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INTRODUCTION 
 

Depression is a prevalent mental illness characterized by 

low mood, lack of pleasure, and cognitive decline [1]. 

The incidence is closely associated with symptom 

severity and obstacles [2]. Epidemiological surveys have 

reported that the twelve-month and lifetime prevalence 

of major depression exceeds 10% and 20%, respectively, 

with over 39% of patients exhibiting suicidal tendencies 

[3]. Notably, there are significant gender differences in 

the incidence of depression [4], Linnéa Nöbbelin et al. 

described a significantly higher incidence of depression 

and Major depressive disorder (MDD) in women [5]. 

For a cross-sectional trial aimed at the general population 
in China, Wang et al. found that the incidence rate of 

depression in women is three times that in men [6, 7]. 

For American teenagers, the incidence rate of depression 

is about 25% for females and about 10% for males [8]. 

Studies have also found that women are dominant in 

depression, anxiety, and neurocognitive disorders [9]. 

The underlying reasons for women’s susceptibility to 

depression remain unclear, but the fluctuating stages  

of sex hormones during a woman’s life cycle, such as 

before and after pregnancy and perimenopause, are often 

considered susceptible periods for female depression 

[10]. These evidences suggest that sex hormones may 

play a crucial role in the biological risk factors for 

depression. Further research is needed to elucidate the 

underlying mechanisms of sex hormones in depression 

and develop targeted interventions that may benefit 

female patients with depression. 
 

Depression is a complex neurological disorder with  

a multifaceted pathogenesis, involving changes in the 
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ABSTRACT 
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widely distributed in the central nervous system. An abundance of research has established that estrogen and 
its receptors play a crucial role in depression, spanning pathogenesis and treatment. In this comprehensive 
review, we provide an in-depth analysis of the fundamental role of estrogen and its receptors in depression, 
with a focus on neuroinflammation, neuroendocrinology, and neuroplasticity. Furthermore, we discuss 
potential mechanisms underlying the therapeutic effects of estrogen in the treatment of depression, which may 
pave the way for new antidepressant drug development and alternative treatment options. 
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central nervous system. Part of the risk of depression  

is mediated by environmental and genetic factors [11], 

and although its mechanism is currently unclear, the 

interaction of multiple factors, including early life 

events, social stress, health, and medication, seems to  

be the foundation of its development [12]. Although 

several hypotheses have been proposed, including the 

monoaminergic hypothesis, the HPA axis hypothesis, 

the inflammation hypothesis, and the neuroplasticity 

hypothesis, the underlying mechanisms of depression 

remain unclear. Among these hypotheses, the mono-

aminergic hypothesis is the most widely used in clinical 

treatment, which proposes that a decrease in synaptic 

monoamine transmitters such as serotonin, dopamine, 

and norepinephrine is the main cause of depression. The 

current treatment methods mostly revolve around  

the increase of monoamine transmitters [13]. However, 

this treatment method is considered to have certain 

limitations. At least half of the patients report that the 

effect is not satisfactory, and the clinical response only 

takes effect after long-term treatment [14]. The HPA 

axis hypothesis posits that stress activates the HPA axis, 

leading to excess corticosterone (CORT) exposure in the 

brain, while the inflammation hypothesis suggests that 

mood disturbances often accompany an inflammatory 

response [15]. Furthermore, the neuroplasticity hypothesis 

emphasizes the importance of synaptic function and 

neurogenesis in various brain regions, particularly the 

hippocampus (HP), in depression pathogenesis [16]. 

Current research highlights the need to explore the 

underlying mechanisms of depression and develop 

novel therapeutic strategies. 

 
Estrogen, an important steroid hormone secreted by  

the ovaries in the female body, exists in three forms, 

including estrone (E1), estradiol (E2), and estriol (E3) 

[17]. E2 is metabolized in the liver to produce E1 and 

E3. Although E3 is often considered to be inactive as a 

metabolite of E2 [18], some researchers have suggested 

that the ratio of E3 to progesterone may interact with 

depressive symptoms to predict preterm birth [19]. 

Understanding the roles of these different forms of 

estrogen is essential for elucidating the underlying 

mechanisms of their effects on various physiological and 

pathological processes. As the primary sex hormone 

secreted by the ovaries, E2 is recognized for its ability to 

modulate mood and cognitive functions, making it a key 

therapeutic target for depression. In fact, research has 

found that depressed women exhibit significantly lower 

levels of estrogen than healthy women [20]. Research 

has shown that there is a statistically significant cor-

relation between low estrogen levels and the likelihood 

of developing depression in postmenopausal elderly 

women [21]. Furthermore, the removal of both ovaries 

has been established as a reliable model for inducing 

depression-like symptoms due to the resulting decrease 

in estrogen levels [22]. Stress, a well-established 

predictor of depression, has been shown to interact  

with estrogen to regulate both behavioral and 

biochemical changes associated with depression [23, 

24]. Importantly, estrogen has been found to modulate 

neurotransmitter systems such as glutamate, gamma-

aminobutyric acid (GABA), serotonin, and dopamine, 

highlighting the complex role of this hormone in the 

pathogenesis of depression [10, 25, 26], inhibits GABA 

and inhibits input [27], and the serotonergic and 

dopaminergic systems can also be regulated by estrogen 

[28–30]. Severe fluctuations in estrogen levels during 

periods of stress exposure can increase the likelihood of 

depression, anxiety, and post-traumatic stress disorder 

[17]. These findings have led to an increased interest  

in the potential role of estrogen in the pathogenesis  

of depression. Although estrogen is widely believed to  

have neuroprotective effects [31], research has shown 

that estrogen exceeding physiological doses can actually 

activate inhibitory estrogen receptor beta (ERβ) [32, 33], 

thereby exacerbating depressive like behavior [34]. 

Therefore, regulating the estrogen level curve and the 

activation of estrogen receptors may become potential 

targets for the treatment of female depression. 

 

Female depression 
 

There is mounting evidence to suggest that fluctuations 

in estrogen levels in women can significantly influence 

the risk of developing depression [35]. This type of 

depression caused by physiological or pathological 

fluctuations in estrogen and progesterone levels is called 

female depression. From the onset of puberty to the 

cessation of menopause, women’s neurotransmitter 

systems are exposed to cycles of hormonal fluctuation 

that vary on a monthly or even age-related basis. Since 

the onset of puberty, girls have shown a significantly 

higher incidence of emotional disorders than boys. The 

changes in estrogen and progesterone levels during the 

luteal phase of the menstrual cycle can trigger a range of 

symptoms, including anxiety, depression, and insomnia, 

collectively known as Premenstrual Dysphoric Disorder 

(PMDD) [36]. Relief from these mood disorders is 

generally achieved with the onset of menstruation [37]. 

 

Women’s higher susceptibility to MDD has been 

associated with their strong fluctuations in sex hormone 

levels and increased sensitivity to sex hormones [38, 

39]. During different reproductive stages, women are at 

risk of developing female depression such as perinatal 

depression (PND) and postpartum depression (PPD), 

due to the influence of large fluctuations in ovarian 

hormones [40]. Epidemiological and clinical studies 

have confirmed that approximately 10%-20% of women 

experience mental disorders during the perinatal period 

[41]. PND is typically considered an affective mental 
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Table 1. Summary of changes of E2 levels in different periods of female depression. 

Period Condition 
Estrogen level 

(compared to normal) 
Symptom Object References 

Menstrual 
Period 

Follicular phase Decreasing Depression 
Women (20–49 

years old) 
[163] 

Early luteal Decreasing 
Premenstrual 

dysphoric disorder 
Women [164] 

Late luteal Decreasing 
Premenstrual 

dysphoric disorder 
Women [164] 

Pregnancy Week 36 of gestation Decreasing 
Postpartum 
depression 

Women [165] 

Labour Childbirth day Unchanging 
Postpartum 
depression 

Women [166, 167] 

Postpartum 

Day 3 postpartum Increasing 
Postpartum 
depression 

Women [168] 

Day 3 postpartum Unchanging 
Major depressive 

disorder 
Women [168] 

Day 5 postpartum Increasing 
Postpartum 
depression 

Women [167] 

Perimenopause Early Postmenopause Decreasing 
Perimenopausal 

depression 
Women (54.4 ± 
4.9 years old) 

[169] 

 

illness that occurs between conception and 12 months 

after delivery, while PPD is defined as anxiety, sleep 

disturbance, and loss of appetite that occurs during 

delivery to 4 weeks postpartum [42]. Large fluctuations 

in estrogen and progesterone during the perinatal period 

have been identified as an important source of stress  

for susceptible women, leading to the development of 

PPD symptoms that coincide with the cycle of ovarian 

hormone fluctuations [43, 44]. Moreover, studies  

have revealed that women with a history of PPD 

experience significant mood disorders after treatment 

and withdrawal of estrogen, whereas women without 

such a history do not exhibit similar symptoms despite 

being exposed to the same hormone environment [44]. 
 

When women enter the perimenopausal period, their 

ovarian function begins to decline, the menstrual cycle 

undergoes significant changes, and their susceptibility 

to depression also increases [45]. Studies have shown 

that women with a history of depression are at an 

increased risk of developing perimenopausal depression 

[46]. Depressive symptoms during hormonal fluctuations 

are often accompanied by disturbances in estrogen 

levels (Table 1), providing further evidence of estrogen’s 

impact on women’s susceptibility to depression. 
 

Estrogen receptors and related signaling 

pathways 
 

Estrogens are a group of steroid hormones, including 

E1, E2, and E3, that are synthesized and secreted by the 

ovaries. Among them, E2, with the molecular formula 

C18H24O2, is the most biologically active and abundant 
estrogen in the body, and it serves as a primary marker 

of gonadal function. E2 plays a crucial role in the 

development of female secondary sexual characteristics, 

as well as the regulation of the menstrual cycle and 

pregnancy. As previously mentioned, fluctuations  

in endogenous estrogen levels are pivotal in the 

pathogenesis of depression in women [47]. Rapid 

changes in E2 levels can heighten the susceptibility  

to depression in women [48, 49]. Furthermore, when  

the brain is exposed to low levels of E2, women must 

rely on multiple pathways to adapt to the lack of 

circulating estrogen to maintain central nervous system 

homeostasis [50]. 

 
E2, a crucial hormone in the female reproductive 

system, is present in two forms - α and β, with 17β-E2 

being the more active form. Studies have demonstrated 

the potential of 17β-E2 in reducing depression-like 

behaviors [51]. In female rats, 17β-E2 was found to 

enhance neurogenesis [52]. In vitro experiments showed 

that 17β-E2 could potentially restore the loss of 

excitatory synapses caused by altered expression of 

Disrupted in Schizophrenia 1 (DISC1) [53]. Conversely, 

the biological function and mechanism of action of  

17α-E2 remain unclear. This form of E2 is more 

abundant in the brain and adrenal gland compared to the 

β configuration [54]. Research indicates that 17α-E2 

may alleviate metabolic and inflammatory dysfunction 

in male mice [55]. However, gender dimorphism is 

observed in its effects, with a more pronounced 

regulatory role in inflammatory responses seen in 

males, but not females. 

 

Estrogens exert their effects by binding to specific 

receptors and activating signaling pathways. As a steroid 

hormone, estrogen can enter the plasma membrane to 

bind to ER in cells and interact with membrane bound 
estrogen receptors, including G protein-coupled estrogen 

receptor (GPER) and membrane bound ER (mER), 

thereby activating intracellular signaling cascades. The 

signal transduction of estrogen binding to its receptor 
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can be divided into genomic and non-genomic.  

The signal transduction of the genome involves the 

binding of estrogen and receptors to form a complex, 

which migrates to the nucleus and directly acts on  

the DNA sequence; non-genomic signaling refers to  

the interaction between estrogen and receptors, which 

indirectly regulates gene expression through various 

signaling cascades within cells [56]. Estradiol activates 

the MAPK signaling cascade through c-Src in the 

neocortex and regulates gene expression through the 

mitogen-activated protein kinase (MAPK)/extracellular-

signal regulated kinase (ERK) signaling pathway [57, 

58]. In hypothalamic neurons, estrogen mediated 

phosphoinositide 3-kinase/protein kinase B (PI3K/ 

Akt) signaling has also been confirmed [59]. In the  

central nervous system, voltage-gated calcium channels 

(VGCCs) interact with estrogen/estrogen receptors [60], 

and estrogen’s regulation of calcium signaling is also  

an important component of its intracellular signaling 

cascade [61] (Figure 1). 

 

Nuclear estrogen receptors, belonging to the nuclear 

receptor superfamily, form complexes with DNA-

binding transcription factors and bind to estrogen, 

including alpha and beta subtypes. In the central 

nervous system, estrogen affects cognitive function  

by binding to estrogen receptor alpha (ERα) and ERβ 

and regulating the neuroendocrine response through 

complex signaling pathways. ERα and ERβ are widely 

distributed throughout the brain and spinal cord [62] 

(Figure 2), with significant expression in regions crucial 

for learning, memory, and cognition, such as the PFC, 

HP, and amygdala (AMY), and the expression of Erα  

in these regions is greatly increased, while ERβ is 

 

 

 
Figure 1. Estrogen-related signaling pathways. Abbreviations: E2: estradiol; AC: adenylate cyclase 1; ER: estrogen receptor; mGluR1a: 

metabotropic glutamate receptor subtype 1a; cAMP: cyclic adenosine monophosphate; PKA: protein kinase A; MEK: mitogen-activated 
protein kinase; ERK1/2: extracellular signal-regulated kinase 1/2; Gs: guanine nucleotide-binding proteins; GPER: G protein-coupled 
estrogen receptor; PKCδ: protein kinase C delta; DAG: diacylglycerol; PLC: Portland Limestone Cement; IP3: inositol 1,4,5-trisphosphate; 
IP3R: IP3 receptor; CAM: crassulacean acid metabolism; PI3K: phosphoinositide 3-kinase; eNOS: endothelial nitric oxide synthase; c-Src: 
cellular Src; pCREB: phosphorylated cyclic AMP response element binding; CoA: nuclear receptor coactivator. 
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decreased in response to stress stimulation [63]. 

Similarly, stress stimulation combined with ovariectomy 

significantly reduced ERβ expression in the PFC  

and hypothalamus [64], suggesting a potential role  

in coping with anxiety and depression. Additionally,  

the membrane-bound GPER is widely distributed in  

the central nervous system and can activate a variety  

of signal transduction pathways [65]. Studies have 

shown that ERβ, rather than ERα, plays a critical role  

in mediating estrogen’s protective effects against 

depression, while GPER activation also contributes to 

these effects [38]. Understanding the distribution and 

function of estrogen receptors in the central nervous 

system provides insights into the neuroendocrine 

mechanisms underlying the etiology and treatment of 

depression. 

 

Estrogen and depression 
 

Estrogen and neuroinflammation 

 

Neuroinflammation is a key factor in the pathogenesis 

of depression, with stress-induced activation of microglia 

in certain brain structures (such as the HP and AMY) 

leading to the M1-type phenotype. This activation 

stimulates the production of chemokines and cytokines 

(such as interleukin-1beta (IL-1β), interleukin 6 (IL-6), 

and tumour necrosis factor-alpha (TNF-α)) via the 

NOD-like receptor family pyrin domain containing 3 

(NLRP3) inflammasome pathway. However, M2 

microglia can prevent nerve damage caused by  

M1-type microglia. Polarization of M1 microglia 

promotes the transformation of A1 but not A2 

astrocytes, further contributing to neuroinflammation 

[66]. Estrogen is believed to have a regulatory effect  

on glial inflammatory response and may improve 

depressive behavior by attenuating neuroinflammation. 

Recent research by Ying Yang suggests that the 

phytoestrogen Formononetin, which exhibits estrogen-

like effects, can reverse the polarization of M1 

microglia while promoting the polarization of M2 

microglia [67]. Additionally, Soy isoflavones have  

been found to ameliorate depression-like behaviors by 

inhibiting hippocampal neuroinflammation and the toll-

like receptor 4 (TLR4)/nuclear factor kappa B (NF- 

κB) signaling pathway [68]. These findings suggest that 

estrogen and its derivatives may have therapeutic 

potential in treating depression through their modulation 

of neuroinflammation. 

 
Ovarianectomy (OVX) is a widely used animal model 

that mimics estrogen withdrawal-induced depression-

like behaviors. This model has been shown to induce 

neuronal loss, apoptosis, and synaptic dysfunction in 

brain regions such as the prefrontal cortex (PFC), HP, 

hypothalamus, and AMY in rats [69]. Additionally, 

OVX has been associated with a decrease in serum 

CORT levels and the activation of microglia in the PFC,  

 

 
 

Figure 2. Distribution of estrogen receptors in the brain. The color represents the projection of the corresponding brain region in 

the sagittal plane of the brain, where red indicates that the region mainly expresses ERα, blue indicates that the region mainly expresses 
ERβ, and green indicates that the region expresses both ERα and ERβ. 
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as well as up-regulation of pro-inflammatory factors 

such as IL-1β, IL-6, and TNF-α. Conversely, anti-

inflammatory factor arginase 1 (Arg1) and microglial 

negative regulator CD200 were down-regulated 

following estrogen withdrawal, indicating a pro-

inflammatory response [70]. These findings suggest 

that OVX-induced estrogen withdrawal may contribute 

to the development of depression-like behaviors 

through neuroinflammatory processes in the brain.  

The decline in estrogen levels has been associated  

with depression-like behaviors, as evidenced by the 

increased activation of hippocampal microglia, up-

regulation of pro-inflammatory cytokines, and down-

regulation of anti-inflammatory factors observed in 

OVX-induced anxiety and depression-like behavior in 

rats [71]. Moreover, hippocampal inflammation has 

been identified as a contributing factor to the develop-

ment of depression-like behavior in ovariectomized 

rats [72]. These findings highlight the importance of 

estrogen in regulating neuroinflammatory responses and 

its potential therapeutic value in treating depressive 

disorders. 

 

The estrogen receptor GPER has been implicated in 

estrogen-mediated neuroprotection. In female OVX 

rats, the GPER agonist G1 has been shown to inhibit the 

up-regulation of pro-inflammatory factors, promote the 

expression of anti-inflammatory factors, and induce 

microglial transition to the M2 type [73]. Additionally, 

G1 attenuates the inflammatory response in the CA1 

region of the HP by reducing the expression of the 

microglial marker iba1 and the NLRP3-adaptor protein 

apoptosis-associated speck-like protein (ASC)-caspase 

1 inflammasome, as well as IL-1β activation and 

downstream NF-κB signaling [74]. Studies have also 

demonstrated that after OVX, activation of the NLRP3 

inflammasome in the HP leads to increased expression 

of cytokines, whereas estrogen treatment can reverse 

this response [72]. Furthermore, the activation of  

the NLRP3 inflammasome has been shown to cause 

hippocampal inflammation and suppression of ovarian 

function [75]. 

 

Estrogen receptors, including ERα and ERβ, are 

expressed in microglia and astrocytes, and their 

activation by estrogen triggers signaling pathways such 

as PI3K/Akt, ERK, or janus kinase/signal transducer 

and activator of transcription (JAK/STAT), which can 

lead to neuroprotection and anti-inflammatory effects. 

Recent studies have shed light on the mechanisms 

underlying estrogen’s effects on depressive behavior. 

Specifically, E2 can activate the ERα/sirtuin 1 (SIRT1)/ 

NF-κB signaling pathway, leading to an improvement 
in depression-like behavior [76]. Furthermore, E2  

can inhibit NF-κB activation by binding to ERα in 

microglia and activating PI3K [77]. In addition, Zhang 

et al. showed that E2 treatment can alleviate 

depression-like behavior induced by ovariectomy by 

upregulating ERα and ERβ in the HP and activating 

the 5′-Adenosine monophosphate-activated protein 

kinase (AMPK)/NF-κB signaling pathway [78]. These 

findings suggest that estrogen’s effects on depression 

are mediated by its activation of specific signaling 

pathways, including ERα/SIRT1/NF-κB and AMPK/ 

NF-κB, in microglia and astrocytes. Understanding the 

molecular mechanisms underlying estrogen’s effects on 

depression may provide insights into the development 

of novel treatments for depression (Figure 3). 

 

Clinical studies have proved that the increase  

of inflammation and vascular dysfunction is one of  

the important mechanisms of the pathogenesis of 

depression, and the integrity of the blood-brain barrier 

(BBB) is an important factor in maintaining the function 

of the central nervous system [79]. Depression-induced 

elevation of inflammatory factors is often accompanied 

by disruption of the integrity of the blood-brain barrier, 

and in contrast, the neuroprotective effects of estrogen 

are also mediated by the maintenance of the blood-brain 

barrier [80, 81]. ERα and ERβ play an important role  

in the maintenance of BBB integrity by estrogen. The 

research of Saleh Zahedi Asl proved that both ERα  

and ERβ agonists can inhibit BBB leakage, and ERα 

agonists may play a more important role [80]. Vascular 

pericyte migration is a hallmark of BBB disruption 

following injury, infection, and inflammation, and TNF-

α-induced migration of human brain vascular pericytes 

was blocked by E2, while ERα and ERβ agonists were 

found to have similar effects [82]. 

 

Estrogen and neuroendocrine 

 

The HPA axis is a complex neuroendocrine pathway that 

plays a crucial role in regulating various physiological 

activities, such as the inflammatory response [83], 

energy metabolism [84], circadian rhythm [85],  

and hormonal programming [86], to maintain body 

homeostasis. In response to external environmental 

stimuli, the HPA axis is activated, leading to the release 

of glucocorticoids and other stress hormones that 

modulate physiological responses. Dysfunction of the 

HPA axis has been associated with a range of diseases, 

including depression, anxiety, metabolic disorders, and 

immune disorders. Understanding the complex interplay 

between the HPA axis and other physiological systems 

is critical for the development of effective interventions 

for various diseases. When the body is exposed to 

stress, the HPA axis is activated, leading to the 

secretion of regulatory factors from the hypothalamus. 
These signals are received by the pituitary gland, which 

responds by releasing stored or synthesized hormones 

[87]. The adrenal gland then captures various regulatory 
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signals from the pituitary gland and responds 

accordingly, secreting glucocorticoids that cause the 

level of circulating glucocorticoids to rise. Corticotropin-

releasing hormone (CRH) and arginine vasopressin 

(AVP) secreted by the hypothalamic paraventricular 

nucleus (PVN) neurons act on the pituitary, and  

the pituitary corticotropin-releasing hormone receptor  

1 (CRHR1) mediates stress initiation. The pituitary 

produces adrenocorticotrophic hormone (ACTH) to act 

on the adrenal glands, which secrete glucocorticoids. 

Negative feedback occurs when the rising levels of 

glucocorticoids return to the hypothalamus PVN neurons, 

which helps to restore body balance [86, 88]. 

 

Glucocorticoid receptors (GR) and mineralocorticoid 

receptors (MR) are densely expressed in the PVN of the 

 

 
 

Figure 3. Relationship between estrogen and neuroinflammation in depression. Abbreviations: GPER: G protein-coupled estrogen 

receptor; ER: estrogen receptor; ERK: extracellular signal-regulated kinase; NF-κB P65: nuclear factor kappa-B P65; TLR4: toll-like receptor 4; 
MyD88. 
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hypothalamus. Ding and colleagues demonstrated  

that excess glucocorticoids, produced during an 

emergency response, can bind to GR and MR, altering 

their ratio to regulate the secretion of CRH and  

thus exerting negative feedback regulation [89]. In 

OVX rats, estrogen treatment decreased the expression 

of GR and MR in the anterior pituitary, HP, and 

preoptic area (HPOA) of the hypothalamus [90]. As a 

result, E2 treatment may have an inhibitory effect on  

the negative feedback of synthetic glucocorticoids, such 

as dexamethasone. In the presence of E2, the negative 

feedback mechanism induced by stress-induced CORT 

increase is delayed, and E2 treatment results in a loss  

of glucocorticoid receptor-mediated autoregulation [91]. 

 

The HPA axis is known to exhibit significant sex-specific 

differences in terms of hypothalamic PVN composition, 

pituitary and adrenal function, and hormone release 

[92]. Females tend to have larger hypothalamic PVN 

neurons than males [93], and female rats release ACTH 

more strongly than males after stress stimulation [94]. 

In fact, female rats are more responsive to ACTH, and 

OVX surgery can partially reverse this change [95]. 

Moreover, the release of cortisol from the adrenal glands 

is also gender-dimorphic, with female rats exhibiting a 

more pronounced and longer-lasting increase in cortisol 

levels in response to stress [96]. Interestingly, cortisol 

itself also shows significant gender dimorphism, with 

women having approximately 19% more cortisol than 

men [97], while men tend to have higher levels of  

free cortisol relative to women [98]. Studies have also 

observed age-related sex differences in childhood 

cortisol, with serum and salivary cortisol levels being 

higher in boys than girls before the age of 8, but the 

situation reverses after age 8 [99]. Overall, these 

findings suggest that sex differences in the HPA axis 

play a critical role in shaping physiological responses  

to stress and may have important implications for the 

development of stress-related disorders in males and 

females. 

 

The activity of CRH neurons in the hypothalamus 

 is higher than that in men, and the expression level  

of CRH in the hypothalamus is also higher than  

that in men [100, 101]. The estrogen receptor ER  

is widely distributed in the hypothalamus [86, 102],  

and CRH expression is increased in the PVN brain 

region of depressed patients, accompanied by increased 

expression of ERα, which is involved in CRH 

activation. The neuroendocrine and neuronal changes 

mediated by neonatal maternal deprivation (MD)  

and postweaning environmental enrichment (EE) in 

females are strongly linked to anxiety and depression-
like behaviors. Specifically, MD reduced the number  

of oxytocin (OT) immunoreactive neurons in the 

hypothalamic PVN and co-regulated the expression of 

CRH and oxytocin receptor (OTR) in the medial-lateral 

habenula (LHbM) [103]. Estrogen receptors are 

believed to play a significant role in regulating HPA 

axis function. Prior research by Wei and others has 

shown that estrogen induces the expression of both ERα 

and GR in white matter [104]. Activation of ERβ can 

also alleviate anxiety-like behaviors and reduce the 

CORT and ACTH responses of gonadectomy rats [105]. 

Furthermore, the anxiety-like behaviors caused by 

selective activation of GR can be mitigated by ERβ 

agonists [106]. Recent work by Cora E Smiley has 

demonstrated that stress exposure leads to a specific 

increase in ERβ and CRH in the central AMY, and 

blocking ERβ in the AMY improves depressive-like 

behavior [107]. These findings suggest a complex 

interplay between the HPA axis, estrogen receptors,  

and anxiety and depression-like behaviors. 

 

The hypothalamic-pituitary-gonadal axis (HPG) axis  

is a hormonal system that regulates the secretion of 

female ovarian hormones, the most widespread source 

of endogenous estrogens, through a feedback regulatory 

mechanism [39]. The hypothalamus regulates the 

pituitary’s production of luteinizing hormone (LH) and 

follicle-stimulating hormone by releasing gonadotropin-

releasing hormone (GnRH), which are used to regulate 

the female menstrual cycle and promote the secretion of 

estrogen. Estrogen, in turn, controls the release of these 

hormones by regulating secretion from the hypothalamus 

and pituitary gland. Interestingly, estrogen can also  

be synthesized within the brain, independent of  

steroid glands, through the action of aromatase and 

acute regulator proteins expressed in the HP [108]. 

These hippocampal-derived estrogens regulate gene 

transcription by binding to their cognate receptors and 

are thought to be influenced by substrate availability, 

neuronal activity, and gonadotropins [109]. Thus, the 

HPG axis plays a crucial role in regulating estrogen 

levels and its effects on brain function and behavior. 

There is sufficient evidence to prove that the HPG axis 

can be regulated by the HPA axis [110]. As an end 

product of the HPA axis, glucocorticoids have been 

shown to inhibit the release of GnRH into the pituitary 

portal system in the hypothalamic median eminence 

[111]. Similarly, studies have shown that CRH can 

stimulate or inhibit the discharge of GnRH neurons,  

and different CRH receptors and CRH concentrations 

determine whether GnRH neurons are activated or 

suppressed [111]. The release of GnRH has two modes: 

pulsatile and surge. During most of the female 

reproductive cycle, GnRH is released impulsively, 

while in the late follicular phase, its release mode 

switches to a sustained increase or surge for several 
hours [112, 113]. Research has shown that stress affects 

the surge of GnRH/LH through multi-level activation  

of the HPA axis, and the glucocorticoid produced by 
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stress can inhibit the surge of LH [114]. These 

evidences further demonstrate the interaction between 

the HGA axis and the HPA axis in response to stress 

stimuli from sources of stress. 

 

Estrogen and neuroplasticity 

 

Stress and depression can lead to changes in the number 

and function of synapses. OVX has been shown to 

reduce dendritic spine density in the CA1 region of the 

HP, along with enhancement of long-term potentiation 

(LTP) [115]. However, E2 replacement can counteract 

this effect [116, 117]. In rodents, phasic changes in 

dendritic spines and synaptic density in the HP are 

mediated by physiological fluctuations in estrogen 

levels, with E2 levels positively correlating with 

hippocampal synaptic density during the estrous cycle 

[118–120]. These findings suggest that estrogen plays 

an important role in modulating synaptic plasticity in 

the HP, and may have implications for the development 

of novel treatments for stress-related disorders. 

 

Glutamatergic synaptic dysfunction is a key hallmark  

of depression. The effects of E2 on glutamatergic 

transmission can be divided into rapid and chronic. 

Studies have shown that long-term E2 exposure 

increases the number of spines positive for the pre-and 

postsynaptic protein markers bassoon and postsynaptic 

density protein 95 (PSD95), thereby reversing spine  

loss [53]. The rapid effects of estrogen on learning  

and neuronal plasticity are mediated by the membrane 

receptor GPER and the nuclear receptors ERα and ERβ. 

GPER activation increases dendritic spine density in the 

HP [121], while G-protein-coupled-estrogen-receptor 1 

(GPER1) promotes the distal dendritic enrichment of 

hyperpolarization-activated gated channel 1 (HCN1) in 

CA1 stratum lacunosum-moleculare (SLM) [122]. GPER 

activation also significantly increases the response of 

hippocampal CA1 pyramidal neurons to excitatory 

input, as demonstrated by lateral intracerebral infusion 

of the GPER agonist G1 [123]. Although all three 

estrogen receptors contribute to the rapid effects of E2 

on hippocampal synaptic function, GPER1 activation 

appears to play a major role, as ERα and ERβ activation 

produce only a small increase in synaptic transmission 

compared to GPER activation [124]. 

 

The modulation of inhibitory GABAergic synapses is a 

critical aspect of regulating plastic changes in neuronal 

network activity. Previous studies have shown that the 

expression of GABA transporter-1 (GAT-1) in the medial 

preoptic area (MPOA) of OVX rats is reduced, and  

that estrogen replacement can reverse this effect [125]. 
However, estrogen appears to regulate GABAergic 

function in a region-specific manner. For example, E2 

up-regulates the expression of the 65-kilodalton isoform 

of glutamic acid decarboxylase (GAD65) and  

down-regulates the expression of the 67-kilodalton 

isoform (GAD67) in the magnocellular preoptic area 

(MCPOA), while the expression of these two glutamate 

decarboxylases is reversed in the dorsomedial nucleus 

(DMN) of the hypothalamus [126]. Activation of ERα, 

but not ERβ, produces a similar effect to E2 by inducing 

increased synaptic density in hippocampal neurons [127]. 

Interestingly, a recent study by Zhang demonstrated  

that activation of ERβ did not affect glutamatergic 

excitatory transmission in the PFC of female rodents, 

but it did activate its bisexual GABAergic transmission 

[128]. These findings suggest that estrogen may 

differentially modulate GABAergic and glutamatergic 

synaptic transmission in different brain regions. Overall, 

these results highlight the complex and region-specific 

effects of estrogen on inhibitory GABAergic synapses 

in the brain. 

 

Brain-derived neurotrophic factor (BDNF) is a  

crucial mediator of neuronal survival, differentiation, 

and synaptic plasticity. BDNF promotes LTP and 

enhances salient responses [129], and plays a key  

role in the antidepressant effect of ketamine [16]. 

Similarly, estrogen and BDNF have been shown to have 

overlapping effects on neuronal protection, dendritic 

spine remodeling, and neurogenesis [130]. E2 exerts  

its antidepressant effect through the activation of  

cyclic AMP response-element binding protein (CREB) 

and BDNF/tropomyosin-related kinase B (TrkB) 

signaling pathways [131]. In addition, E2 exposure  

has been shown to upregulate BDNF expression in  

the PFC of OVX-stressed mice, leading to a reduction 

in hopelessness and anhedonia [132]. These findings 

suggest that estrogen and BDNF may work in tandem  

to promote neuronal plasticity and alleviate depression, 

making them promising targets for future antidepressant 

therapies. 

 

Deletion of ERβ, but not ERα, leads to a decrease in 

BDNF and its receptor TrkB in the HP and PFC of 

female rodents, while leaving levels unchanged in the 

cortex and hypothalamus. Interestingly, activation of 

ERβ can reverse this reduction and even upregulate  

the expression of major synaptic vesicle proteins  

p38, vesicle-associated membrane protein 2 (VAMP2), 

and PSD95 in hippocampal neurons [133]. Inhibitory 

neurons with ERβ project to other GABAergic neurons 

that lack nuclear estrogen receptors, and these inhibitory 

neurons innervate excitatory cells that express BDNF. 

Additionally, high estrogen levels have been shown to 

reduce cortical GABA levels, which may release the 

inhibition of BDNF-expressing neurons [134]. Overall, 
these findings suggest that ERβ plays a critical role in 

modulating BDNF expression and synaptic plasticity in 

specific brain regions, highlighting the importance of 
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understanding the differential effects of estrogen 

receptors in the brain. 

 

Neurons function within a complex network of 

connections and the plasticity of neuronal connections is 

a fundamental feature of the adult brain. The regulation 

of emotions related to stress and anxiety, as well as  

the development of depression, are known to involve 

multiple brain regions, and the role of gender differences 

in the regulation of neural circuits cannot be ignored 

[135]. While the locus coeruleus-anterior cingulate 

cortex (LC-ACC) circuit has been shown to induce pain-

related depression in males, its effects in females remain 

poorly defined [136]. Therefore, investigating estrogen-

dependent stress-related neural circuits may be critical 

for understanding the sexual dimorphism of depression. 

Research conducted by Tianyao Shi has shown that  

the anterior insular cortex- basolateral amygdala (AIC-

BLA) circuit regulates decision-making behavior related 

to stress, and estrogens in the AIC may significantly 

contribute to the sexual dimorphism of stress-induced 

decision-making behaviors [137]. As a neurosteroid, 

estrogen is involved in the regulation of LTP and  

long-term depression (LTD) of synaptic transmission. 

Zhang found a positive bidirectional association between 

depression and aggression [138]. Stefanos Stagkourakis 

demonstrated that LTP at the amygdalohippocampal area- 

estrogen receptor 1-expressing (AHiPM-Esr1) neurons 

in the ventrolateral subdivision of the ventromedial 

hypothalamus (VMHvl), an excitatory synapse, could  

be induced by aggressive training, and this enhancement 

of LTP promoted the behavioral effects of aggressive 

training [139]. Overall, exploring estrogen-dependent 

stress-related neural circuits may be a key factor in 

understanding the sexual dimorphism of depression and 

other related behaviors. 

 

Estrogen for depression 
 

Estrogen is widely used in the treatment of 

perimenopausal depression in women, either directly or 

indirectly. Phytoestrogens such as genistein have been 

suggested as alternatives to estrogen therapy due to  

their potential antidepressant and anxiolytic effects in 

both animal and human studies [140–142]. However, 

recent clinical trials have shown that the phytoestrogen 

rimostil and the estrogen receptor modulator raloxifene 

are not ideal treatments for female psychotic major 

depression, with transdermal E2 therapy being more 

effective. While the estrogen-like compounds showed 

an improvement in depression scores, no significant 

difference was observed [143]. These findings suggest 

that while estrogen therapy may be effective in treating 

depression in women, the choice of treatment should be 

carefully considered based on the individual’s specific 

condition and medical history. 

Estrogen has been shown to enhance the effects  

of various antidepressant drugs, such as fluoxetine, 

venlafaxine, and desipramine [144]. However, caution 

must be exercised when combining estrogen with 

imipramine, as it can cause symptoms of toxicity 

similar to an overdose of imipramine. Moreover, adding 

estrogen to antidepressant therapy can induce manic 

symptoms in patients [145]. The therapeutic effect of 

various drugs on perimenopausal depression is mediated 

through estrogen and its receptors. In non-human 

primates, administration of the traditional serotonin 

reuptake inhibitor, S-citalopram, significantly increased 

estrogen levels, possibly by modulating CRH levels 

[146]. Further research is needed to understand the 

complex interactions between estrogen and various 

antidepressant drugs, and to develop safe and effective 

treatment strategies for perimenopausal depression. 

 

The effects of fluoxetine on estrogen action have been 

investigated in several studies. In vitro studies have 

shown that fluoxetine up-regulates the expression of E2 

and down-regulates ERα and ERβ, without affecting 

aromatase [147, 148]. However, recent research by Lei 

and colleagues has demonstrated that low concentrations 

of fluoxetine upregulate the expression of ERα, 

exhibiting estrogen-like effects [149]. The interaction 

between fluoxetine and estrogen receptors appears  

to be dual-natured, with weak estrogenic effects at  

low concentrations and antiestrogenic effects at high 

concentrations [150]. In the feto-placental unit co-culture 

model, fluoxetine did not affect estrogen secretion, but 

its metabolite norfluoxetine decreased estrogen secretion 

[151]. Studies in teleosts have shown that fluoxetine 

exposure causes a decrease in circulating E2 and  

an increase in ovarian aromatase mRNA expression  

in female goldfish, with sex-specific disruption of  

the reproductive endocrine axis [152]. In rodents, co-

administration of fluoxetine with E2 produces favorable 

antidepressant effects in OVX rats by promoting 

neurogenesis and synaptic plasticity [153]. However, 

fluoxetine administration had no significant effect on 

serum E2 levels in female rats [154]. In humans, fetal 

plasma estrogen levels are not affected by maternal 

fluoxetine exposure during pregnancy and lactation 

[155]. Overall, the effects of fluoxetine on estrogen 

action appear to be complex and depend on various 

factors, including concentration, duration of exposure, 

and the species studied. Further research is needed  

to fully understand the mechanisms underlying these 

effects. 

 
In a recent study by Zhang and colleagues, the potential 

therapeutic effects of Erxian Decoction (EXD),  

a traditional Chinese medicine, on perimenopausal 

depression were investigated. The researchers found 

that EXD treatment upregulated estrogen receptors in 
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the uterus and adrenal glands, mitigated estrogen 

deficiency, and increased the expression of BDNF in 

the HP, leading to the alleviation of perimenopausal 

depression [156]. Another traditional Chinese medicine, 

xiaochaihutang, was also found to have promising 

antidepressant effects. Through the normalization of the 

HPA/hypothalamic-pituitary-ovarian (HPO) axis and the 

restoration of ERβ expression in the PFC, xiaochaihutang 

was able to ameliorate depression symptoms in 

ovariectomized rats [64]. Taken together, these findings 

suggest that traditional Chinese medicines may provide 

a valuable alternative or complementary therapy for 

perimenopausal depression by targeting estrogen 

receptors and the HPA/HPO axis. Further studies are 

needed to elucidate the underlying mechanisms and 

potential side effects of these treatments. 

 

Extensive research has highlighted the crucial role  

of calorie restriction in ameliorating the central  

nervous system (CNS) lesions. This effect is believed 

to work synergistically with estrogen, as 48-hour and 1-

hour fasting have been shown to trigger ER immune 

responses in the hypothalamic PVN, periventricular 

nucleus (PeVN), and nucleus of solitary tract (NTS) 

regions of OVX rats, resulting in an increase in  

cells [157]. In patients with Alzheimer’s disease, 

intermittent fasting has been found to significantly 

alleviate estrogen deficiency and cognitive dysfunction, 

potentially via the activation of multiple signaling 

pathways and neuroprotective effects [158]. Moreover, 

calorie restriction has shown significant efficacy  

in treating depression. Acute fasting and E2 have  

been shown to synergistically activate CREB-BDNF 

signaling in the PFC and HP, resulting in anti-

depressant-like effects [159]. Intermittent fasting is 

also believed to improve cognitive impairment and 

memory loss caused by estrogen deficiency, cortisol 

dysregulation, and dyslipidemia [158]. The differential 

effect of fasting on ERα expression in the pituitary, 

depending on the levels of estrogen, suggests a 

complex interplay between metabolic signaling and 

ovarian hormones [10]. 

 

CONCLUSION 
 

Estrogen and its receptors have been implicated in 

various hypotheses concerning the pathogenesis of 

depression, particularly in female depression, making 

them a central focus of clinical treatment. Adolescent 

stress can induce abnormal activation and development 

of the HPA and HPG axes, as well as activate 

inflammatory signals to induce depression [160]. 

Estradiol in adolescent women can prevent increased 

stress-induced neuroinflammation. Similarly, endotoxin, 

as a common stimulus, can stimulate the release of 

inflammatory factors from the peripheral immune 

system, thereby inducing abnormal activation of the 

HPA axis. This HPA axis response has significant 

gender differences [161]. The study by Adzic et al. 

demonstrated that lipopolysaccharide (LPS) induced 

depressive behavior in women is associated with an 

increase in hypothalamic CRH and a decrease in BDNF 

[162]. These evidences all demonstrate that estrogen 

improves depressive-like behavior through synergistic 

regulation of HPA axis, neuroinflammation, and neural 

plasticity, rather than isolated regulation. The gender 

dimorphism of depression highlights the significance  

of investigating the direct and indirect effects of 

estrogen on the mechanisms of depression. Alterations 

in estrogen levels are accompanied by changes in 

estrogen receptor expression in different brain regions, 

regulating estrogen synthesis in both the brain and 

gonads. The binding of estrogen to receptors mediates 

the biological function of estrogen in the brain, 

regulating cognition and mood through a variety of 

mechanisms such as neuroinflammation, neuroendocrine 

function, and neural plasticity. Clinical drug treatments 

for depression often involve changes in estrogen, 

highlighting the potential for estrogen in the treatment 

of depression. Furthermore, calorie restriction has been 

shown to have a positive effect on depression as a safe, 

side-effect-free and simple treatment. The synergistic 

effect of calorie restriction on estrogen provides a  

new physical form for the treatment of depression in 

women. However, the underlying cellular and molecular 

mechanisms require further exploration, and the potential 

risks of this approach need to be elucidated. Overall, a 

better understanding of the role of estrogen in depression 

may lead to the development of more effective and 

personalized treatment methods for depression, especially 

in female patients. The existing research on the 

treatment of depression with estrogen mostly focuses on 

a single mechanism, but the pathogenesis of depression 

is complex and interconnected, rather than an island.  

By coordinating multiple mechanisms and focusing  

on the stable regulation of estrogen levels, it may 

become a potential and more stable treatment plan for 

female depression. 
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