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ABSTRACT 
 

Background: Biomarkers and pathways associated with renal ischemia reperfusion injury (IRI) had not been 
well unveiled. This study was intended to investigate and summarize the regulatory networks for related hub 
genes. Besides, the immunological micro-environment features were evaluated and the correlations between 
immune cells and hub genes were also explored.  
Methods: GSE98622 containing mouse samples with multiple IRI stages and controls was collected from the 
GEO database. Differentially expressed genes (DEGs) were recognized by the R package limma, and the GO and 
KEGG analyses were conducted by DAVID. Gene set variation analysis (GSVA) and weighted gene coexpression 
network analysis (WGCNA) had been implemented to uncover changed pathways and gene modules related to 
IRI. Besides the known pathways such as apoptosis pathway, metabolic pathway, and cell cycle pathways, some 
novel pathways were also discovered to be critical in IRI. A series of novel genes associated with IRI was also 
dug out. An IRI mouse model was constructed to validate the results.  
Results: The well-known IRI marker genes (Kim1 and Lcn2) and novel hub genes (Hbegf, Serpine2, Apbb1ip, 
Trip13, Atf3, and Ncaph) had been proved by the quantitative real-time polymerase chain reaction (qRT-PCR). 
Thereafter, miRNAs targeted to the dysregulated genes were predicted and the miRNA-target network was 
constructed. Furthermore, the immune infiltration for these samples was predicted and the results showed that 
macrophages infiltrated to the injured kidney to affect the tissue repair or fibrosis. Hub genes were significantly 
positively or negatively correlated with the macrophage abundance indicating they played a crucial role in 
macrophage infiltration.  
Conclusions: Consequently, the pathways, hub genes, miRNAs, and the immune microenvironment may explain 
the mechanism of IRI and might be the potential targets for IRI treatments. 
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INTRODUCTION 
 

Renal ischemia reperfusion injury (IRI) referred to the 

condition in which blood flow was interrupted and its 

recovery led to increased renal insufficiency and tissue 

damage. It was also the most common cause of acute 

kidney injury (AKI) resulting in death in patients with 

renal disease, with high morbidity and mortality [1]. As 

a complex disease, numerous changes in molecular 

characteristics happened during IRI. At present, the 

specific regulatory mechanism of renal IRI is not 

completely clear, and effective methods to prevent or 

treat renal IRI are rare [2]. Interpreting the concrete 

mechanisms of IRI may pave the way for an 

individualized therapeutic approach. Whole genomic 

analysis lays the foundation for investigating complex 

diseases with high efficiency. A host of studies emerged 

focusing on prognostic or therapeutic markers through 

differential expression analysis. Besides, gene 

correlation networks have been widely constructed to 

extensively understand the mechanism underlying the 

high-throughput sequencing data [3]. Weighted gene 

coexpression network analysis (WGCNA) was a 

common gene correlation analysis method [4], which 

supplied complete interpretation into the detail of 

molecular interactions [5–8]. In this study, RNA 

sequencing datasets referred to kidney IRI were 

collected from the Gene Expression Omnibus (GEO) 

database. Furthermore, differentially expressed genes 

(DEGs) were dug out by comparing the samples in 

each time point after IRI and controls (seven 

comparison pairs). Then, seven lists of DEGs were 

employed to identify gene correlation modules. The 

gene functional enrichment and the module trait 

association analysis revealed that the four modules 

played pivotal roles in each IRI stage and hub genes 

were also identified. It played important roles for 

immune cells and was reported to be crucial in kidney 

injury [9–12]. So immune cell abundances were 

further evaluated and the correlation between immune 

cells and hub genes was also calculated. Finally, the 

hub genes were validated by quantitative real-time 

polymerase chain reaction (qRT-PCR), showing 

potential prognostic and therapeutic targets in renal 

IRI. The workflow diagram of the present study was 

shown in Figure 1. 

 

 
 

Figure 1. Workflow chart of this study. 
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MATERIALS AND METHODS 
 

Data collection 

 

The IRI RNA-Seq data and the corresponding clinical 

data were collected from the GEO database with 

accession numbers GSE98622, GSE182793, and 

GSE139107 (Table 1). The analyses were based on 

GSE98622 which included six controls and 21 disease 

samples with seven different IRI stages. The datasets of 

GSE182793 and GSE139107 were set as external 

validations. GSE182793 included four controls and 

eight disease samples of IRI after 24 hours. While 

GES139107 was a single-cell RNA-seq dataset 

including control and five IRI stages with three 

replicates in each group. Then GSE139107 was 

integrated into the pseudo-bulk RNA-seq data using the 

R package Seurat [13] for the following analysis.  

 

Screening of DEGs 
 

Limma package [14] was performed to identify DEGs for 

the IRI stage vs. the control group for GSE98622 after 

transforming the FPKM to TPM. DEseq2 [15] was used 

to identify DEGs for GSE182793 with count data as 

input. Genes with log2|fold change| > 1, and adjusted p-

value < 0.01 from multiple testing for p-values by the 

Benjamini–Hochberg adjustment method were identified 

to be significantly differentially expressed [16]. 

 

Weighted gene coexpression network construction 

 

WGCNA was used to identify clusters of genes with 

similar expression profiles using Pearson’s correlation 

coefficients. A predefined β value was calculated and 

adopted to build the network topological overlap 

measure matrix (TOM) which was used to measure the 

connectivity of the pair of genes [17]. And then 

hierarchical clustering of average linkage was applied to 

cut the gene coexpression network to coexpression 

modules on the basis of the network topology overlap 

[18]. The IRI stage representative modules were 

screened out using the relationships between the 

modules and external clinical traits (Spearman 

correlation between the eigengene and sample stages) 

and the correlations between gene significance (GS) and 

module membership (MM) values. Stage specific 

modules were filtered by correlation > 0.65 and p-value 

< 0.01 between the module eigengene (ME) and the IRI 

stages. Hub genes were defined by GS > 0.2 and MM > 

0.9 in a specific module. 

 

Functional enrichment analysis for DEGs 

 

The Database for Annotation, Visualization, and 

Integrated Discovery (DAVID) web tool was utilised to 

carry out the GO term and KEGG pathway enrichment 

analysis [19]. A BH adjusted p-value < 0.05 was 

considered significant.  

 

Gene set variation analysis  

 

GSVA was a nonparametric, unsupervised method used 

to calculate the enrichment score of a specific gene set 

in each sample [20]. To study the biological variation 

between each IRI stage and the control group, we 

analyzed the differential expression of dysregulated 

pathways using the R package GSVA (v1.40.1) [20]. 

Hallmark pathways for the mouse in the MSigDB 

database was used in this analysis (https://www. 

gseamsigdb.org/gsea/msigdb) [21, 22]. 

 

Immune cell infiltration estimation 

 

The immune cell infiltration for GSE98622 was 

estimated by ImmunCellAI-mouse [23] which can 

predict 36 immune cell types. There were three layers of 

immune cells and layer one was used in the present 

study including seven types of cells. That was B cell, 

NK cell, T cell, Macrophage, Dendritic cell, Monocyte, 

and Granulocyte.  

 

Single cell RNA-seq analysis 

 

The R package “Seurat” [13] was utilized for scRNA-

seq data preprocessing and analysis. All the samples 

were merged into an integrated dataset using R 

package harmony [24, 25]. Principal Component 

Analysis (PCA) on the highly variable genes were 

performed, utilizing the top 30 principal components 

for subsequent analyses. Cell type annotation was 

obtained from Kirita et al. [26]. 

 

Experimental animals  

 

Twelve 7-week-old male C57BL/6 mice were 

subdivided into the sham group (S group, n=3), renal 

I/R groups of 4 hours (group I/R 4h, n=3), renal I/R 

groups of 24 hours (group I/R 24h, n=3) and renal I/R 

groups of 7 days (group I/R 7d, n=3). All these 

experiments were guided by the requirements of the 

Lanzhou University Animal Care and Use Committee. 

 

Renal I/R model 

 

Pentobarbital sodium (70mg/kg) was intraperitoneally 

injected as an anesthetic. No occlusion of the renal 

pedicles was chosen in the S group. Renal IRI followed 

by reperfusion under body temperature (37° C) was 
executed in other groups. Corresponding mice tissue 

samples were harvested at 4h, 24h, and 7d after 

reperfusion from each group.  

https://www.gseamsigdb.org/gsea/msigdb
https://www.gseamsigdb.org/gsea/msigdb
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Table 1. Primers used in this study. 

Gene symbol Primer sequence 

Kim1 
Forward: TACGGCTCTCTCCTAACTGGT 

Reverse: ACCACCCCCTTTACTTCCAC 

Lcn2 
Forward: ACGGACTACAACCAGTTCGC 

Reverse: CCACACTCACCACCCATTCA 

Hbegf 
Forward: ACGCTGGGTCCTATTTGCTC 

Reverse: CGGAACACGAACGGTAGACA 

Atf3 
Forward:GGAAGAGCTGAGATTCGCCA 

Reverse: CTCATCTTCTTCAGGGGCCG 

Apbb1ip 
Forward: GCCAACCACTCATCTCTGCT 

Reverse: CCATCTTGACTGCTGGGAGG 

Ncaph 
Forward: TCATCTGGCCTCCCCTAACA 

Reverse: GCATCCACACGGACAGCATA 

Serpine2 
Forward: CACGCAAAGCCAAGACGA 

Reverse:GTCACTTAACTGCTGCTATGAACC 

Trip13 
Forward:GCATCTATGTAAAGCCCCATCC 

Reverse:TCTAGCCTGAGCAAAGAATCCA 

GAPDH 
Forward:TGTGTCCGTCGTGGATCTGA 

Reverse:TTGCTGTTGAAGTCGCAGGAG 

 

Immunohistochemistry and qRT-PCR 

 

10% formalin was used for renal tissue fixation for 24 h 

and then the tissue samples were embedded in paraffin. 

All samples were stained with hemotoxylin-eosin and 

compared histological changes under the light 

microscope. TRIzol reagent (Thermo Fisher Scientific, 

USA) and miRNeasy Mini Kit (Qiagen, Shanghai, 

China) following the instructions were used for RNA 

extraction. Kim1, Lcn2, Hbegf, Serpine2, Apbb1ip, 

Trip13, Atf3, and Ncaph were tested through reverse 

transcription and amplification (Table 1). 

 

Statistical analysis 

 

R 4.1.2 was implemented to analyze the datasets. Data 

from different groups were compared using the 

Wilcoxon test or Student’s t test. The p-value < 0.05 

was considered statistically significant unless otherwise 

specified. 

 

RESULTS 
 

Data description 

 

Three datasets related to IRI in mouse kidneys from 

GEO database were analyzed (Table 2). The data from 

GSE98622 for mouse kidneys were interpreted by 

analyzing its distribution in a PCA plot, which located 

each sample in different dimensions. Samples within the 

IRI stages were in close proximity (Figure 2A). 

Similarly, the hierarchical clustering analysis showed 

that the samples originated from the same group were 

clustered together (Figure 2B). According to the above 

two figures, we divided the samples into four 

groups/IRI stages including a group of controls, a group 

of hours with samples after IRI for 2 and 4 hours, a 

group of days with samples after IRI for one day, two 

days and three days, and a group of weeks including 

samples after IRI for one week and two weeks.  

 

Identification of DEGs between IRI groups and 

controls 

 

The DEGs were identified between samples in each 

time point and control. The upset plot showed that the 

number of DEGs increased with the injury progress. 

Considerable DEGs emerged in 24h after injury (Figure 

2C). There was a significant correlation between DEGs 

in GSE98622 and GSE182793 in 24h after injury 

(Figure 2D). The two clinically recognized tubular 

injury markers, Kim1 (Havcr1) and Lcn2 were also 

significantly upregulated after one day of injury (Figure 

2E). qRT-PCR results also showed significant 

upregulation of these two genes early at 4 hours after 

injury (Figure 2F). Venn diagrams were plotted for each 

IRI group. In the group of hours including DEGs after 

two hours and four hours of injury, 66 common genes 

were identified and they were involved in the apoptosis 

process (Figure 2G). In the group of days with DEGs 

from one day, two days, and three days after IRI, 634 

common DEGs were identified which were engaged in 

metabolic pathways (Figure 2H). A total of 941 DEGs 
in the group of weeks including DEGs in one week and 

two weeks after IRI were associated with immune 

responses (Figure 2I). 
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Table 2. The summary of the datasets collected from the GEO database.  

Reference GEO series Data type Control IRI 

Liu, Kumar et al. 2017 [24] GSE98622 RNA-seq 6 21 

Verney, Legouis et al. 2021 [25] GSE182793 RNA-seq 4 8 

Kirita, Wu et al. 2020 [26] GSE139107 scRNA-seq 4 20 

 

Gene set variation analysis for IRI groups and 

controls 

 

GSVA analysis was performed to investigate the 

activated and suppressed pathways in IRI groups. The 

results showed that a series of pathways were changed 

early in the hours after IRI (Figure 3A). In detail, the 

TNFA signaling via the NFKB pathway, p53 pathway, 

and apoptosis pathway was activated in the group of 

hours (Figure 3B, 3E). Then the pathways related to the 

cell cycle were upregulated in the group of days (Figure 

3C, 3E). In the group of weeks, functions of epithelial 

mesenchymal transition were activated (Figure 3D, 3E). 

The oxidative phosphorylation and the fatty acid 

metabolism pathways were suppressed during all the 

IRI stages (Figure 3E). Besides those well-known IRI 

associated pathways, some novel pathways were also 

significantly altered such as estrogen response 

early/late, hedgehog signaling, and cholesterol 

homeostasis (Figure 3A). Similar results were found in 

GSE182793 and GSE139107 using GSVA analysis 

(Supplementary Figure 1).  

 

Weighted gene coexpression network analysis  

 

Different modules connected with different IRI stages 

were identified by WGCNA using the 3,691 union 

DEGs from the above DE analysis. The soft threshold 

power of the network topology was analyzed with a β 

value from 1 to 20. The scale independence was 

calculated with a threshold of 17 (Figure 4A). Next, the 

β = 17 was selected to generate a tree of hierarchical 

clustering genes (Figure 4B). Seven modules with 

different gene numbers were identified (Figure 4B and 

Table 2). Then the correlation analysis between module 

eigengenes and the external traits such as different IRI 

groups was performed. Module blue, module white, 

module yellowgreen, and module bisque4 were 

calculated with the most significant correlation to group 

control, hours, days, and weeks respectively (Figure 

4C). The association was demonstrated between the 

blue, white, yellowgreen, bisque4, and the genetic 

significance (Figure 4D). And the bar plot of eigengene 

in each module was shown in Figure 4E. Gene 

functional enrichment was used for the coexpression 
modules (Table 3). Blue module genes participated in 

metabolic related pathways such as lipid metabolic 

process, fatty acid metabolism, and amino acid 

degradation (Figure 4F and Table 3). White module 

genes were significantly related to apoptosis (Figure 4F 

and Table 3). Genes in module yellowgreen were cell 

cycle related (Figure 4F and Table 3). And immune 

response associated functions were enriched in module 

bisque4 (Figure 4F and Table 3). Then the coexpression 

networks of the four major modules were constructed 

(Figure 5A). And the top five hub genes in each module 

were also listed in Table 3. 

 

miRNAs prediction for the coexpression modules 

 

The miRNAs targeting the top 20 hub genes in each 

module were predicted by the miRNet database. The 

results showed that mmu-mir-155-5p, mmu-mir-1a-3p, 

mmu-mir-124-3p, and mmu-mir-223-3p played important 

roles in regulating these hub genes (Figure 5B). 

 

Immune infiltration evaluation for IRI 

 

The immune cell abundance in IRI samples and controls 

was evaluated (Figure 6A). And there were significant 

differences for the immune cells between group IRI and 

the control (Figure 6B). B cells and NK cells decreased 

in the IRI group, while macrophage increased across the 

IRI stages (Figure 6C–6E). Then the single cell dataset 

of GSE139107 also showed that the macrophage 

increased after IRI and kept the increase to 6 weeks 

after IRI (Figure 6F). 

 

The correlation between hub genes and macrophage 

infiltration 

 

Pearson correlation coefficients were calculated 

between each immune cell and each hub gene under 

control or IRI condition. The results showed significant 

correlations between immune cells and hub genes in 

IRI, while no or less correlation in the control group 

(Figure 7A). Hub genes of Atf3 and Hbegf negatively 

correlated with macrophage while Trip13 and Ncaph 

positively correlated with macrophage significantly in 

IRI (Figure 7B).  

 

Immunohistochemistry for IRI mouse model and 

qRT-PCR for hub genes  

 

In order to evaluate the expression level of hub genes, 

the IRI mouse model was constructed (Figure 8A). 
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Figure 2. Differential analysis for GESE98622. (A) PCA plot of GSE98622. (B) Sample clustering of GSE98622. (C) The upset plot of DEGs 

was identified at each time point. (D) The scatter plot of DEGs in GSE98622 and GSE182793 after IRI 24h. (E) The dotplot of two AKI marker 
genes. (F) The qRT-PCR results of two well-known IRI related genes in the mouse IRI group and the normal group. * P<0.05, **P<0.01. (G) The 
common DEGs and functions in the hour group. (H) The common DEGs and functions in the day group. (I) The common DEGs and functions in 
the week group. 
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Figure 3. Gene set variation analysis for hallmark pathways. (A) The heatmap of GSVA results. (B) The barplot of GSVA score for 

group hours vs. Control. (C) The barplot of GSVA score for group days vs. Control. (D) The barplot of GSVA score for group weeks vs. Control. 
(E) The barplot of GSVA scores in different hallmark pathways. 
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Figure 4. WGCNA analysis. (A) Power selection. (B) Dendrogram of coexpression network. (C) The module trait association heatmap.  

(D) Scatter plot for module membership and gene significance. (E) Barplot for the eigengene in each module. (F) The functions for each 
module. 
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Table 3. Module description. 

Module Size Functions p.adjust Hub genes 

Blue 774 

Lipid metabolic process 3.06E-20 

Acss2,Csad,Mep1a,Gatb,Slc3a1 Fatty acid metabolic process 7.99E-10 

Metabolic pathways 1.34E-36 

Sienna3 133 

TNF signaling pathway 6.81E-07 

Epha2,Shb,Ccdc120,Slc38a2,Prr7 Inflammatory response 1.13E-04 

IL-17 signaling pathway 2.62E-04 

White 139 

Positive regulation of apoptotic process 2.89E-05 

Hbegf,Atf3,Trib1,Ddit3,Osr2 Apoptotic process 1.36E-02 

Apoptosis 1.47E-02 

Black 606 

Regulation of transcription from RNA 

Polymerase II promoter 
9.88E-17 

Capn7,Mkln1,Mios,Dhx36,Pik3c2a 
DNA repair 1.05E-07 

Cell cycle 3.39E-03 

Bisque4 953 

Inflammatory response 3.43E-23 

Serpine2,Apbb1ip,Cercam,Cd276,Dennd2a Cell adhesion 1.08E-21 

Immune system process 2.43E-19 

Darkorange2 655 

Extracellular region 4.82E-07 

Chrnb1,S100a11,Tpm3,Impdh2,Ifitm10 Translation 2.81E-05 

Ribosome 2.37E-05 

Yellowgreen 334 

Cell cycle 3.28E-67 

Ncaph,Trip13,Zwilch,Gtse1,Ncapg DNA repair 2.50E-08 

Cell cycle 1.18E-14 

 

Histological samples were obtained to analyze the 

alterations in the mouse renal tissue structure after IRI 

(24 h). It was intact and clear for the renal tissue 

structure with closely arranged and well-defined renal 

tubules, and no inflammatory cell infiltration in the 

sham group. While in the group of IRI after 24h, 

severely damaged tissue was observed with loose tissue 

arrangement and enlarged tissue gap, as well as 

hyperemia, swelling, and inflammatory cell infiltration 

(Figure 8B). qRT-PCR was used to confirm the 

expression of hub genes in IRI in the mouse model. The 

results indicated that the hub genes were up-regulated in 

IRI (P<0.01) (Figure 8C). For the hub genes of Hbegf 

and Atf3, the qPCR showed upregulation in 4h after IRI 

which was in accord with the results in WGCNA. While 

Ncaph and Trip13 significantly increased in 7 days after 

IRI, which worked as the marker genes in the late stage 

of IRI. 

 

DISCUSSION 
 

This study investigated gene transcriptional datasets to 

find potential pathways and biomarkers in different IRI 
stages and confirmed the findings by the external 

datasets and qRT-PCR experiments. The differential 

expression analysis showed the expression level of 

Kim1 (Havcr1) and Lcn2 were increased in samples 

after 24h of IRI and kept the elevation to 7 days. Kim1 

participated in renal tubular injury, inflammation, and 

fibrosis, preventing AKI to chronic kidney diseases 

[27]. Lcn2 was also investigated as an injury marker for 

IRI. GSVA was performed to investigate the activated 

pathways in IRI stages. The results showed that 

different pathways were activated across the IRI 

progress. In the early stage of IRI (hours), the apoptosis 

pathway was activated which meant that the IRI could 

induce apoptosis at a very early stage [28]. As the injury 

progressed, cell cycle related functions were activated 

[29]. It was reported that the wound healing was 

determined by the cell cycle arrest in the epithelial after 

injury leading to either normal cell proliferation or 

fibrosis. Thus, cell cycle arrest might be a potential 

therapeutic strategy in organ fibrosis after injury [30]. 

In the present study, we found that the cell cycle related 

pathways were activated, so the inhibitors targeting the 

cell cycle pathways may prevent kidney fibrosis. Then 

the functions of the immune response were activated. It 

was well known that kidney IRI was associated with the 

adaptive and innate immune system and the activation 

of the immune system was crucial in IRI [31, 32]. 

Besides those above known pathways, some novel 

pathways also were found to be associated with IRI 

such as estrogen response early/late, hedgehog 

signaling, and cholesterol homeostasis. These results 
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Figure 5. Network for each module. (A) Coexpression network for module blue, white, yellow, green and bisque4. (B) The regulatory 

network of IRI-related genes and miRNAs. 
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Figure 6. The immune cell infiltration analysis. (A) The immune cell abundance in each sample. (B) The immune cell abundance 

difference between the control and IRI groups. (C) The B cell abundance difference between the control and each IRI group. (D) The 
macrophage abundance difference between the control and each IRI group. (E) The T cell abundance difference between the control and 
each IRI group. (F) The abundance of macrophages across different IRI stages in GSE139107 using UMAP plot. 
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revealed that multiple pathways participated in the 

course of IRI.  

 

A total of 3,691 union DEGs were used to construct the 

weighted gene correlation network and then were 

divided into different gene correlation modules 

associated with IRI stages. The modules named blue, 

white, bisque4, and yellowgreen which were found to 

be highly associated with each IRI stage were dissected. 

Then in order to uncover the functions each module 

played during IRI, the module functional enrichment 

analysis was conducted. Blue groups with decreasing 

gene expression in IRI groups are involved in metabolic 

related pathways meaning that the metabolism was 

suppressed after IRI. The IRI could induce apoptosis 

early at 2h of injury indicated by the module white. The 

functions of genes in module yellowgreen were cell 

cycle and then a series of immune response associated 

functions were activated in module bisque4. 

Additionally, hub genes such as Atf3, Hbegf, Serpine2, 

Apbb1ip, Trip13, and Ncaph with high connectivity 

were screened out from each module and validated by 

qRT-PCR using a mouse model. Because of the 

importance of immune cells in IRI, we predicted the 

 

 
 

Figure 7. The correlation between immune cell abundance and hub genes expression. (A) The correlation between immune cell 
abundance and hub genes expression in IRI and control groups. (B) The correlation between macrophage abundance and each hub gene 
expression in each group. 
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immune infiltration for injured samples. Huen et al., 

reported that macrophages became activated and 

increased from the damaged microenvironment to 

promote tissue injury or repair [11]. Macrophage 

accumulation induced the occurrence of kidney injury 

which was alleviated by the removal of renal macro-

phages [33]. Whereas macrophages protected the 

kidney injury by secreting growth factors to promote 

tissue repair and remodeling [34]. The role of 

macrophage was complicated and bidirectional in the 

kidney injury process. There were numerous genes to 

regulate macrophage infiltration in injured tissue and 

positive or negative correlations between hub genes and 

macrophages. The hub genes are involved in macrophage 

infiltration in damaged tissue. Activating transcription 

factor 3 (ATF3) belonged to the ATF/CREB family of 

the basic-region leucine zipper (bZIP) family. ATF3 

played a protective role in alleviating the inflammatory 

response in tubular cell death and nephrotoxicity 

induced by IRI. ATF3 indicated the occurrence of AKI 

which was associated with strong inflammation with 

increasing secretion of cytokines, such as IL-6, IL-12, 

and IFNγ [35]. A higher expression level of ATF3 

significantly inhibited the infiltration level of 

macrophages to be beneficial for patients with tumors 

[36]. A significantly negative correlation between ATF3 

and macrophages was found in our study, indicating the 

potential of ATF3 to be a therapeutic target by 

regulating the infiltration of macrophages. Heparin 

binding EGF-like growth factor (HBEGF) was a 

biologically active protein that acted as an intestinal 

cytoprotective agent. James et al. reported that HBEGF 

alleviated acute lung injury in IRI mice and worked as a 

systemic anti-inflammatory agent preventing systemic 

inflammatory response syndrome after intestinal injury 

[37]. And it was also significantly negatively correlated 

with macrophage and might inhibit the infiltration of 

macrophage. Thyroid receptor interacting protein 13 

(TRIP13) was a common type of renal stressor and 

critical for the repair of the tubular epithelial cell in IRI. 

TRIP13 insufficiency increased the probability of 

damaged tubular epithelial cells progressing toward 

apoptotic cell death [38]. In our study, there was a 

significant positive correlation between TRIP13 and 

macrophage infiltration unveiling the functions of 

TRIP13 in regulating the immune response in IRI. 

Furthermore, other hub genes may play important roles in 

IRI and need to be validated in the future.  

 

MiRNAs had been proven to play protective roles in IRI 

as critical regulators of cellular processes such as 

differentiation, proliferation, and apoptosis. Utilizing 

the miRNet, we predicted the potential miRNAs for the 

hub genes in the coexpression network. A series of 

miRNAs were discovered in regulating the hub genes’ 

network including mir-155-5p, mir-1a-3p, mir-124-3p, 

 

 
 

Figure 8. (A) The schematic graph of the mouse IRI model. (B) Pathological changes of renal tissue in 24h of IRI. (C) The qRT-PCR results of 

hub genes in the mouse IRI group and the normal group. * p<0.05, **p<0.01. 
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and mir-223-3p. Wu et al. reported that miR-

155/FoxO3a/ARC led to renal pyroptosis under IRI 

conditions and verified that miR-155 played a crucial 

role in the pathogenesis of renal tubular cell pyroptosis, 

suggesting that miR-155 might be a potential 

therapeutic target in the treatment of ischemic renal 

diseases [39]. Previous study reported that pyroptosis of 

renal cells in IRI was inhibited by miR-155-

5p/DDX3X/NLRP3/caspase-1 pathway, indicating that 

miR-155-5p played a critical role in the pathogenesis of 

renal tubular cell pyroptosis as a potential therapeutic 

target [40]. Additionally, apoptosis occurred in all the 

IRI stages, which was mediated by endoplasmic 

reticulum stress (ERS). Ding et al. reported that miR-

124 played an important role in ERS in renal IRI. They 

found that miR-124 bound to IRE-1α as a negative 

regulator of ERS, and then conferred its protective 

effect, which demonstrated the regulatory mechanism of 

miR-124 in renal IRI and provided new ideas and 

methods for the prevention and treatment of renal IRI 

[41]. Although there were no reports about miR-1a-3p 

in IRI, we speculated that it might also play a similar 

role in IRI.  

 

CONCLUSIONS 
 

In summary, this study revealed the regulatory networks 

of related hub genes of renal IRI. This study 

successfully identified a host of pathways, miRNAs, 

hub genes as well as the immune microenvironment to 

explain the mechanism of IRI. Accumulated evidence 

indicated the novel, potential, and promising targets for 

future IRI treatments.  
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figure 

 

 

 

 
 

Supplementary Figure 1. GSVA analysis of external datasets. (A) GSVA results of GSE182793. (B) GSVA results of GSE139107. 

 

 


