
www.aging-us.com 1733 AGING 

INTRODUCTION 
 

Hepatocellular carcinoma (HCC) is a common  

cancer with high recurrence and mortality rates [1]. 

Increasing research has demonstrated that oxidative 

stress exerts a pivotal effect in the advancement of 

HCC [2, 3]. Additionally, abnormal gene functioning 
resulting from DNA methylation has been linked to 

cancer initiation, progression, and drug resistance [4–

6]. Many studies have reported that oxidative stress 

can lead to abnormal hypermethylation and 

inactivation of tumor suppressor genes, contributing 

to carcinogenesis [7–9]. Therefore, methylation and 

oxidation-related markers may have potential effects 

on HCC occurrence and development. However, these 

markers lack perfection when predicting treatment 

efficacy.  
 

The methylation of DNA is a pivotal epigenetic 

inheritance adorn that influences gene expression and 
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ABSTRACT 
 

Epigenetic biomarkers help predict the prognosis of cancer patients and evaluating the clinical outcome of 
immunization therapy. In this study, we present a personalized gene methylation-CpG signature to enhance the 
accuracy of survival prediction for individuals with hepatocellular carcinoma (HCC). Utilizing RNA sequencing 
and methylation datasets from GEO as well as TCGA, we conducted single sample GSEA (ssGSEA), WGCNA, as 
well as Cox regression. Through these analyses, we identified 175 oxidative stress and immune-related genes 
along with 4 CpG loci that are associated with the prognosis of HCC. Subsequently, we constructed a prognostic 
signature for HCC utilizing these 4 CpG sites, referred to as the HCC Prognostic Signature of Methylation-CpG 
sites (HPSM). Further investigation revealed an enrichment of immune-related signal pathways in the HPSM-
low group, which demonstrated a positive correlation with better survival among HCC patients. Moreover, the 
methylation of the CpG sites in HPSM was found to be closely linked to drug sensitivity. In vitro experiments 
tentatively confirmed that promoter methylation regulated the expression of BMPER, one of the CpG sites 
within HPSM. The expression of BMPER was significantly correlated with cell death in the oxidative stress 
pathway, and overexpression of BMPER effectively inhibited HCC cell proliferation. Consequently, our findings 
suggest that HPSM is an independent predictive factor and holds promise for accurately predicting the 
prognosis of HCC patients. 
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chromosomal stability, thus contributing to tumor 

genesis and development. Current research on liver 

cancer methylation primarily focuses on differences  

in whole genome methylation of DNA profiles and  

the application of methylation markers in liver cancer 

detection. Targeted molecular therapy is currently a 

prominent area of investigation in liver cancer research 

[10, 11]. Recent studies have revealed that oncogene-

induced oxidative stress is a key driver of CpG island 

hypermethylation [9, 12]. Identifying methylation 

markers that predict immune response and prognosis 

will facilitate personalized immunotherapy for HCC 

patients [13, 14]. Despite extensive investigation into 

immune-related molecular functions and interactions, 

there is limited research on their epigenetic regulation 

[15]. Gaining insight into the regulation and control of 

immune checkpoint genes is crucial for developing 

mechanistically-driven biomarkers to predict immuno-

therapy response. In this exploration, we employed 

WGCNA, single-sample GSEA (ssGSEA) analysis,  

as well as Cox regression to identify 175 oxidative 

stress and immune-related genes and 4 CpG sites 

associated with HCC prognosis. With these four CpG 

sites, we constructed the HCC Prognostic Signature  

of Methylation-CpG sites (HPSM), and analyzed the 

molecular and immune characteristics discrepancies 

between the HPSM-low and HPSM-high groups. 

Furthermore, we performed drug sensitivity analysis 

on the CpG sites of HPSM. Additionally, we confirmed 

in vitro the relationship between methylation of one  

of the CpG sites within the BMPER gene contained  

in HPSM and its biological function in HCC gene 

expression. Constructing HPSM for HCC patients may 

uncover underlying mechanisms between methylation 

and oxidative stress and the prognosis of individuals 

affected by HCC. 

 

MATERIALS AND METHODS 
 

Data capture 

 

RNA-seq data from 424 HCC specimens,  

including 374 cancerous and 50 adjacent normal  

tissue specimens, along with clinicopathological 

information, single nucleotide variations, and 450K 

methylation data, were obtained from The Cancer 

Genome Atlas (TCGA) (http://www.cbioportal.org/). 

Additionally, the GSE52018, GSE14520, and GSE 

57956 datasets were retrieved from GEO data- 

base (https://www.ncbi.nlm.nih.gov/geo/). Patients 

with incomplete pathological data were excluded.  

The drug sensitivity file “compound activity: DTP 

NCI-60” and the drug methylation matrix file  

Illumina 450K methylation were downloaded from  

the Cell Miner datasets (https://discover.nci.nih.gov/ 

cellminer). 

Identification of oxidative stress and immune related 

genes and prognosis-related CpG sites 

 

Differentially expressed genes (DEGs) as well as 

differentially methylated genes (DMGs) among the 

adjacent normal tissues as well as HCC tissues in the 

GSE14520 and GSE57956 datasets were analyzed  

using GEO2R. TCGA-LIHC mRNA expression data 

was also analyzed using R's edge packet analysis, and 

DEGs were identified based on a threshold of p <  

0.05 and | log 2 fold change (FC) | > 1 with statistical 

significance. In total, 1203 overlapping genes were got 

from DEGs along with DMGs. The correlation of these 

genes with immune and oxidative stress pathways was 

determined using the ssGSEA package [16] in R. After 

conducting GO enrichment analysis, 175 oxidative 

stress and immune-related genes were selected based on 

a correlation coefficient > |3| and p-value < 0.05. Next, 

univariate Cox regression analysis was carried out to 

explore the link of the methylation of CpG sites within 

these genes and overall survival (OS), filtering out 

prognosis-related CpG sites using a p-value threshold of 

less than 0.05. 

 
WGCNA  

 

Co-expression networks were constructed using  

the “WGCNA” package in R with the overlapping 

genes identified from the DEGs and DMGs. Outliers 

were removed, and a similarity expression matrix  

was established by calculating the Pearson correla- 

tion coefficient between gene pairs. A soft threshold  

power of β = 4 was utilized to construct an adjacency 

matrix. The topological overlap matrix was obtained 

by calculating TOM values between pairwise genes. 

Hierarchical clustering was performed to define 

modules, and module-trait association analysis was 

established between cancer and normal phenotypes. 

 
Construction of HPSMs 

 

Data normalization and conversion of DNA methylation 

from Beta-values to M-values were carried out utilizing 

the minfi package in R 4.2.2 [17]. A total of 371 HCC 

patients from TCGA were stochastically allocated into  

a training set (N=186) as well as a testing dataset 

(N=185). Single-variable Cox regression analysis was 

utilized for the screening of prognosis-related CpG 

sites, considering those with p < 0.05 as having 

prognostic value. To analyze the combined effect of 

multiple factors, multivariate Cox regression analysis 

was carried out using the LASSO method to account for 

multicollinearity. This step further screened candidate 

CpG sites. Ultimately, four CpG sites were selected as 

prognostic predictors for HCC, and the HPSM was 

constructed. A risk scoring formula was developed: 

http://www.cbioportal.org/
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Risk score = (M-value of CpG1) × coef (CpG1) + (M-

value of CpG2) × coef (CpG2) + … + (M-value of 

CpGn) × coef (CpGn). Individuals with HCC were 

allocated into HPSM-high / HPSM-low groups using 

the median hazard threshold. Different HPSM sub-

groups’ OS was evaluated utilizing the Kaplan-Meier 

method as well as log-rank test. The performance of 

HPSM was evaluated by applying it to the testing data-

set, generating a rROC curve, and calculating the AUC. 

 

Gene set enrichment analysis (GSEA) and immune 

characteristics analysis of HPSM subgroups 

 

GSEA software and the clusterProfiler package in R 

were used to identify gene sets enriched in the HPSM-

high/HPSM-low groups. The gene sets c2.all.v2023. 

1.Hs. symbols, immunesigdb. v2023.1.Hs. symbols and 

c5.go.v7.4, symbols were utilized. A false discovery 

rate (FDR) q < 0.05 was indicated to be statistically 

significant. The tumor-infiltrating immune cell subsets, 

immune-related functions, and tumor mutation burden 

(TMB) between the HPSM subgroups were estimated 

using the ssGSEA package [18] in R 4.2.2 and the 

maftools package in R 4.2.2.  

 

Independent prognostic analysis and generation of a 

nomogram  

 

Univariate and multivariate Cox regression analyses 

were operated utilizing the survival package in  

R 4.2.2 to evaluate HPSMs’ prognostic value. Clinical 

characteristics such as age, gender, T, N, M, PD-1, 

TP53 and TMB were included as clinical-pathological 

covariates [19–21]. A nomogram incorporating T, M, 

programmed cell death 1 (PDCD1), and HPSM was 

constructed to forecast OS at 1, 2, and 3 years. The 

predictive capability together with the accuracy of  

the nomogram were evaluated using a ROC curve. 

 

Cell culture methods and 5-aza-2’-deoxycytidine 

treatment strategy 

 

PLC/PRF/5 and Hep3B cell lines were subjected to 

DMEM medium supplemented with 10% FBS (Gibco, 

USA) and cultured at the temperature of 37° C with 5% 

CO2. For the treatment of PLC/PRF/5 cells, a confirmed 

DNA methylation inhibitor, 5-aza-2′-deoxycytidine (5-

aza-dC) at 4μM, was used [22], Hep3B cells were 

treated with 5μM 5-aza-dC (Omega Bio-Tek, USA). 

The culture medium containing 5-aza-dC was replaced 

daily for three consecutive days. 

 

Bisulfite sequencing PCR (BSP) 

 

BSP was performed to examine the methylation level of 

the BMPER promoter. The BSP primer sequences used 

were as follows: forward primer – GTGTGTCGCTCC 

TTCCCAAAGGTG and reverse primer – GCCCTGG 

GGCCCTGGCCTCC. Genomic DNA from Hep3B  

and PLC/PRF/5 cells was extracted using the DNA 

extraction kit (Omega Bio Tek). Ten randomly selected 

positive clones were sequenced, and the sequencing 

results were visualized using SeqMan software.  

 

Quantitative PCR (qPCR) 

 

Total RNA was extracted utilizing TRIzol reagent 

(TIANGEN, Beijing, China). qPCR was performed to 

detect the expression of BMPER. The qPCR was 

carried out using the BioRad CFX96 system and SYBR 

Green Chemistry (BioRad, USA). The primer sequences 

for BMPER and GAPDH were as follows: BMPER 

forward -GAGCCTTGTGTTCTACGCCAGT, BMPER 

reverse - TACATTTGCTTCCTTCTGGCTGA, GAPDH 

as an internal reference forward – CATGAGAAGTA 

TGACAACAGCCT, and GAPDH reverse - AGT 

CCTTCCACGATACCAAAGT. All primer sequences 

were obtained from BGI (Hong Kong). 

 

Western blotting (WB) 

 

WB was carried out as described previously  

[4–6]. Anti-BMPER and anti-β-actin antibodies were 

purchased from ImmunoWay (USA) and Wanleibio 

(Shenyang, China). 

 

Stable expression of BMPER using lentiviral vectors 

 

LV-BMPER (BMPER overexpression) and LV-NC 

(negative control) lentiviral vectors were obtained from 

Genechem (GENECHEM, Shanghai, China). HCC cells 

were infected with the lentivirus for 72 hours, followed 

by treatment with puromycin (Biotopped, Beijing, 

China). The expression levels of BMPER were detected 

using WB assays. 

 

Cell proliferation assays 

 

Hep3B cells were seeded in 96-well plates with 5.0 × 

103 cells for each well, followed by incubation for 24, 

48, 72, and 96 hours. After that, the cells were treated 

with MTT (5 mg/ml; Sigma, Dorset, UK) for 4 hours. 

The measurement of optical density (OD) value of each 

well was performed at 490nm utilizing a microplate 

reader. 

 

Clone formation assays 

 

Paraformaldehyde and Giemsa were purchased from 
China National Medicines Corporation, Ltd. (Shanghai, 

China) and Nanjing Jiancheng Technology Company 

(Nanjing, China), respectively. LV-NC or LV-BMPER 
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cells were inoculated into a 6-well plate with 500 cells/ 

well for 10 days. Cells were fixed with 4% 

paraformaldehyde for a duration of 10 minutes, and 

then stained with 0.1% Giemsa for a duration of 10 

minutes. Cell colonies were then photographed and 

counted. These experiments were repeated three times 

independently.  

 

Statistical analysis 

 

Data were presented as mean ± standard deviation. 

The association between HPSM groups and clinico-

pathological characteristics was assessed using a  

Chi-square test. Two-group comparisons (two-tailed) 

were analyzed using Student's t-test, while one-way 

analysis of variance (ANOVA) was utilized for 

comparisons involving more than two groups. Analysis 

of Pearson correlation was performed. The predictive 

efficiency of the survival risk score was evaluated 

using the ROC curve. Univariate and multivariate Cox 

regression analyses were conducted to predict the 

variables for the prognosis and clinicopathological 

characteristics. Data analyses were carried out based 

on GraphPad Prism 8.0 software together with R 

4.0.2. P < 0.05 indicated statistically significant. 

 

Availability of data and materials 

 

The datasets of this article were generated from the 

TCGA database and the GEO database. 

 

RESULTS 
 

WGCNA of DEGs and DMGs in HCC 

 

We obtained a total of 11,045 DEGs from the 

GSE14520 dataset and 8,029 DMGs from the 

GSE57956 dataset using GEO2R. Additionally, we 

evaluated 6,219 DEGs in the TCGA-LIHC RNA- 

seq expression profile. Among these, we identified 

1,203 genes that overlapped between the DMGs and 

DEGs related to HCC (Figure 1A). To construct a  

co-expression network, we chose a soft-thresholding 

power (β) of 4, resulting in a WGCNA containing the 

overlapping genes (Figure 1B). The co-expression 

network formed 12 modules, each consisting of at least 

30 genes and represented by different colors (Figure 

1C). Notably, the brown module showed a strong 

association with the HCC phenotype (Figure 1D). 

Through gene ontology (GO) enrichment analysis, we 

found 175 genes within the brown module that were 

associated with immune and oxidative stress biological 

processes, including modulation of cellular response to 

oxidative stress, neuron death in response to oxidative 

stress, activation of immune response, and regulation of 

immune effector process (Figure 1E). 

Construction of HPSM  

 

We performed Cox regression analysis on the 

methylation-CpG sites of the 175 genes related to 

oxidative stress and immunity to determine key 

prognostic methylation-CpG sites. The results revealed 

that four methylation-CpG sites significantly affect- 

ted the prognosis of HCC patients: cg14709481, 

cg09827833, cg13030582, and cg17561435 (Figure 

2A). Subsequently, a HPSM risk score was constructed 

using the following formula: risk score = (-0.45938 × 

M-value of cg14709481) + (0.120214 × M-value of 

cg09827833) + (0.15969 × M-value of cg17561435) + 

(-0.38992 × M-value of cg13030582). Utilizing the 

median observed risk score, the training dataset (n=186) 

were divided into two groups: HPSM-high (n=93) as 

well as HPSM-low (n=93). The HPSM-high group’s OS 

was significantly lower in contrast with that of the 

HPSM-low group (Figure 2B, p<0.01). We evaluated 

the accuracy of the HPSM prediction model using the 

AUC, which yielded a value of 0.704 for OS (Figure 

2E). The testing dataset (n=185) were divided into 

HPSM-high (n=98) as well as HPSM-low (n=87) 

groups. Significant differences in OS rates were 

observed in the HPSM-high and HPSM-low groups 

(Figure 2C, p<0.05), with an AUC value of 0.638 

(Figure 2F). The GSE52018 dataset was used as 

exterior data to validate the HPSM model’s accuracy 

and reliability, and the survival curve and ROC curve 

yielded consistent conclusions (Figure 2D, 2G).  

 
Molecular characteristics and immunological 

characterization of the HPSM subgroups 

 
To explore key signaling pathways in the HPSM 

subgroups, we performed GSEA on gene sets enriched 

in the HPSM-high/HPSM-low groups. Results showed 

that the HPSM-high group was enriched in cell cycle, 

peroxisome, as well as spliceosome pathways (Figure 

3A). On the other hand, the HPSM-low group showed 

enrichment in metabolic pathways such as drug 

metabolism cytochrome, threonine metabolism, P450, 

glycine, serine, porphyrins and chlorophyll metabolism, 

and retinol metabolism (Figure 3B). Moreover, gene 

sets associated with good survival of HCC patients  

were enriched in the HPSM-low group (Figure 3C, 3D). 

By conducting GSEA focused on immune pathways,  

we found that 52 pathways related with immune were 

enriched among the HPSM-low group but not among 

the HPSM-high group (Figure 3E). Additionally, using 

ssGSEA, we observed higher levels of tumor-infiltrating 

immune cell subsets along with immune-associated 

functions among HPSM-low group in contrast with the 

HPSM-high group (Figure 3F). Furthermore, the 25 

genes with the highest mutation rates were identified 

among the HPSM subgroup (Figure 3G, 3H). TP53, 
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TTN, CTNNB1, and MUC16 exhibited mutation  

rates exceeding 13% in both groups. Notably, TP53 

mutations showed the largest difference in mutations 

between the HPSM subgroups, with a higher prevalence 

in HPSM-high samples (35%) compared to HPSM-low 

samples (19%). 

Prognostic analysis of HPSM and nomogram 

development 

 
Univariate and multivariate Cox regression analyses 

was operated to evaluate the association between HPSM 

hazard scoring, M staging, T staging, and the prognosis 

 

 
 

Figure 1. WGCNA of DMGs and DEGs in HCC. (A) Identification of overlapping genes between DMGs and DEGs. (B) Analysis of the scale-

free fit index for different soft threshold powers (β). (C) Clustering dendrogram revealing the presence of 12 modules. (D) Correlation matrix 
showing the relationships between these modules in normal and cancer tissues: red indicates positive correlations, while green represents 
negative correlations. (E) GO enrichment analysis of 175 genes associated with oxidative stress and immunity. 
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of HCC patients (Figure 4A). ROC curve’s AUC was 

calculated as 0.674 for the HPSM hazard scoring 

(Figure 4B). Based on these results, we developed a 

nomogram that demonstrated a higher contribution to 

the model with increasing HPSM risk scores, and 

lower 1-, 2-, and 3-year survival rates (Figure 4C). The 

AUCs were found to be 0.721, 0.700, and 0.753 for 1-, 

2-, and 3-year OS of HCC patients, respectively 

(Figure 4D). Additionally, the clinicopathological 

characteristics of the patients indicated significant 

correlations between the HPSM groups and multi-

nodularity, Cancer of the Liver Italian Program (CLIP) 

staging, Alpha-fetoprotein (APF), and survival times 

of HCC patients (Table 1). Therefore, the HPSM risk 

score may act as an important prognostic indicator for 

HCC individuals.  

 

Drug sensitivity analysis 

 

A drug sensitivity experiment was conducted to  

study the relationship between CpG sites’ methylation 

levels in the HPSM and drug sensitivity. It was found 

that the methylation of cg13030582 was in a negative 

correlation with sensitivity to nelarabine, carmustine,

 

 
 

Figure 2. Prognostic analysis of the HPSM subgroups. (A) Forest plot displaying the hazard ratios (HRs) for 4 CpGs and OS. (B) Kaplan-
Meier survival curves for OS comparing HPSM-high group with HPSM-low group within the TCGA training dataset. (C) Kaplan-Meier survival 
curves for OS comparing HPSM-high group with HPSM-low group within the TCGA testing dataset. (D) Kaplan-Meier survival curves for OS 
comparing HPSM-high group with HPSM-low groups within the GSE52018 dataset. (E) ROC curves to predict the OS between HPSM groups 
within the TCGA training dataset. (F) ROC curves for OS prediction between HPSM groups within the TCGA testing dataset. (G) ROC curves 
for OS prediction between HPSM groups within the GSE52018 dataset. 
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bendamustine, melphalan, arsenic trioxide, ifosfamide, 

etoposide, epirubicin, carboplatin, chlorambucil, and 

uracil mustard. Methylation levels of cg09827833 were 

also negatively correlated with sensitivity to isotretinoin, 

calusterone, fluphenazine, and arsenic trioxide. Further-

more, the methylation level of cg14709481 showed a 

negative correlation with sensitivity to vemurafenib 

(Figure 5). These results suggest that the methylation 

levels of these specific CpG sites in HPSM may be 

associated with drug sensitivity, providing a clue for 

further investigation into individualized therapy for 

HCC patients. 

Regulation of BMPER expression by promoter 

methylation  

 

Among the CpG sites in HPSM, cg17561435 exhibited 

a greater methylation level among the HPSM-high 

group compared to HPSM-low group (Figure 6A). The 

5' end of the BMPER gene contains a CpG island 

spanning 1844 bp and consisting of 153 CpG sites. 

Methylation of the cg17561435 site was found to be 

negatively correlated with BMPER mRNA expression 

(Figure 6B). To confirm this regulation, the 19 CpG 

sites’ methylation level among CpG islands using BSP 

 

 
 

Figure 3. Molecular and immune function analysis among HPSM groups. (A) Enriched gene sets among the HPSM-high group.  
(B) Enriched gene sets among the HPSM-low group. (C, D) GSEA of HPSM subgroups in survival-related gene sets. (E) GSEA enrichment 
analysis of HPSM subgroups in immune-related gene sets. (F) Scores of 29 tumor-infiltrating immune cell subsets and immune-related 
functions. (G) TMB analysis in HPSM-low groups. (H) TMB analysis in HPSM-high groups. 
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was analyzed. The results demonstrated a significant 

reduction in BMPER methylation levels after treatment 

with 5-aza-dC compared to controls (Figure 6C). 

Additionally, both qPCR and WB showed increased 

mRNA / protein levels of BMPER in both cell lines 

following 5-aza-dC therapy (p < 0.05) (Figure 6D, 6E). 

These findings indicated that BMPER expression could 

be regulated by promoter methylation. 

 

 
 

Figure 4. Prognostic analysis of HPSM and nomogram development. (A) Univariate and multivariate Cox regression analyses of 

HPSM risk score as well as prognostic parameters. (B) ROC curves of HPSM risk score and prognostic parameters. (C) Prognostic nomogram 
predicting 1-, 2-, and 3-year OS of HCC individuals. (D) ROC curves of the prognostic nomogram. 
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Table 1. Relationship of HPSM risk score with clinicopathological 
characteristics of HCC. 

Clinicopathological 

parameters 
n 

HPSM groups 
P 

HPSM-high HPSM-low 

gender 

Male 39 18 21 0.581 

Female 2 0 2 

Age 

≤50 26 13 13 0.300 

>50 15 5 10 

ALT 

Low 22 8 14 0.200 

High 19 10 9 

Main tumor size 

≤3 cm 21 7 14 0.162 

>3 cm 20 11 9 

Multinodular 

No 29 10 19 0.018 

Yes 12 9 3 

Cirrhosis 

No 5 1 4 0.504 

Yes 36 17 19 

TNM staging 

I 15 4 11 0.172 

III+II 18 9 9 

BCLC staging 

0+A 22 8 14 0.620 

B+C 11 5 6 

CLIP staging 

0+1+2 28 8 20 0.012 

3+4+5 5 5 0 

AFP 

≤300 ng/ml 21 4 17 0.001 

>300 ng/ml 20 14 6 

survival status 

Alive 23 7 16 0.05 

Dead 18 11 7 

survival times 

≤6 months 8 8 0 0.002 

>6 months 33 10 23 

recurrence status 

False 13 3 10 0.085 

True 27 14 13 

recurrence times 

≤36 months 23 12 11 0.150 

>36 months 17 5 12 

 

Inhibition of HCC cell proliferation by BMPER 

 

To investigate BMPER’s biological function in HCC, 

GSEA enrichment analysis was conducted. We found 

that cell death in oxidative stress biological process  

was enriched in the group with low BMPER expression 

levels (Figure 7A). To further validate these results,  

we established a BMPER overexpression model in  

the Hep3B cell line (Figure 7B). As expected, MTT 

experiments revealed a significant reduction in cell 

proliferation among the LV-BMPER group in contrast 

with LV-NC group (p < 0.05) (Figure 7C). Moreover, 
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clone formation assays demonstrated a significant 

decrease in clone-forming ability in the LV-BMPER 

group (Figure 7D). These findings confirmed that 

BMPER overexpression inhibited the proliferation of 

HCC cells. 
 

DISCUSSION 
 

Algorithms that integrate DNA methylation prognostic 

markers, oxidative stress, and immune function 

indicators have shown improved prediction of markers 

for the prognosis as well as therapeutic targets [23, 24]. 

In the present study, 175 genes related to oxidative 

stress and immunity were identified. Subsequently, we 

con-structed the HPSM consisting of four methylation 

sites: cg14709481 of HK3, cg09827833 of TEK, 

cg13030582 of MFAP4, and cg17561435 of BMPER. 

The TCGA training and testing datasets confirmed a 

poor prognosis among HCC patients showing a high 

HPSM risk score, and this finding was also validated in 

external GEO cohorts. HK3, an isomer of hexokinase 

responsible for the initial step of glucose metabolism 

and cell protection against oxidant-induced death, 

particularly in immune cells [25–27]. Studies have 

shown that HK3 is associated with immune infiltration; 

besides it can predict the response to immunotherapy 

[28]. In our HPSM model, the hypomethylation of 

cg14709481 in HK3 was significantly associated with a 

higher HPSM risk score, suggesting that cg14709481 

hypomethylation may serve as a poor prognostic factor 

for HCC patients. TEK, a receptor tyrosine kinase 

expressed in vascular endothelial cells, exerts its effect 

on endoplasmic reticulum stress-induced cell death 

[29]. Monocytes expressing TIE2 not only regulate 

HCC angiogenesis but also suppress the activation of T 

cells and promote the expansion of regulatory T cells 

[30–32]. Consistent with our findings, MFAP4 has been 

proposed as a molecular marker for HCC diagnosis and 

prognosis [33]. BMPER binds to BMP and regulates 

TGF-β/BMP signaling. Previous studies have linked 

BMPER to lung cancer and ovarian cancer [34, 35], and 

it has been shown that BMPER expression is controlled  

by methylation at the transcriptional level. Treatment  

with 5-aza-dC can reduce BMPER expression in 

fibroblasts and mitigate invasion and migration of 

idiopathic pulmonary fibrosis lung fibroblasts [35]. In 

 

 
 

Figure 5. Relationship between methylation levels of CpG sites in the HPSM and FDA drug sensitivity. 
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our study, we observed a positive correlation between 

hypermethylation of cg17561435 in BMPER and the 

HPSM risk score, suggesting that BMPER hyper-

methylation may be closely associated with poor 

prognosis in HCC. 

 

Clinical trials have demonstrated that the absence of 

clinical benefits from cell cycle passage correlates 

primarily with TP53 mutations [36]. TP53 mutation is 

associated with more invasive diseases and poorer 

outcomes [37, 38] in cancer patients, particularly those 

with HCC [39, 40], TP53 can affect the cell cycle 

pathway through p53/TGF-β signaling [41]. Interestingly, 

we found enrichment of the cell cycle pathway in the 

HPSM-high group, where TP53 mutations were more 

prevalent and the prognosis was worse compared to  

the HPSM-low group. These results suggest that TP53 

mutations may influence the cell cycle pathway and 

contribute to a poorer prognosis in the HPSM-high 

group.  

 

Two gene sets related to good prognosis in HCC 

patients were enriched in the HPSM-low group, 

indicating better OS for HPSM-low group in contrast 

with HPSM-high group, consistent with prognostic 

prediction on the basis of the HPSM risk score.  

Higher levels of tumor-infiltrating immune cells have  

been demonstrated to be generally linked to a better 

prognosis [42–44]. Neutrophils, natural killer (NK) 

cells, plasma cytotoxic dendritic cells (pCDs), and type 

I and II interferon (IFN) reactions were obviously 

higher among the HPSM-low group in contrast with 

HPSM-high group. Studies have shown that type II 

immune interferons (IFNs) are in a close association 

 

 

 

Figure 6. Regulation of BMPER expression by promoter methylation. (A) Methylation level of cg17561435 in different HPSM 

subgroups. (B) Negative correlation between BMPER mRNA expression and cg17561453 methylation levels. (C) Prediction of CpG islands in 
the BMPER promoter using the MethPrimer website, and detection of BMPER promoter methylation status using bisulfite sequencing PCR 
(BSP). (D) Quantification of BMPER mRNA expression levels after 5-aza-dC treatment using qPCR (***p < 0.01). (E) Detection of BMPER 
protein expression levels after 5-aza-dC treatment using western blotting. 
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with favorable clinical outcomes within various cancer 

types [45–47]. which is consistent with our findings. 

Furthermore, we observed enrichment of the amino  

acid metabolism pathway among the HPSM-low group. 

A recent study reported that amino acid metabolism 

enhances the immune response against tumors [48]. 

Serine, in particular, is an essential nutrient for T cell 

responses and a critical mediator of the anti-tumor 

immune response [49–51]. Taken together, our results 

suggest that the HPSM-low group elicits a more robust 

tumor immune response than the HPSM-high group, 

leading to better OS. 

 

Cox regression analyses revealed that HPSM risk 

scoring, M staging, and T staging are independent 

prognostic factors for HCC. HPSM risk score’s AUC 

(0.674) was higher compared to that of T stage (0.665) 

and M stage (0.483), indicating that the HPSM risk 

score is a more accurate prognostic factor. Thus, we 

developed a prognostic nomogram model by integrating 

traditional clinical features with the HPSM risk score. 

This score significantly contributes to the predictive 

ability of the entire nomogram, showing robust perfor-

mance (AUC≥0.7). Our study suggests that the HPSM 

risk score is a valuable independent prognostic 

indicator. Patients with multinodular HCC accompanied 

by vascular invasion and microvascular invasion have 

more invasive tumors and a higher rate of recurrence, 

leading to poor prognosis [52]. The CLIP staging 

system provides more accurate prognostic information 

than the Child-Pugh and Okuda classifications, with 

higher scores indicating worse prognosis in HCC 

patients [53–55]. Numerous studies have established a 

strong association between higher levels of AFP in the 

blood and worse prognosis and increased risk of 

recurrence in HCC patients [56–58]. In this study, we 

found that the HPSM risk score correlates with these 

clinicopathological characteristics and the survival time 

of HCC patients, highlighting its significant role in the 

course of HCC. The HPSM risk score may be an 

important biomarker for estimating the risk of HCC 

recurrence, progression, further facilitating the selection 

of treatment options.  

 

The CpG sites of HPSM are closely related to FDA-

approved drugs. Previous studies have demonstrated 

that isotretinoin, fluphenazine, and arsenic trioxide 

induce oxidative stress as part of disease treatment 

 

 
 

Figure 7. Inhibition of HCC cell proliferation by BMPER overexpression. (A) GO biological process pathway enrichment analysis using 
GSEA. (B) Confirmation of BMPER overexpression in Hep3B cell line using western blotting. (C) Effects of BMPER overexpression on cell 
proliferation assessed by MTT assays. (D) Clonal formation assays comparing the LV-NC and LV-BMPER groups. 
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[59–62]. Interestingly, the methylation level of 

cg09827833is negatively correlated with isotretinoin, 

arsenic trioxide, and fluphenazine. Methylation of 

cg14709481 is negatively associated with the sensi-

tivity of the BRAF inhibitor vemurafenib. Several 

studies have highlighted the immunomodulatory 

effects of anti-tumor drugs [63]. BRAF inhibitors,  

for example, increase levels of immunostimulatory 

cytokines, reduce immunosuppressive cytokines, and 

decrease T cell infiltration and activity in tumors 

through interference with the MAPK signaling path-

way [64]. Combining BRAF inhibitors with immune 

checkpoint inhibitors may lead to better tumor 

suppression. The methylation level of cg13030582 is 

negatively correlated with immunomodulatory inhi-

bitors such as isotretinoin, DNA synthesis inhibitors 

(etoposide, epirubicin, carbolatin), and DNA alkylating 

agent carmustine. Isotretinoin induces apoptosis of 

liver cancer cells by reducing the activities of 

superoxide dismutase (SOD), peroxidase (POD), and 

glutathione (G-SH) [65]. Etoposide mediates reactive 

oxygen species (ROS) production and induces 

necrosis in HK-2 cells through a p53-mediated anti-

apoptotic pathway [66]. Carbolatin promotes LSCC 

cell apoptosis through the induction of oxidative 

stress and ROS production [67]. Carmustine induces 

ROS production and promotes neurotoxicity [68]. The 

combination of tumor immunotherapy and oxidative 

stress represents a potentially effective strategy for 

tumor treatment, enhancing antitumor activity mediated 

by immune cells and inducing oxidative stress in 

tumor cells. HPSM may serve as a potential target  

for oxidative stress and immunomodulators or an 

effective marker for predicting drug sensitivity. 

 

In our study, the methylation level of cg17561435  

was demonstrated to be positively linked to the HPSM 

risk score. Furthermore, we confirmed that BMPER 

expression was associated with cell death in response to 

oxidative stress, and BMPER overexpression inhibited 

the proliferation of HCC cells. Whether the role of 

BMPER in inhibiting tumor cell proliferation is caused 

by oxidative stress needs further verification. These 

results provided evidence for the crucial function of 

BMPER in HCC progression, necessitating further 

investigation. 

 

CONCLUSIONS 
 
In conclusion, the HPSM, constructed based on  

four CpG sites, serves as a valuable independent 

prognostic factor. Additionally, the HPSM risk score 

could predict the efficacy of immunotherapy in HCC 
patients. Moreover, the CpG sites were associated with 

drug sensitivity, providing guidance for individualized 

treatment approaches for HCC. 
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