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INTRODUCTION 
 

Esophageal cancer is among the most prevalent 

malignancies worldwide, with high incidence and 

mortality rates. In recent years, it has shown an 

increasing trend and tends to affect younger individuals. 

It ranks as the eighth most common cancer and the sixth 

leading cause of cancer-related death globally [1, 2]. 

Despite the continuous development of treatment 
modalities, such as surgery combined with radiotherapy 

and chemotherapy, the prognosis for patients with 

esophageal cancer remains generally poor. In most 

countries, the 5-year survival rate after diagnosis is still 

low, ranging from 10% to 30% [3]. The inactivation of 

tumor suppressor genes and activation of oncogenes 

play crucial roles in the development of esophageal 

cancer [4, 5]. Therefore, there is an urgent need for 

novel diagnostic and therapeutic targets in clinical 

practice to enhance the survival of patients with 

esophageal cancer. 

 
Single-cell technology is an area of research and 

analysis of individual cells that utilizes high-throughput 

sequencing and other techniques to reveal information 
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on gene expression, genomic variations, protein 

expression, and other aspects of a single cell [6]. In this 

article, we conducted a comprehensive scRNA-seq 

analysis of the tumor microenvironment in primary 

esophageal tumors to elucidate cell composition and 

heterogeneity. Using Seurat, we identified eight 

clusters, encompassing non-immune cells (fibroblasts, 

myofibroblasts, endothelial cells, and epithelial cells) 

and immunocytes (myeloid-derived cells, T cells, 

B cells, and plasma cells). Compared to normal tissues, 

tumors exhibited an increased proportion of epithelial 

cells and alterations in immune cell infiltration. 

Analysis of epithelial cells revealed a cluster (cluster 0) 

with a high differentiation score and early distribution, 

suggesting its importance as a precursor cell. Cluster 0 

was characterized by high expression of FABP6, 

indicating a potential role in fatty acid metabolism and 

tumor growth. T cell analysis revealed shifts in the 

balance between Treg and CD8+ effector T cells in 

tumor tissues. Cellular communication analysis 

identified increased interactions between FABP6+ 

tumor cells and T cells, with the involvement of the 

MIF-related pathway and the CD74-CD44 interaction. 

This study provides insights into the cellular landscape 

and immune interactions within esophageal tumors, 

contributing to a better understanding of tumor 

heterogeneity and potential therapeutic targets. 

 

MATERIALS AND METHODS 
 

Data availability 
 

Retrieve the single-cell dataset pertaining to Esophageal 

Squamous Cell Carcinoma (ESCC) from Gene Expression 

Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) 

with dataset ID GSE160269. The dataset originates 

from Homo sapiens and its data platform is GPL24676. 

For transcriptome data, we downloaded the TCGA-

ESCA dataset from the TCGA GDC website 

(https://portal.gdc.cancer.gov/). In addition, we sup-

plemented the control group with normal tissue 

information obtained from the GTEx Portal website 

(https://www.gtexportal.org/home/). The FPKM 

normalized gene expression data and clinical 

information for ESCC were obtained from The Cancer 

Genome Atlas (TCGA). In R, the “surv_cutpoint” 

function from the survminer package was employed with 

a median value (Cutoff-High (%) = 50, Cutoff-Low (%) 

= 50) as the cutoff point for survival analysis. Kaplan-

Meier method was utilized to measure survival curves, 

and p-values were calculated using the log-rank test. 

 

Single-cell RNA-seq analysis 

 

The R package Seurat [7] was employed to identify 

distinct cell types and investigate variations in immune 

cell infiltration. To ensure data quality, cells were 

filtered based on the following criteria: those with fewer 

than 100 genes, over 7500 genes, or more than 4% 

mitochondrial expression were excluded from the 

analysis. Normalization of raw counts was performed 

using the “NormalizeData” function in Seurat. Next, the 

“FindVariableGenes” function was applied to identify 

genes with significant variation across the dataset. To 

prepare the data for dimensionality reduction, the 

“ScaleData” function in Seurat was used to scale and 

center the expression values. For dimensionality 

reduction, Principal Component Analysis (PCA) and 

Uniform Manifold Approximation and Projection 

(UMAP) were implemented. The first 20 dimensions 

resulting from PCA and UMAP were selected for 

visualization purposes. To cluster the cells based on 

their gene expression profiles, the “FindClusters” 

function in Seurat was employed. This allowed for the 

identification of distinct cell populations within the 

dataset. To determine highly expressed genes specific to 

each cell cluster, the “FindAllMarkers” function was 

utilized. This function helps identify genes that are 

significantly enriched in specific cell populations. 

Furthermore, to identify differentially expressed genes 

(DEGs) between two cell populations, the 

“FindMarkers” function was applied. This function 

facilitates the identification of genes that show 

significant expression differences between the specified 

cell populations. Overall, the combination of these 

Seurat functions provided a comprehensive analysis 

pipeline for cell type identification, exploration of 

immune cell infiltration patterns, and identification of 

differentially expressed genes in the dataset. 

 

Cell-cell interaction analysis 

 

CellChat [8] was employed to predict potential cell-cell 

interactions. The raw counts and cell type annotations 

of each cell were inputted into CellChat for analysis. 

This software enables the modeling of intercellular 

communication through three core modules: (1) cross-

referencing the ligand-receptor interaction database to 

identify potential cell-cell signaling relationships, 

(2) utilizing network algorithms to infer and visually 

map communication pathways between cell types, and 

(3) leveraging quantitative techniques to analyze the 

dynamics and relative strengths of intercellular 

signaling interactions. Together, these three pillars 

provide an integrated platform for examining and 

characterizing the complex signaling networks 

underlying multicellular system behavior. 

 

Pseudo-time analysis 

 

To explore the developmental timing and trajectory of 

esophageal tumor cells, we employed Monocle [9]. This 
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powerful tool applies advanced algorithms to infer the 

sequential changes in gene expression that each cell 

undergoes as part of a dynamic biological process. By 

utilizing unsupervised or semi-supervised learning, 

Monocle constructs a trajectory of cells arranged in a 

simulated time sequence based on the input data. This 

enables us to gain insights into the developmental 

progression of esophageal tumor cells and understand 

the underlying molecular changes driving their 

differentiation. 

 

Cell-cell ligand receptor interaction analysis 

 

We employed NicheNet [10] to predict the ligands 

responsible for driving transcriptome changes in target 

cells. This computational approach utilizes the 

expression profiles of both sender and target cells to 

construct potential ligand-receptor interactions. What 

sets NicheNet apart is its innovative ability to predict 

the ligand-target gene connections between interacting 

cells by integrating cell expression data, signal 

intensity, and gene regulation networks. By leveraging 

these factors, NicheNet enables the identification of 

crucial ligands involved in cell communication, shedding 

light on the molecular mechanisms underlying cellular 

interactions and their impact on gene expression patterns. 

 

Gene enrichment analysis 

 

The gene enrichment analysis of the identified genes 

obtained through the “FindAllMarkers” function was 

performed using the R package Cluster Profiler [11]. 

Cluster Profiler is a widely utilized R package that 

offers a comprehensive set of tools for interpreting 

omics data. It enables functional annotation and 

enrichment analysis of diverse gene sets, along with the 

visualization of enrichment analysis results. With its 

support for multiple gene sets and pathway databases, 

Cluster Profiler proves to be an excellent choice for our 

study, providing valuable insights into the functional 

significance and biological pathways associated with 

the identified genes. 

 

Assessing the heterogeneity of single-cell populations 

 

In our study, we employed ROGUE [12], a universal 

entropy-based metric, to assess the purity of the major 

cell populations and compare their heterogeneity. The 

ROGUE algorithm calculates the purity of a specific 

cell cluster, yielding an index that falls within the range 

of zero to one. A higher index value indicates a higher 

level of purity within the cluster. A score of zero 

corresponds to the most heterogeneous cell population, 
while a score of one signifies a completely pure 

population. By utilizing ROGUE, we were able to 

quantitatively evaluate the homogeneity of the cell 

populations and gain insights into the degree of cellular 

diversity within our study. 

 

Pathway enrichment analysis 

 

In our analysis, we employed PROGENy [13] to predict 

the activity of 14 signaling pathways, including 

androgen, estrogen, EGFR, hypoxia, JAK-STAT, 

MAPK, NFK-B, PI3K, p53, TGF-b, TNF-a, Trail, 

VEGF, and WNT, using gene expression data. 

PROGENy assigns a weight to each gene based on its 

responsiveness to the corresponding pathway distur-

bance, indicating the magnitude and direction of 

pathway adjustment. Subsequently, the pathway score is 

calculated as the weighted sum of the product of gene 

expression and weight. PROGENy is widely utilized as 

a tool for inferring pathway activity from gene 

expression data. It provides valuable insights into the 

biological processes that are altered in a given sample, 

offering a deeper understanding of the signaling 

pathway dynamics at play. By leveraging PROGENy, 

we were able to gain insights into the activity levels of 

these specific pathways and unravel their potential roles 

in the biological context under investigation. 

 

Transcription factor activity analysis 

 

To analyze transcription factor activity in single cells, 

we utilized the SCENIC algorithm, which was first 

introduced in the prestigious scientific journal Nature 

Methods in 2017 [14]. SCENIC employs co-expression 

and motif analysis techniques to reconstruct gene 

regulatory networks based on single-cell transcriptome 

data. By leveraging the information contained within 

the cis-regulatory network, SCENIC enables the 

identification of transcription factors and cell states. 

One of the key advantages of SCENIC is its ability to 

automatically eliminate batch effects, such as tumor 

sample specificity, by focusing on biologically driven 

features. This ensures that the analysis is robust and 

accurately captures the underlying regulatory dynamics 

within the single-cell transcriptome data. By utilizing 

SCENIC, we were able to gain insights into the activity 

levels of transcription factors and understand their  

roles in driving cellular heterogeneity and regulatory 

processes within the studied context. 
 

Patient samples 
 

The tumor tissues and matched adjacent normal 

esophageal tissues were collected from six patients 

undergoing surgical resection at the Second Hospital of 

Hebei Medical University in July of 2023. All patients 

provided written informed consent, and the study was 

approved by the Research Ethics Committee of the 

Second Hospital of Hebei Medical University. 
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Cell lines 

 

The esophageal cancer cell lines KYSE30, KYSE150, 

ECA109, and normal esophageal epithelial cell line 

HET1A were purchased from Procell Life Science & 

Technology Co., Ltd (Wuhan, China). All cell lines were 

cultured according to the manufacturer's instructions. 

 

Detection of mRNA expression by quantitative 

fluorescence polymerase chain reaction (qRT-PCR) 
 

RNA was extracted from the samples using TRIzol 

reagent (Invitrogen, Grand Island, NY, USA), a 

commercially available reagent used for isolating total 

RNA from cells and tissues for PCR analysis. The 

extracted RNA was subjected to reverse transcription 

using Superscript III Transcriptase (Invitrogen), 

following the manufacturer’s instructions. Quantitative 

real-time PCR (qRT-PCR) was performed using SYBR 

green and a Bio-Rad CFX96 system to quantify the 

mRNA expression level of the target genes. The initial 

step involved incubating the samples at 50°C for 

2 minutes, followed by heating to 95°C for 8 minutes 

and 30 seconds. This was followed by 45 cycles at 95°C 

for 15 seconds each, and 60°C for 1 minute. The 

extension step included 95°C for 1 min, 55°C for 1 min, 

and 55°C for 10 s. The expression levels were 

normalized to the expression of GAPDH, which served 

as the internal control. The primer sequences used for 

qRT-PCR are listed below: 

FABP6 5′-ACCGGCAAGTTCGAGATGG-3′ 

FABP6 3′-CCTTTTCGATTACATCGCTGGA-5′ 

GAPDH 5′-TGTGGGCATCAATGGATTTGG-3′ 

GAPDH 3′-ACACCATGTATTCCGGGTCAAT-5′. 
 

siRNAs transfection 
 

To downregulate FABP6 expression, siRNA-FABP6#1 

and siRNA-FABP6#2 (GenePharma) were employed, 

while a non-specific siRNA-NC (GenePharma) served 

as a control. The Lipofectamine RNAiMAX was used 

to facilitate siRNA transfection, following the 

manufacturer’s instructions. After a 48-hour incubation 

period with siRNA complexes, ECA109 and KYSE30 

cell lines proceeded to the subsequent step. The 

sequences of the involved siRNAs are provided below: 

siRNA-FABP6#1 

Sense: 5′-GGAGAGUGAGAAGAAUUAUTT-3′ 

Antisense: 5′-AUAAUUCUUCUCACUCUCCTT-3′; 

siRNA-FABP6#2 

Sense: 5′-GCCCGCAACUUCAAGAUCGTT-3′ 

Antisense: 5′-CGAUCUUGAAGUUGCGGGCTT-3′; 

siRNA-NC 

Sense: 5′-UUCUCCGAACGUGUCACGUTT-3′ 

Antisense: 5′-ACGUGACACGUUCGGAGAATT-3′. 

Western blotting assay 

 

Total proteins were extracted using RIPA whole-cell 

lysis solution. The proteins were separated through 8-

12% SDS-PAGE electrophoresis, measured, and semi-

dry transferred to PVDF membranes (Millipore, Billerica, 

MA, USA). The PVDF membranes were blocked with 

TBS + Tween (TBST) solution containing 5% skim milk 

powder for 2 hours, washed, and then incubated with a 

primary antibody (FABP6, 13781-1-AP, Proteintech, 

1:50) overnight at 4°C. The membranes were sub-

sequently washed and exposed to a secondary antibody 

labeled with horseradish peroxidase for 2 hours. 

Following the washing of the PVDF membrane, the 

chemiluminescent substrate was applied, and the gray-

scale values were measured using a gel imaging system. 

 

Transwell migration experiments 

 

The cells were harvested using serum-free media and 

seeded into the upper chambers of polycarbonate 

membrane filters with a pore size of 8.0 μm (Corning 

Incorporated, Corning, NY, USA) at a density of 

1 × 105/mL. Subsequently, 600 μL of media containing 

10% FBS was added to the lower chambers, and the 

cells were incubated at 37°C for 36 hours. To minimize 

potential bias in the results, three replicate wells were 

established for each experimental group, and each 

experiment was repeated thrice. The field of view for 

cell counting was randomly selected, and images were 

concurrently captured. Using Image J software, the 

number of migrating cells was quantified. 

 

Wound-healing assay to detect cell migration 

 

Before the addition of tumor cells, three parallel lines 

were marked on the back of a 6-well plate. The cells 

were seeded at a density of 1 × 105 cells per well and 

subsequently transfected with si-FABP6 and si-NC 

after complete adherence to the well. After 24 hours, 

tumor cell growth was monitored, and a 10 μL gun 

was used to create a scratch perpendicular to the 

horizontal line on the back of the 6-well plate. The 

cells were washed with phosphate buffer solution 

(PBS) and cultured in serum-free medium at 37°C 

with 5% CO2 in an incubator. The width of the 

scratch was measured using Image J software, and the 

cell migration rate was subsequently calculated. The 

culture medium was maintained at 37°C with 5% CO2 

in an incubator for the duration of the experiment. 

 

Immunohistochemical stainings and evaluation 

 
Immunohistochemical staining was conducted using  

4 μm paraffin-embedded tissue cross sections. The 

sections were deparaffinized with xylene and rehydrated, 
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followed by pre-incubation with 10% normal goat serum 

(710027, KPL, USA). Thereafter, the sections were 

incubated overnight at 4°C with a primary antibody 

(FABP6, 13781-1-AP, Proteintech, 1:50). Following 

washing, horseradish peroxidase-labeled rabbit IgG 

antibody (021516, KPL, USA) was used as the 

secondary antibody. The color development reaction was 

performed using the DAB substrate kit. Finally, the 

sections were counterstained with hematoxylin and 

evaluated after dehydration and clearance. 

 

Statistical methods 

 

R software (version 4.2.1) and GraphPad Prism 8.0 

were employed for statistical analysis and graphical 

visualization of the data. The Pearson or Spearman 

coefficients were calculated to determine the correlation 

between variables. A P value less than 0.05 was 

considered statistically significant for all statistical 

calculations. 

 

Availability of data and materials 

 

The original datasets analyzed in this study are publicly 

available through the following repositories: The Cancer 

Genome Atlas (https://tcga-data.nci.nih.gov/), Genotype-

Tissue Expression project (https://www.gtexportal. 

org/home/index.html), and NCBI Gene Expression 

Omnibus (https://www.ncbi.nlm.nih.gov/gds/). Further 

inquiries can be directed to the corresponding authors. 

 

RESULTS 
 

scRNA-seq analysis of the tumor microenvironment  

 

We constructed a comprehensive tumor ecosystem map 

for esophageal tumor using Seurat, facilitating cell 

classification and identification of marker genes. The 

visualization of the results was accomplished through 

the application of the Uniform Manifold Approximation 

and Projection (UMAP) method, revealing 8 distinct 

clusters (Figure 1A). We observed non-immune cells in 

the clusters, primarily fibroblasts (DCN and COL1A1), 

myofibroblasts (MYH11 and ACTA2), endothelial cells 

(PECAM1 and PLVAP) and epithelial cells (KRT19 

and KRT18). The immunocytes consisted of myeloid-

derived cells (LYZ and CSF1R), T cells (CD3D and 

CD3E), B cells (CD19 and CD79A), and plasma cells 

(JCHAIN and MZB1) (Figure 1B). These cells are 

present in the esophagus of both normal and tumor 

patients. We observed substantial heterogeneity in the 

composition of cell types in normal and tumors. Among 

non-immune cells, tumors have more epithelial cells 

than normal, which may be because the cellular 

composition in tumors is mainly epithelioid tumor cells. 

Relatively, normal has more fibroblast and endothelial 

cell composition (Figure 1A). This suggests that in the 

tumor microenvironment, non-immune cells may have a 

key influence on tumor growth and development. 

Previous studies have shown that activating specific 

tumor-associated genes in non-immune healthy cells 

surrounding the tumor can induce non-apoptotic 

programed cell death in tumor cells [15]. 

 

We then examined the infiltration of immune cells and 

found no significant difference in the infiltration of T 

cells and B cells between normal and tumor tissues. 

However, myeloid cells showed a significant increase in 

tumors, while plasma cells exhibited a significant 

decrease (Figure 1C). Tumors possess a complex 

ecosystem in which heterogeneous malignant cells 

interact with immune and non-immune cells, shaping a 

complex cellular network in the tumor micro-

environment (TME) [16]. Myeloid cells are an 

important component of the immune cells infiltrating 

tumors and play a crucial role in regulating tumor 

inflammation and angiogenesis [17, 18]. Persistent 

inflammation, such as that which occurs in cancer, 

disrupts normal bone marrow cell production, leading to 

the generation of immunosuppressive bone marrow-

derived cells, such as myeloid-derived suppressor cells 

(MDSCs) and tumor-associated macrophages (TAMs). 

CD38-expressing bone marrow-derived suppressor cells 

promote tumor growth in an esophageal cancer mouse 

model [19, 20]. Therefore, an increase in infiltration of 

myeloid cells may indicate poor prognosis in 

esophageal cancer. In the tumor microenvironment, 

tumor-infiltrating B cells (TIL-B) can be identified 

based on their expression of CD19 or CD20. Several 

studies have correlated the effect of TIL-B on patient 

outcomes, revealing a heterogeneous effect based on 

specific tumor anatomic site, histology, and molecular 

subgroup [21–25]. In many clinical and human studies, 

high expression of B-cell markers has been associated 

with significantly improved outcomes [26–28]. 

Therefore, the absence of plasma cells may suggest a 

poor prognosis in esophageal cancer. 

 

Heterogeneity of esophageal tumor cells 

 

Esophageal tumor cells are epithelioid malignant cells. 

It is difficult to separate epithelial cells from malignant 

cells by traditional markers. Here, we use copyKAT to 

analyze the chromosome copy number variation (CNV) 

of epithelial cells and divide epithelial cells into diploid 

and aneuploid, through the heat map of chromosome 

copy number, we found that aneuploid has more 

chromosomal variation, so we defined polyploidy as 

esophageal tumor cells (Figure 2A). Research has 
shown that most CNVs are closely associated with 

complex diseases. If CNVs occur within or near tumor-

associated gene sequences, they can activate oncogenes, 

https://tcga-data.nci.nih.gov/
https://www.gtexportal.org/home/index.html
https://www.gtexportal.org/home/index.html
https://www.ncbi.nlm.nih.gov/gds/
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suppress tumor suppressor genes, and ultimately 

contribute to tumor development [29, 30]. CNVs affect 

gene expression, phenotype differences, and phenotypic 

adaptation by altering gene dosage and regulating gene 

activity, leading to the development of tumors and other 

genetic diseases [31–35]. 

 

We performed dimensionality reduction clustering of 

esophageal tumor epithelial cells using unsupervised 

clustering and visualized nine distinct clusters with the 

unified manifold approximation and projection (UMAP) 

method.  We  found that the distribution of tumor cells 

across UMAPs is continuous, suggesting that these 

subpopulations may have continuity across the develop-

mental lineage of tumor cells (Figure 2B). Through the 

distribution ratio of each subgroup, we found that cluster 

0 has the most proportional distribution, which suggests 

that cluster 0 may have an important position in 

esophageal tumor cells (Figure 2C). Then, we predicted 

the relative differentiation state of cells by cytoTRACE 

for each subcluster, cluster 0 had the highest 

differentiation prediction score, and the results indicated 

that cluster 0 might be the starting point of all cells in the 

cell developmental trajectory (Figure 2D). 

 

 

Figure 1. ScRNA-seq analysis of the tumor microenvironment in esophageal cancer cells. (A) The UMAP plot displays the 
cellular composition of the esophageal tumor microenvironment. (B) Dotplot showing marker gene expression in indicated cell types. 
(C) Histograms indicating the proportion of cells in tumor tissue and normal tissue. 
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The developmental trajectory of esophageal tumor 

cells 

 

In order to better explore the developmental trajectory 

of esophageal tumor cells, we performed a pseudo-time 

analysis of esophageal tumor cells using Monocle2. We 

visualized the distribution of each cell cluster in pseudo-

time via density plots and found that cluster 0 was 

predominantly distributed in the early stages of pseudo-

time (Figure 3A). The branching tree showed that these 

cell clusters did not branch on the developmental 

lineage, suggesting that these cell clusters had 

developmental continuity, which was consistent with 

our analysis (Figure 3B, 3C). 

 

Furthermore, we conducted Gene Ontology (GO) analysis 

on the pseudo-temporal genes. The results indicate that in 

the early pseudo-temporal stage, metabolic pathways such 

as unsaturated fatty acid metabolic process and icosanoid 

metabolic process are enriched, suggesting that cluster 0 

exhibits higher metabolic activity. The enrichment of 

pathways like negative regulation of T cell proliferation in 

the late pseudo-temporal stage suggests that tumor 

development and maturation are associated with an 

immunosuppressive effect involving the inhibition of T 

cell differentiation (Figure 3D). FABP5, a fatty acid 

binding protein, plays a role in fatty acid uptake, 

transport, and metabolism, suggesting that cluster 0 

distributed in the early pseudo-time may have higher 

fatty acid metabolism to generate energy for proliferation 

and development. The role of altered fatty acid 

metabolism in cancer has garnered renewed interest due to 

their dual roles as structural components of the 

membrane matrix, important secondary messengers, and 

fuel sources for energy production [36–39]. 

Experimental evidence suggests that fatty acid 

metabolism has profound effects on the cancer 

epigenome, which in turn regulates gene expression and 

cellular differentiation [40–42]. According to relevant 

literature reports, FABP5 can reprogram the fatty acid 

metabolism of tumors to promote tumor growth [43–47], 

although there is limited research on FABP5 in 

 

 
 

Figure 2. Heterogeneity of esophageal tumor cells. (A) Heatmap showing the differences in chromosomal copy numbers within the 

epithelial cells. (B) UMAP plot showing the subtypes of tumor cells. (C) Histograms indicating the proportions of each tumor subgroup. 
(D) Boxplot showing cellular differentiation potential of each tumor subgroup. 
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esophageal cancer. This suggests that FABP5 may serve 

as a potential diagnostic marker and therapeutic target. 

CEACAM6 belongs to the carcinoembryonic antigen 

gene family [48, 49], and increasing evidence shows 

that CEACAM6 participates in multiple aspects of 

tumor development, including promoting tumor 

invasion and metastasis, inhibiting tumor cell apoptosis, 

promoting tumor angiogenesis, and suppressing tumor 

cell adhesion [50–52]. AGR2 is expressed in various 

solid tumors [53–56]. AGR2 can affect cell signaling 

and metabolism by upregulating the expression of 

CCAAT-enhancer-binding protein β and the 

transcription factor hypoxia-inducible factor 2α subunit, 

thereby promoting tumor development [53]. Similarly, 

multiple studies have shown that TFF3 [57–59] and 

NELL2 [60] are significantly upregulated in tumor 

tissue compared to adjacent normal tissue, promoting 

tumor migration, growth, and leading to poor prognosis. 

These findings suggest that FABP5, CEACAM6, 

AGR2, TFF3, and NELL2 are highly expressed in 

cluster 0 and promote tumor development. The results 

of the appeal show that cluster 0 may be the precursor 

cells of these cell clusters, and store energy through 

higher fatty acid metabolism, providing an energy basis 

for subsequent differentiation, proliferation, migration 

and survival, which reflects the importance of cluster 0, 

so we will focus on the 0 cluster later. 

 

FABP6+ tumor cells play an important role in the 

progression of esophageal tumor 

 

To further explore the gene signature of cluster 0, we 

visualized differential genes between normal epithelial 

cells and cluster 0. Results showed that compared to 

normal epithelial cells, cluster 0 highly expressed 

FABP6, which has similar functions to FABP5, 

including the uptake, transport, and metabolism of fatty 

acids (Figure 4A). We analyzed the expression of 

FABP6 in normal esophageal tissue and esophageal 

tumor tissue through the TCGA and GTEx database and 

found that esophageal tumor tissue had a higher 

expression level (Figure 4B). Further survival analysis 

of FABP6 revealed that patients with high expression of 

FABP6 had poorer survival (Figure 4C). To explore the 

regulatory mechanism of cluster 0, we analyzed the 

activity of transcription factors and found that MYC and 

TAF7 were significantly enriched in cluster 0 (Figure 

4D). These findings suggest that FABP6 may play a 

critical role in the development of esophageal tumors 

and that MYC and TAF7 may be involved in the 

 

 
 

Figure 3. Pseudo-time series analysis of esophageal cancer cells. (A) Density map provides a visual representation of the 

distribution of tumor cell subtypes across a pseudo-time series. (B, C) Pseudo-time-ordered analysis of tumor cells. Tumor cell subtypes are 
labeled by colors. (D) Heatmap showing the dynamic changes in the expression of developmental genes over pseudo-time. 
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regulatory mechanism of cluster 0. The MYC oncogene 

is a member of a superfamily of genes whose products 

are frequently activated in human cancers [61–63]. 

MYC is a master regulator of multiple biological 

programs and primarily functions as a transcription 

factor that regulates the expression of thousands of 

genes, either directly or indirectly [64, 65]. Reports 

suggest that MYC overexpression can cause 

tumorigenesis, contributing to many of the hallmarks of 

cancer, including proliferation, self-renewal, cell 

survival, genomic instability, metabolism, invasiveness, 

angiogenesis, and remodeling of the tumor micro-

environment [66–70]. These findings suggest that MYC 

may play a key role in the development and progression 

of esophageal tumors and may be involved in the 

regulatory mechanism of cluster 0. TAF7, short for 

TATA box-binding protein associated factor 7, is a key 

protein involved in transcriptional regulation processes 

[71]. TAF7 may play an important role in cancer, as 

evidenced by a study of breast cancer that found 

significantly increased expression levels of TAF7 in 

tumor tissue, which was correlated with the invasive 

and metastatic potential of breast cancer [72]. 

Additionally, other studies have found abnormal 

expression of TAF7 in various types of cancer, 

including gliomas and lung adenocarcinomas [73–75]. 

These findings suggest that TAF7 may be involved in 

the development and progression of esophageal tumors 

and may be a potential therapeutic target. 

 

In addition, we performed pathway enrichment analysis 

on cluster 0 using PROGENy to further explore the 

activated signaling pathways of cluster 0 (Figure 4E). 

Our study found that the MAPK pathway was 

significantly enriched in cluster 0. MAPK pathways are 

cascades of three kinases, where the most upstream 

kinase (MAPKKK) responds to various extra- and 

intracellular signals and activates the middle kinase 

(MAPKK) by direct phosphorylation. MAPKKs 

exclusively phosphorylate and activate a MAPK, which

 

 
 

Figure 4. FABP6 plays an important role in esophageal cancer. (A) Volcano plot illustrates the differentially expressed genes 

between Cluster 0 and normal epithelial cells. (B) Boxplot displays the expression levels of FABP6 in esophageal cancer and normal 
esophageal tissues within the TCGA and GTEx database. (C) Survival analysis of FABP6 in the TCGA database. (D) Heatmap showing tumor 
cell transcription factor activity. (E) Heatmap showing the enrichment of 14 tumor-associated signaling pathways.  
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typically has many substrates that execute specific cell 

fate decisions appropriate to the input signal [76]. Over 

85% of cancers exhibit hyperactive MAPK signaling, 

which is directly caused by genetic alterations of its 

upstream activators or components, including RTKs, 

Ras, and BRAF, or indirectly by those independent of 

Ras or RAF [77–79]. This hyperactivity significantly 

promotes disease progression [80]. These findings 

suggest that the MAPK pathway may play a critical role 

in the development and progression of esophageal 

tumors, and targeting this pathway may be a potential 

therapeutic strategy for cluster 0. After conducting these 

analyses, we have defined cluster 0 as FABP6+ tumor 

cells. This designation is based on the observed 

expression of FABP6 in this particular cluster. By 

identifying FABP6 as a defining marker, we can 

distinguish and categorize cluster 0 as a specific subset 

of tumor cells within the tumor microenvironment. This 

characterization provides valuable insights into the 

heterogeneity of tumor cells and may contribute to a 

deeper understanding of their functional roles and 

potential therapeutic implications. 

 

Infiltration of T cells in esophageal tumor 

 

T cells play a crucial role in the tumor 

microenvironment, and different subsets of T cells 

perform distinct functions. T cells can be divided into 

helper T cells (CD4+ T cells) and cytotoxic T cells 

(CD8+ T cells). Helper T cells can be further classified 

into subgroups such as Th1, Th2, Th17, and Treg, all of 

which play important roles in immune regulation  

[81–86]. Th1 cells, characterized by the expression of 

interferon (IFN)-γ lineage cytokine and the master 

transcription factor T-bet, participate in type 1 immune 

responses to intracellular pathogens such as myco-

bacterial species and viruses [82]. Th2 cells, 

characterized by the expression of interleukin (IL)-4/ 

IL-5/IL-13 lineage cytokines and the master 

transcription factor GAΤA3, participate in type 2 

immune responses to larger extracellular pathogens 

such as helminths [84]. Th17 cells, characterized by the 

expression of IL-17/IL-22 lineage cytokines and the 

master transcription factor RORγt, participate in type 3 

immune responses to extracellular pathogens including 

some bacteria and fungi [85]. On the other hand, Treg 

cells regulate immune responses to maintain immune 

cell homeostasis and prevent immunopathology, rather 

than exerting effector functions like Th1/Th2/Th17 cells 

[86, 87]. The function of cytotoxic T cells (CD8+ 

T cells) is to directly kill pathogen-infected and tumor 

cells [83]. By recognizing and killing target cells, CD8+ 

T cells play an important role in immune clearance [88]. 
 

To investigate the infiltration of T cells in the micro-

environment of esophageal tumors, we undertook a 

further classification of T cells into five distinct 

subgroups using unsupervised clustering techniques 

(Figure 5A). Among these subgroups, CD8+ effector 

T cells (CD8+ Teff) displayed heightened expression  

of NKG7, CD8A, and CD8B; NK T cells exhibited 

increased expression of KLRD1, GNLY, and FCER1G; 

Exhausted T cells (Exhaust T) demonstrated elevated 

expression of PDCD1 (PD-1); T regulatory cells (Treg) 

displayed enhanced expression of FOXP3 and IL2RA; 

Naive T cells (Naive T) exhibited pronounced levels of 

TCF7 and CCR7. These findings align with previous 

literature reports (Figure 5B). We conducted an analysis 

of T cell infiltration by assessing the ratio of T cells, 

which revealed a substantial augmentation in Treg 

infiltration and a notable reduction in CD8+ effector  

T cells (CD8+ Teff) within tumor tissues, in comparison 

to normal tissues (Figure 5C). 

 

Regulatory T cells (Tregs) are categorized into two 

distinct types: natural/thymic Tregs and peripherally 

induced Tregs, depending on their site of development. 

FOXP3+ natural Tregs are generated within the thymus 

and represent a functionally mature subset of T cells 

that are specialized in immune suppression (referred to 

as natural/thymic Tregs) [89–91]. The infiltration of 

Treg cells within tumors is closely associated with 

tumor development and prognosis. High levels of Treg 

cell infiltration have been correlated with tumor growth, 

invasion, and metastasis [92–94]. Studies have indicated 

that alterations in the quantity and functionality of Treg 

cells can result in immune tolerance, thereby enhancing 

the ability of tumor cells to evade immune surveillance 

[95, 96]. Consequently, the inhibition or modulation of 

Treg cell function has become an important strategy in 

cancer immunotherapy [97]. Effector T cells play a 

crucial role in tumor immunity. Specifically, effector 

T cells first recognize tumor-specific antigens (which 

can be proteins abnormally expressed by tumor cells, 

neoantigens generated by mutations, or overexpressed 

antigens) and subsequently become activated to initiate 

their cytotoxic mode [98]. Activated effector T cells 

undergo proliferation, differentiation, and functional 

regulation, releasing cytotoxic agents and pro-

inflammatory cytokines that directly induce tumor cell 

apoptosis [99–101]. However, tumor cells can employ 

various mechanisms to evade and resist the attacks of 

effector T cells. They can reduce the expression of 

tumor antigens, produce immune inhibitory molecules 

(such as PD-L1) [102], and recruit immunosuppressive 

cells (such as Treg cells) [92–94], thereby attenuating 

the cytotoxic capabilities of effector T cells. 

 

Notably, we did not detect a substantial difference in the 
infiltration of exhausted T cells (Exhaust T) between the 

two groups. This observation indicates that the 

modification in T cell composition within tumor tissues 
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predominantly entails a specific reconfiguration in the 

equilibrium between Treg and CD8+ effector T cells, 

while exhausted T cells exhibit relatively minimal 

variation (Figure 5C). The principle of PD-L1 therapy 

for cancer involves the utilization of anti-PD-L1 

antibodies or PD-1 antibodies to block the PD-1/PD-L1 

signaling pathway. This blockade aims to alleviate the 

inhibitory effect of tumors on immune cells, restore 

immune cell activity, and enhance their ability to attack 

tumors [103, 104]. This observation indicates that the 

effectiveness of PD-1 may not be prominent in the case 

of esophageal tumors since there was no substantial 

alteration in the infiltration of exhausted T cells 

(Exhaust T), which are typically associated with PD-1 

expression, between tumor and normal tissues. These 

findings suggest that other factors or mechanisms might 

exert greater influence on the immune response and 

tumor microenvironment in esophageal tumors. Further 

investigations are necessary to comprehensively 

comprehend the underlying factors that contribute to the 

immune response in this specific context. 
 

Cellular communication between T cells and 

FABP6+ tumor cells 
 

To gain further insights into the cellular interactions 

between FABP6+ tumor cells and T cells, we employed 

CellChat, an analysis tool, to investigate the 

communication patterns between FABP6+ tumor cells 

and T cells, with normal epithelial cells paired with T 

cells serving as a control group. By utilizing CellChat, 

our aim was to uncover the specific signaling pathways 

and communication networks that play a role in the 

crosstalk between these cell populations. Comparing to 

normal tissues, we observed that in tumor tissues, both 

the number and intensity of cell communication events 

 

 
 

Figure 5. The immune landscape of T cells in esophageal cancer. (A) UMAP plot showing the subtypes of T cells. (B) Dotplot 

showing marker gene expression in indicated cell types. (C) Histograms indicating the proportion of T cells subtypes in tumor tissue and 
normal tissue. (D) Histograms indicating the cellular communication strength and quantity in tumor tissue and normal tissue. (E) Cell-Chat 
reveals possible cell-to-cell interactions. 
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between different cell populations were higher (Figure 

5D). This suggests that the tumor microenvironment 

fosters increased cellular communication, potentially 

indicating more complex and active intercellular 

signaling networks within the tumor tissue. Our analysis 

revealed that both normal epithelial cells and FABP6+ 

tumor cells within the tumor tissue exhibited cellular 

interactions with various subtypes of T cells. This 

indicates that there is cellular communication between 

these cell populations, regardless of whether they 

originate from normal tissue or FABP6+ tumor cells 

within the tumor (Figure 5E).  

 

We proceeded to analyze the cellular communication 

output signal patterns of these cells. Interestingly, we 

observed a significant decrease in the CXCL-related 

pathway in FABP6+ tumor cells compared to normal 

tissues (Figure 6A). The CXCL family of cytokines 

plays a crucial role in tumor metastasis and invasion. 

Cytokines such as CXCL8, CXCL9, and CXCL10 are 

capable of attracting and activating immune cells, 

including macrophages and lymphocytes, causing their 

accumulation around the tumor. Through the release of 

substances that can dissolve tumor cells, these immune 

cells can limit the spread and dissemination of the 

tumor [105–107]. CXCL9 and CXCL10, by binding to 

their receptor CXCR, can attract and activate anti-tumor 

immune cells such as CD8+ T cells and natural killer 

(NK) cells, thereby enhancing their ability to eliminate 

tumor cells [108, 109]. Compared to FABP6+ tumor 

cells, normal tissues were found to lack the MIF-related 

pathway in our analysis of cellular communication

 

 
 

Figure 6. Cellular communication between FABBP6+ esophageal cancer cells and normal epithelium and T cells.  (A) Heatmap 

showing the cellular communication signal output patterns. (B) Heatmap showing the ligand-receptor. (C) Immunohistochemistry staining 
statistics results for normal esophageal tissues and ESCA tissues. Scale bar: 50 μm. (*p < 0.05, **p < 0.01, ***p < 0.001, ns indicates no 
statistical significance).  
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output signal patterns. This suggests that the 

communication signals involving MIF may be absent or 

downregulated in normal tissues. The differential 

presence or absence of the MIF-related pathway 

between FABP6+ tumor cells and normal tissues 

highlights a potential role of MIF signaling in the 

tumorigenic processes associated with FABP6+ tumor 

cells. In order to further explore the specific receptors 

involved in the MIF pathway in FABP6+ tumor cells, 

we conducted an analysis and found a significant 

enrichment of CD74 and CD44 receptors in the tumor 

tissue (Figure 6B). MIF, CD74, and CD44 exhibit 

interplay and mutual regulation mechanisms in tumor 

development and progression. In addition to its 

expression in immune cells, CD74 is overexpressed in 

various tumor types and can form a complex with  

MIF, thereby modulating MIF’s function [110–112]. 

The interaction between MIF and CD74 can enhance 

the stability and biological activity of MIF, influencing 

tumor development and progression [113]. CD44, a cell 

surface molecule, is widely expressed in multiple cell 

types, including tumor cells. Elevated expression of 

CD44 in tumors is associated with characteristics of 

tumor stem cells, cell migration, and infiltration 

processes [114–117]. CD44 in tumors may interact with 

MIF and CD74, participating in the regulation of related 

signaling pathways [118–121]. Specifically, MIF can 

activate downstream signaling pathways such as MAPK 

(Mitogen-Activated Protein Kinase) and PI3K 

(Phosphoinositide 3-Kinase) by binding to CD74, 

promoting tumor cell proliferation, survival, and 

metastasis [113, 121]. Furthermore, the high expression 

of CD74 can also impact the expression and function of 

CD44. The interaction between CD74 and CD44 may 

influence tumor cell behavior through the regulation of 

cell-matrix interactions, cell adhesion, migration, and 

infiltration pathways [119, 120]. Existing studies have 

found that, TGF-β expressing B lymphocytes assembled 

into clusters and engaged with T cells through 

lymphocytic recruitment signals (SELL, CXCL13, 

CCL4, CD74), while interacting with regulatory T cells 

via CD47:SIRP-γ and FOXP3 promoting Galectin-

9:CD44 pathways. This suggests that FABP6+ tumor 

cells may utilize CD74 to interact with CD44 on Treg 

cells, potentially promoting the immunosuppressive 

function of Treg cells and facilitating tumor 

development. This observation highlights the potential 

role of the CD74-CD44 interaction in modulating 

immune responses within the tumor microenvironment 

and provides insights into the mechanisms underlying 

immune evasion and tumor progression. 

 

To further explore FABP6 expression in ESCA, we 
used IHC to detect FABP6 expression at the protein 

level. IHC staining for FABP6 was negative in normal 

esophageal specimens and positive in ESCA specimens 

(Figure 6C). Thus, we hypothesized that FABP6 is an 

unfavorable prognostic biomarker in ESCA cancer. 
 

The migratory potential of ESCA cells is observed to 

be inhibited upon knockdown of FABP6 
 

To elucidate the role of FABP6 in ESCA, we initially 

selected ECA109 and KYSE30 cell lines based on 

western blotting tests to establish si-FABP6 cell lines 

(Figure 7A). Subsequently, we quantified FABP6 

protein levels using RT-PCR and protein blotting 

techniques (Figure 7B–7D). Furthermore, we conducted 

wound-healing and transwell assays to investigate the 

impact of FABP6 expression on cell migration and 

invasion in ESCA (Figure 7E, 7G, 7I, 7K). Our results 

demonstrated that FABP6 knockdown significantly 

reduced the migration potential of ECA109 and 

KYSE30 cell lines (Figure 7F, 7H, 7J, 7L). In 

conclusion, our findings suggest that FABP6 may 

expedite the development of ESCA by augmenting the 

migratory potential of cells. 

 

Visualization of co-expression of FABP6 and FOXP3  
 

In our preceding investigation, we conducted 

exploratory analysis utilizing single-cell data from 

esophageal carcinoma, revealing a regulatory influence 

of FABP6 on Treg cells, demonstrating a positive 

correlation. To validate this regulatory relationship, we 

employed immunofluorescence techniques to ascertain 

the expression dynamics between FABP6 and the 

marker gene FOXP3 in Treg cells. The observed 

upregulation of FABP6 was associated with a notable 

enhancement in Treg cell proliferation, concurrently 

promoting heightened expression levels of FOXP3 

(Figure 8). 

 

DISCUSSION 
 

The results of the study provide valuable insights into 

the tumor microenvironment in primary esophageal 

tumors, specifically focusing on the characterization of 

cell types, the heterogeneity of esophageal tumor cells, 

the role of FABP6+ tumor cells, the infiltration of 

T cells, and the cellular communication between T cells 

and FABP6+ tumor cells. 
 

Firstly, the scRNA-seq analysis identified distinct 

clusters of cells within the tumor microenvironment, 

including non-immune cells such as fibroblasts, 

myofibroblasts, endothelial cells, and epithelial cells, as 

well as immunocytes such as myeloid-derived cells,  

T cells, B cells, and plasma cells. The observation of 

substantial heterogeneity in the composition of cell 

types in normal and tumor tissues suggests the 

importance of non-immune cells in tumor growth and 
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Figure 7. Displays the experimental verification of our study. (A) showcases the expression of FABP6 in diverse esophageal cancer 

cell lines, providing evidence of FABP6’s promotion of migratory capability in ESCA cells. (B–D) present the results obtained from qPCR and 
Western blotting analyses, which demonstrated the successful silencing of FABP6 expression in the ECA-109 and KYSE30 cell lines using 
siRNA. For the ECA109 cell line, Scratch wound-healing assays (E, F) and transwell migration healing assays (G, H) were conducted to 
evaluate the migration capability influenced by FABP6, accompanied by their respective statistical representations. Similarly, for the KYSE30 
cell line, Scratch wound-healing assays (I, J) and transwell migration healing assays (K, L) were performed to assess migration ability 
regulated by FABP6, along with corresponding statistical illustrations. The scale bar for Figure 7E and 7I represent 250 μm, while Figure 7G, 
7K feature a scale bar of 50 μm. Statistical analysis revealed significant differences between the groups (*p < 0.05, ***p < 0.001). 

 

 
 

Figure 8. Immunofluorescence staining further verified the relationship between FABP6 expression and Treg infiltration. 
Immunofluorescence staining was performed on esophageal cancer specimens to examine FABP6 expression and Treg infiltration. The Treg 
lineage-specifying transcription factor FOXP3 served as a Treg marker. FABP6 (green), FOXP3 (red) and DAPI (blue) staining. Scale bar, 50 μm. 



www.aging-us.com 1654 AGING 

development. Moreover, the infiltration of immune cells 

revealed an increase in myeloid cells and a decrease in 

plasma cells within tumor tissues, indicating potential 

immune cell dysregulation in the tumor micro-

environment. 

 

The heterogeneity of esophageal tumor cells was 

explored through copyKAT analysis, which identified a 

distinct subset of tumor cells referred to as cluster 0. 

This cluster exhibited higher chromosomal variation, 

suggesting a polyploid nature of esophageal tumor cells. 

The analysis further revealed a developmental lineage 

of tumor cells, with cluster 0 being positioned as the 

starting point of cell differentiation. Notably, cluster 0 

showed higher expression of genes associated with fatty 

acid metabolism, indicating its potential role in energy 

generation for proliferation and development. This 

finding is supported by the literature, which suggests 

that reprogramming fatty acid metabolism can promote 

tumor growth. 

 

FABP6, identified as a defining marker for cluster 0, 

was found to be highly expressed in these tumor cells 

compared to normal epithelial cells. The analysis of the 

TCGA database confirmed higher expression of FABP6 

in esophageal tumor tissue, and patients with high 

FABP6 expression exhibited poorer survival. The 

enrichment of transcription factors MYC and TAF7 in 

cluster 0, along with pathway enrichment analysis, 

revealed the activation of the MAPK pathway in these 

FABP6+ tumor cells. These findings suggest the 

potential involvement of FABP6 in regulating fatty acid 

metabolism and signaling pathways related to tumor 

progression. Regarding T cell infiltration in esophageal 

tumors, the analysis identified distinct subsets of  

T cells, including CD8+ effector T cells, NK T cells, 

exhausted T cells, T regulatory cells (Tregs), and naive 

T cells. Comparing tumor and normal tissues, the 

infiltration of Tregs was significantly increased, while 

CD8+ effector T cells showed a significant decrease in 

tumor tissues. Interestingly, no significant change was 

observed in exhausted T cell infiltration, suggesting that 

the efficacy of PD-1 may not be significant in 

esophageal tumors. This indicates that other factors or 

mechanisms may play a more influential role in the 

immune response and tumor microenvironment of 

esophageal tumors. 

 

The study also investigated the cellular communication 

between FABP6+ tumor cells and T cells. The analysis 

revealed increased communication events within tumor 

tissues, indicating a more complex intercellular signaling 

network in the tumor microenvironment. Both normal 
epithelial cells and FABP6+ tumor cells exhibited 

cellular interactions with various T cell subtypes, high-

lighting the presence of communication between these 

cell populations. Differential signaling pathways, such as 

CXCL and MIF-related pathways, were observed 

between FABP6+ tumor cells and normal tissues. The 

enrichment of CD74 and CD44 receptors in the tumor 

tissue suggests the potential interaction between FABP6+ 

tumor cells and Treg cells, which may contribute to 

immunosuppression and tumor development. Some 

limitations exist, including the need for functional 

validation of the bioinformatics predictions. Future 

directions entail experimentally confirming the role of 

FABP6 in potentiating tumor growth, metastasis, and 

Treg recruitment. Animal models can elucidate the in 

vivo impact of targeting FABP6. Broader patient cohorts 

are required to validate FABP6 as a prognostic 

biomarker. Overall, this single-cell sequencing study 

sheds light on tumor heterogeneity and identifies FABP6 

as a potential driver of esophageal carcinoma progression 

and immunotherapy resistance, meriting further 

investigation as both a predictive biomarker and 

therapeutic target. 

 
CONCLUSION 
 

This study provides novel insights into the tumor 

microenvironment and heterogeneity of esophageal 

squamous cell carcinoma through comprehensive 

single-cell RNA sequencing analysis. Key findings 

demonstrate an enrichment of FABP6-expressing tumor 

cells with high fatty acid metabolism, alterations in  

T cell infiltration patterns, and increased cellular 

communication between FABP6+ tumor cells and 

Tregs. The characterization of tumor cell sub-

populations reveals a precursor cluster with high 

FABP6 expression, MAPK pathway activation, and 

poor patient survival. 
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