 0.000951 

PARK7+Mac-C2 56.51273294 16.12425 198.0675 2.88E-10 

 

 

Supplementary Table 7. Logistic regression analysis in the TCGA, GSE3141, GSE3141, GSE37745, GSE50081, 
GSE68465, MetaGEO, and Meta cohorts. 

TCGA 

gene OR OR.95L OR.95H p-value 

DYNC1I2+CAF-C1 2.02E-05 1.56E-06 0.000222941 1.26E-17 

DYNLL1+CAF-C2 0.000147 4.94E-06 0.003793619 1.84E-07 

PARK7+CAF-C3 0.001265 4.42E-05 0.0272173 4.56E-05 

VIM+CD8+T_cells-C1 40.32358 7.557707 229.156878 2.10E-05 

UBA52+CD8+T_cells-C2 3.943248 0.172431 98.16945486 0.394881 

TUBA4A+CD8+T_cells-C3 0.008325 9.72E-05 0.671910613 0.033252 

TUBA1A+CD8+T_cells-C4 4.518784 0.251759 86.37529831 0.309754 

VIM+Mac-C1 0.865458 0.067049 11.55283268 0.912121 

PARK7+Mac-C2 54.95842 2.77556 1353.95107 0.011093 

GSE3141 

gene OR OR.95L OR.95H p-value 

DYNC1I2+CAF-C1 0.066885 0.001432 2.721712047 0.155861 

DYNLL1+CAF-C2 8.904625 0.095688 939.4348189 0.347523 

PARK7+CAF-C3 0.027254 0.000181 3.088246493 0.141055 

VIM+CD8+T_cells-C1 4476.675 123.5161 308868.5754 2.20E-05 

UBA52+CD8+T_cells-C2 621.5397 0.656213 1128245.268 0.077061 

TUBA4A+CD8+T_cells-C3 0.566985 0.001741 238.2310752 0.846678 

TUBA1A+CD8+T_cells-C4 8573.647 21.15131 6205252.904 0.004536 

VIM+Mac-C1 6.641665 0.483144 140.100899 0.186218 

PARK7+Mac-C2 0.145823 9.51E-05 222.6762122 0.595843 

GSE31210 

gene OR OR.95L OR.95H p-value 

DYNC1I2+CAF-C1 1.57E-08 5.52E-11 2.30E-06 3.09E-11 

DYNLL1+CAF-C2 8.33E-07 6.41E-09 6.45E-05 2.29E-09 

PARK7+CAF-C3 5.54E-05 2.63E-07 0.008595146 0.000208 

VIM+CD8+T_cells-C1 0.230344 0.01945 2.626560295 0.238935 

UBA52+CD8+T_cells-C2 18.13677 0.047548 7346.64122 0.339587 

TUBA4A+CD8+T_cells-C3 9.01E-05 4.59E-08 0.130091197 0.013627 

TUBA1A+CD8+T_cells-C4 1.215349 0.003995 380.510701 0.946583 

VIM+Mac-C1 1.68501 0.020167 157.2439218 0.818457 

PARK7+Mac-C2 11112.94 81.65885 2129205.262 0.000313 
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GSE37745 

gene OR OR.95L OR.95H p-value 

DYNC1I2+CAF-C1 1.56E-05 9.64E-09 0.011584066 0.001776 

DYNLL1+CAF-C2 0.011445 2.63E-05 3.352479758 0.131502 

PARK7+CAF-C3 0.001902 7.41E-07 3.301046233 0.105386 

VIM+CD8+T_cells-C1 233.1595 3.44978 25464.279 0.015854 

UBA52+CD8+T_cells-C2 1329463 13.95029 4.08834E+11 0.020925 

TUBA4A+CD8+T_cells-C3 995.7538 0.017683 121548210.4 0.227426 

TUBA1A+CD8+T_cells-C4 440.6525 0.062058 5707936.256 0.188809 

VIM+Mac-C1 3.665756 0.064324 314.2394703 0.541082 

PARK7+Mac-C2 15.80532 0.000352 1051811.376 0.615967 

GSE50081 

gene OR OR.95L OR.95H p-value 

DYNC1I2+CAF-C1 0.000681 7.33E-06 0.03809135 0.000771 

DYNLL1+CAF-C2 0.005953 5.15E-05 0.511578096 0.02799 

PARK7+CAF-C3 1.62E-07 1.97E-11 0.000440894 0.000274 

VIM+CD8+T_cells-C1 55.8003 2.057267 1976.221672 0.020897 

UBA52+CD8+T_cells-C2 290.5348 0.066782 2378699.731 0.197526 

TUBA4A+CD8+T_cells-C3 13.8598 0.123247 2421.284465 0.292375 

TUBA1A+CD8+T_cells-C4 7.610202 0.049434 1659.706252 0.440633 

VIM+Mac-C1 0.120726 0.002691 4.754539676 0.259671 

PARK7+Mac-C2 51058593 1595.171 6.24062E+12 0.001531 

GSE68465 

gene OR OR.95L OR.95H p-value 

DYNC1I2+CAF-C1 0.000139 6.99E-06 0.002332162 1.95E-09 

DYNLL1+CAF-C2 0.001069 1.22E-05 0.082101774 0.002288 

PARK7+CAF-C3 0.000621 1.06E-05 0.032392375 0.000302 

VIM+CD8+T_cells-C1 39.02222 7.384114 221.9286704 2.35E-05 

UBA52+CD8+T_cells-C2 10.77913 0.055413 2186.920845 0.377501 

TUBA4A+CD8+T_cells-C3 51.31209 0.942561 3272.378611 0.05756 

TUBA1A+CD8+T_cells-C4 2.662463 0.07605 98.85240086 0.591231 

VIM+Mac-C1 2.441731 0.179217 35.77694955 0.507038 

PARK7+Mac-C2 0.34741 0.001827 66.31239484 0.692391 

MetaGEO 

gene OR OR.95L OR.95H p-value 

DYNC1I2+CAF-C1 0.012352 0.002438 0.060578191 8.02E-08 

DYNLL1+CAF-C2 1.696705 0.138144 21.00039256 0.679659 

PARK7+CAF-C3 5.38E-05 4.30E-06 0.000624731 9.39E-15 

VIM+CD8+T_cells-C1 28.65448 9.698947 87.3198209 2.10E-09 

UBA52+CD8+T_cells-C2 18280.18 2659.294 132406.6492 6.83E-23 

TUBA4A+CD8+T_cells-C3 89.62167 5.018813 1742.524109 0.002559 

TUBA1A+CD8+T_cells-C4 10.70487 1.327287 88.44545704 0.026751 

VIM+Mac-C1 128.4665 27.19828 648.9844333 1.93E-09 

PARK7+Mac-C2 13.64775 2.197253 87.68294855 0.005405 
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Meta 

gene OR OR.95L OR.95H p-value 

DYNC1I2+CAF-C1 0.000153 3.48E-05 0.000648301 5.30E-32 

DYNLL1+CAF-C2 1.025265 0.217904 4.826020841 0.974798 

PARK7+CAF-C3 0.002304 0.000485 0.010668186 1.29E-14 

VIM+CD8+T_cells-C1 10.81759 4.553453 26.00137186 8.31E-08 

UBA52+CD8+T_cells-C2 12.15326 3.784088 39.39289892 2.90E-05 

TUBA4A+CD8+T_cells-C3 0.509344 0.086712 2.983289218 0.454582 

TUBA1A+CD8+T_cells-C4 0.42945 0.221176 0.832975222 0.01243 

VIM+Mac-C1 1.318582 0.750752 2.319263204 0.33623 

PARK7+Mac-C2 0.206939 0.035085 1.211979935 0.081093 

 

 

Supplementary Table 8. A total of 571 genes form aggrephagy-related subtypes. 

 

 

Supplementary Table 9. The ADPS-related genes and corresponding coefficients. 

Gene Coef Type 

LUZP2 −0.374121637 Protective 

COL4A1 0.101170202 Risk 

GTF3C6 0.377254728 Risk 

CTBP2 0.110815334 Risk 

AKR1A1 −0.506961197 Protective 

COL1A2 0.052344441 Risk 

TNFRSF19 −0.025303508 Protective 

APOL1 0.107021888 Risk 

AP2M1 0.023375955 Risk 

KLF10 0.383501703 Risk 

FHL1 −0.131528 Protective 

FAM217B −0.189208623 Protective 

BLOC1S4 0.024211454 Risk 

UQCRB 0.208941759 Risk 

HNRNPF 0.124065381 Risk 

NEU1 −0.223584911 Protective 

CCT6A 0.080899978 Risk 

RNPEP 0.263793282 Risk 

GAPDH −0.110872233 Protective 

RELA 0.388110159 Risk 

NUCB2 −0.200828737 Protective 

PCM1 −0.164689427 Protective 

MLLT6 −0.304064015 Protective 

CD2 −0.144521072 Protective 

PIM2 −0.065727646 Protective 

HNRNPA0 0.524133487 Risk 

CACYBP 0.019093532 Risk 
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DSG2 0.049422674 Risk 

ADGRD1 −0.18487887 Protective 

ENY2 0.220663515 Risk 

BLVRB 0.226676186 Risk 

UBE2S −0.044076029 Protective 

 

 


