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INTRODUCTION 
 
Malignant melanoma is the most dangerous skin cancer, 
which originates from melanocytes and possesses a 
larger proportion of metastases and death [1]. Recent 
evidence has shown that tumor microenvironment plays 
a critical role in formation and development of 
melanoma [2, 3]. Various infiltrating immune cells 
positively or negatively regulate tumor cell behaviors 
and finally result in tumor growth and metastasis [4]. Of 
particular interest, macrophages work as a major 
component of infiltrating immune cells, which 

participate to a large degree in melanoma cells’ 
proliferation, metastasis and resistance to anticancer 
therapies [5, 6]. They can secrete growth factors, such 
as vascular endothelial growth factor (VEGF) and 
epidermal growth factor (EGF), which stimulate tumor 
angiogenesis and facilitate metastatic spread. Tumor 
associated macrophages (TAMs) also produce matrix 
metalloproteinases (MMPs) that degrade extracellular 
matrix components, allowing melanoma cells to invade 
surrounding tissues and form distant metastases [7, 8]. 
Furthermore, TAMs play a critical role in suppressing 
the anti-tumor immune response. They can inhibit the 
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ABSTRACT 
 
Along with the increasing knowledge of long noncoding RNA, the interaction between the long noncoding RNA 
(lncRNA) and tumor immune infiltration is increasingly valued. However, there is a lack of understanding of 
correlation between regulation of specific lncRNAs and tumor-infiltrating macrophages within melanoma. In 
this research, a macrophage associated lncRNA signature was identified by multiple machine learning 
algorithms and the robust and effectiveness of signature also validated in other independent datasets. The 
signature contained six specific lncRNAs (PART1, LINC00968, LINC00954, LINC00944, LINC00518 and C20orf197) 
was constructed, which could diagnose melanoma and predict the prognosis of patients. Moreover, our 
signature achieves higher accuracy than the previous well-established markers and regarded as an independent 
prognostic indicator. The pathway enrichment revealed that these lncRNAs were closely correlated with many 
immune processes. In addition, the signature was associated with different immune microenvironment and 
applied to predict response of immune checkpoint inhibitor therapy (low risk of patients well respond to anti-
PD-1 therapy and high risk is insensitive to anti-CTLA-4 therapy). Therefore, our finding supplies a more 
accuracy and effective lncRNA signature for tumor-infiltrating macrophages targeting treatment approaches 
and affords a new clinical application for predicting the response of immunotherapies in melanomas. 

www.aging-us.com AGING 2024, Vol. 16, No. 5

4518

https://www.aging-us.com


www.aging-us.com 2 AGING 

activation and function of cytotoxic T cells, natural 
killer cells, and dendritic cells, thereby dampening the 
immune system’s ability to recognize and eliminate 
melanoma cells. This immunosuppressive function of 
TAMs is mediated by the secretion of 
immunosuppressive cytokines, such as interleukin-10 
(IL-10) and transforming growth factor-beta (TGF-β) 
[9, 10]. Hence, TAMs have been proven as an important 
therapeutic target to improve the efficacy of 
immunotherapy. 
 
According to research on mammalian transcriptomes, 
protein-coding genes account for just 1.5 percent of the 
human genome. While around 70% of the overall 
human genome is continually producing a broad array 
of non-coding RNAs (ncRNAs), which are classified as 
small ncRNAs (200 nt) and long ncRNAs (lncRNAs, 
>200 nt) based on transcript length. Increasing evidence 
suggests that lncRNAs are involved in a wide range of 
biological activities, including cell proliferation, 
differentiation, migration, invasion, and death [11–14]. 
It has been proven that abnormal expression of 
lncRNAs plays essential jobs in carcinogenesis, such as 
gastric cancer, prostate cancer, and leukemia [15]. 
Moreover, previous studies suggested that lncRNAs 
widely regulated immune reactions such as antigen 
presentation or release, immune cell activation or 
infiltration. For instance, Elling et al. demonstrated that 
lincRNA-COX2 can directly regulate immune response 
by activating or inhibiting a class of immune genes [16]. 
Song et al. recently revealed that the NF-κB interacting 
lncRNA (NKILA) can activate inflammatory responses 
in the tumor microenvironment. Low NKILA 
expression has been linked to a poor prognosis of breast 
cancer [17]. Besides, Krawczyk et al. indicated that 
P50-associated cyclooxygenase-2 extragenic RNA 
(PACER) takes a crucial factor in the differentiation of 
macrophages [18]. Although lncRNAs emerge as a hot 
research topic in many aspects including cancer 
immunology, few numbers of macrophage associated 
lncRNAs have been investigated so far, and a new 
prognostic macrophage associated lncRNAs signature is 
needed continue to surprise us. 
 
Therefore, in this research, we identified macrophage-
associated lncRNAs from the ImmLnc database and 
then thoroughly analyzed the differentially expressed 
macrophage associated lncRNAs between tumor and 
normal in multiple public datasets. Next, we developed 
a macrophage lncRNA signature by integrating 
immune-related lncRNAs and clinical outcomes. We 
discovered that the expression of macrophage 
associated lncRNAs signature takes a crucial role in the 
prognosis of melanoma and displays more effective 
performance for prediction of immunotherapy response 
in melanoma patients. 

MATERIALS AND METHODS 
 
Macrophage associated lncRNA in melanoma 
 
In TIMER2.0 website (http://timer.comp-
genomics.org/), we astonished observed that tumor 
infiltrated macrophage cells were regarded as a 
prognostic factor and intimately associated with BRAF 
mutant in cutaneous melanoma patients (Supplementary 
Figure 1). Thus, the 3346 macrophage associated 
lncRNAs in cutaneous melanoma (Supplementary Table 
1) were retrieved from the ImmLnc database (http://bio-
bigdata.hrbmu.edu.cn/ImmLnc), which affords tools to 
explore the immune associated function of lncRNAs 
such as the correlation between lncRNA and immune 
cell types, lncRNA and pathways and cancer related 
lncRNAs across 33 types of cancer [19]. 
 
Melanomas collection and normal controls 
 
The TCGA-SKCM dataset (https://portal.gdc.cancer. 
gov) was used to obtain the lncRNAs expression and 
clinical variables of cutaneous melanoma, and the 
normal healthy skin tissue samples were obtained from 
the Genotype-Tissue Expression website (GTEx) 
(https://www.gtexportal.org/) to match the tumor 
samples. TPMs values were utilized to describe the 
expression level of lncRNAs for TCGA-SKCM & 
GTEx. Five independent melanoma patient datasets 
were acquired from GEO database for outside 
verification, which including GSE65904, GSE15605, 
GSE78220 (Hugo et al. study) [20] and GSE91061 
(Riaz et al. study) [21]. Furthermore, to predict 
immunotherapy response, A prior cohort managed with 
CTLA-4 and PD-1 inhibitors was obtained from a 
previously published study [22]. The transcriptome 
profiles (FPKM) of these datasets were processed by 
applying their corresponding platform and was 
transformed into TPMs. Firstly, probes were annotated 
based on the annotation profile supplied by the 
platform, and non-matched probes were removed. If 
several probes were mapped to the same gene, the 
average value would be used to reflect gene expression. 
Variations in lncRNAs with low expression levels 
(TPMs <0.01) will then be eliminated due to their low 
expression level. Finally, the raw data were log2(× + 1) 
transformed and quantile normalized. Figure 1 depicts a 
simplified procedure for the current investigation. 
 
Differential expression analysis of macrophage 
associated lncRNAs (DEMlncRNAs) 
 
To explore the differentially expressed lncRNAs, 
samples in TCGA-SKCM & GTEx dataset were divided 
into melanoma and normal skin groups. The 
differentially expressed analysis of lncRNAs between 
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melanoma and normal skin was conducted by using 
‘limma package’ in R software [23]. The cutoff criterion 
was the absolute value of log 2-fold change (FC) ≥2 and 
p-values < 0.05. Besides, the overlapping lncRNAs in 
differentially expressed lncRNAs and macrophage 
associated lncRNAs were defined as DEMlncRNAs. 
 
Development of DEMlncRNAs signature using 
machine learning 
 
To identify the survival-related DEMlncRNAs in 
melanomas, we randomly categorized the melanoma 
patients in TCGA-SKCM dataset into train or validation 
samples with a ratio of 7:3. The survival associated 
DEMlncRNAs were then selected by using univariate 
Cox regression methodology in train dataset (p-values 
< 0.05). Next, multiple machine learnings contained 
Least Absolute Shrinkage and Selection Operator 
(LASSO), Random Forests Variable Selection (RF-VS), 
and Support Vector Machine-Recursive Feature 
Elimination (SVM-RFE) were applied to identify the 
essential DEMlncRNAs in the training dataset. LASSO 
screened the important features based on the 
misclassification error, SVM-RFE identified key factors 
by 5-fold cross-validation errors and RF-VS picked out 
significant variables by out of bag (OOB) error [24]. The 
common important DEMlncRNAs were selected out for 
further analysis. Firstly, the diagnostic model was built 
by neural network algorithm with these identified 
DEMlncRNAs. To assess the model’s efficiency, the 

confusion matrix and Receiver operating characteristic 
curves (ROC) were utilized. The prognostic risk model 
was then built using multivariate Cox regression analysis. 
The following is how the risk score is calculated: 
 

 
N

1
Risk score = ( ),i ii

coef expr
=

×∑  
 
where expri means the DEMlncRNA’s relative 
expression in the risk model, coefi is stand for the 
DEMlncRNA’s Cox coefficient, and N represents the 
number of DEMlncRNA. In the train set, the median 
value was used as a threshold for the DEMlncRNA 
signature risk score, and samples were divided into 
high- and low-risk categories. Kaplan-Meier survival 
curves and log-rank tests were used to compare the 
prognoses of the high- and low-risk groups. ROC 
curves and area under the curve (AUC) measurements 
were also used to evaluate the model’s 3- and 5-year 
overall survival prediction accuracy. Furthermore, these 
DEMlncRNAs signatures were verified in the testing 
dataset and GSE65904 to establish the robustness of the 
conclusion. 
 
Pathway enrichment analysis  
 
To investigate the possible involvement of protein-
coding genes co-expressed with DEMlncRNAs, the 
ENCORI website 
(http://starbase.sysu.edu.cn/index.php) was used. 

 

 
 

Figure 1. The complete workflow of the analysis in this present study. 
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Second, Metascape (http://metascape.org) was utilized 
to perform functional enrichment of BP and the KEGG 
terms. In addition, immune-related pathways of 
DEMlncRNAs were examined in the ImmLnc database 
(http://bio-bigdata.hrbmu.edu.cn/ImmLnc). Pathways 
with p-value and adjust p-value < 0.05 were screened 
out and regarded as significance. 
 
Associations between risk score and other prognostic 
markers 
 
To calculate the relationships between risk score and 
other prognostic biomarkers, the correlation of risk 
score with traditional markers (age, clark level, stage.) 
and previously established prognostic markers included 
transcriptomic classification (named “immune”, 
“keratin” and “MITF-low”), mutation subtype (named 
“BRAF subtype”, “RAS subtype”, “NF1 subtype” and 
“Triple Wild-Type subtype”) and BRAF mutant were 
performed [25, 26]. Moreover, uni- and multi-variate 
Cox regression were performed in three datasets to 
analyze the prognostic significance of the risk score and 
traditional clinical factors to evaluate if the risk score is 
an independent prognostic factor. Next, to explore the 
association between risk score and immunological 
microenvironment, the Immuno-Oncology Biological 
Research (IOBR) approach was used. The CIBERSORT 
method was initially used to determine the relative 
proportions of 22 different kinds of infiltrated immune 
cells in each patient. Only immune cells have 50% 
value and patients with P < 0.05 were considered 
eligible for further analysis. Afterwards, previous user-
built signatures associated with immune 
microenvironment were evaluated by ssGSEA, 
Principal Component Analysis (PCA), and Z-score 
methods. Finally, the associations for risk score with 
immune cell infiltration and immune-associated 
markers were studied further. 
 
Statistical analysis 
 
Every statistical analyses were carried out by R (version 
3.6.0) or Python (version 3.8.0) and installed packages. 
The “glmnet” package performed the LASSO analysis. 
The “e1017” package was used to carry out the SVM-
RFE approach. The “varSelRF” package was applied to 
the RF-VS algorithm. The “CIBERSORT” program 
estimated the CIBERSORT deconvolution. The 
“survival” and “survivalROC” packages were used to 
perform Kaplan-Meier (KM) survival analyses. The 
“IOBR” package estimated the IOBR algorithm. 
Python’s “sklearn” module was used to run the neural 
network method. The Spearman algorithm was used to 
evaluate the correlation test. When comparing two 
groups, a Wilcoxon test was employed; when 
comparing more than two groups, Kruskal-Wallis tests 

was utilized. To investigate the relationship between 
subgroup and clinicopathological variables, a Chi-
square test was performed. The Cox regression analysis 
yielded hazard ratios (HR) and 95 percent confidence 
intervals (CI). In all tests, P < 0.05 was used to denote 
statistical significance. 
 
Availability of data and materials  
 
The datasets used and analyzed during the current study 
are available from the corresponding author on 
reasonable request. 
 
RESULTS 
 
Differentially expressed lncRNA in melanoma 
 
The normalized matrix data of lncRNA for cutaneous 
melanoma and normal samples (not sun exposed) were 
obtained from the TCGA-SKCM & GTEx, which 
included 466 melanomas and 233 normal samples. 
According to the selection criterion, 1640 differentially 
expressed lncRNAs were screened out in TCGA-SKCM 
& GTEx dataset, where 650 lncRNAs were significant 
up-regulation and 990 lncRNAs were significant down-
regulation (Supplementary Figure 2A). 
 
Identification of validation of prognostic 
DEMlncRNAs signature 
 
According the results of overlap in macrophage 
associated lncRNAs and differentially expressed 
lncRNAs (Supplementary Figure 2B), 447 
DEMlncRNAs were selected for further analysis 
(Supplementary Table 2). The heatmap of 447 
DEMlncRNAs was shown in Supplementary Figure 2C. 
After excluding the patients without survival 
information, the TCGA-SKCM dataset were randomly 
separated into two independent datasets: train samples 
(n = 313) and validation samples (n = 134). Comparison 
of the clinical information between train and validation 
samples, no statistically significant differences were 
observed in two datasets (Table 1). Next, the 
relationships between 447 DEMlncRNAs and overall 
survival time in train sample were assessed by 
univariate Cox regression analysis, and we discovered 
115 DEMlncRNAs were significantly correlated with 
survival (Figure 2A). In order to find the optimum 
signatures, machine learning methods were firstly 
performed to screen out the most important 
DEMlncRNAs in the train dataset. Combined the 
feature selection results from LASSO algorithm (Figure 
2B), RF-VS algorithm (Figure 2C) and SVM-RFE 
algorithm (Figure 2D), we observed that six overlapping 
DEMlncRNAs were shared in these machine learning 
methods (Figure 2E and Supplementary Table 3). 
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Table 1. Clinical characteristics of train and validation dataset. 
 Level Train samples Validation samples P-value 
n  313 134  
Overall survival time (median 
(IQR))  3.02 (1.29, 6.48) 3.03 (1.44, 6.26) 0.823 

Age (median (IQR))  59.00 (49.00, 72.00) 57.00 (46.00, 68.75) 0.115 
Gender (%) Female 118 (37.7) 53 (39.6) 0.793 
 Male 195 (62.3) 81 (60.4)  

Race (%) Asian 8 (2.6) 4 (3.0) 0.967 
 Not reported 7 (2.2) 3 (2.2)  
 White 298 (95.2) 127 (94.8)  
Melanoma clark level value (%)  97 (31.0) 42 (31.3) 0.780 
 I 1 (0.3) 0 (0.0)  
 II 10 (3.2) 8 (6.0)  
 III 55 (17.6) 21 (15.7)  
 IV 116 (37.1) 48 (35.8)  
 V 34 (10.9) 15 (11.2)  
Pathologic_M (%)  20 (6.4) 6 (4.5) 0.473 
 M0 275 (87.9) 123 (91.8)  
 M1 18 (5.8) 5 (3.7)  
Pathologic_N (%)  17 (5.4) 2 (1.5) 0.151 
 N0-1 225 (71.9) 103 (76.9)  
 N2-3 71 (22.7) 29 (21.6)  
Pathologic_T (%)  21 (6.7) 6 (4.5) 0.634 
 T0-1 77 (24.6) 32 (23.9)  
 T2-4 215 (68.7) 96 (71.6)  
Tumor stage (%) I/II nos 4 (1.3) 6 (4.5) 0.367 
 Not reported 26 (8.3) 10 (7.5)  
 Stage I 51 (16.3) 25 (18.7)  
 Stage II 97 (31.0) 41 (30.6)  
 Stage III 118 (37.7) 47 (35.1)  
 Stage IV 17 (5.4) 5 (3.7)  

Tumor status (%)  121 (38.7) 50 (37.3) 0.851 
 Tumor free 122 (39.0) 56 (41.8)  
 With tumor 70 (22.4) 28 (20.9)  

Radiation therapy (%)  123 (39.3) 49 (36.6) 0.275 
 No 169 (54.0) 70 (52.2)  
 Yes 21 (6.7) 15 (11.2)  

Vital status (%) Alive 169 (54.0) 65 (48.5) 0.190 
 Dead 144 (46.0) 68 (50.7)  
 Not reported 0 (0.0) 1 (0.7)  

Sample tissue (%) Metastatic 246 (78.6) 100 (74.6) 0.426 
 Primary tumor 67 (21.4) 34 (25.4)  

Abbreviations: IQR: interquartile range; OS: overall survival. 
 
Further comparison analysis between 58 melanomas 
and 16 normal skin samples in the GSE15605 dataset 
showed that five overlapping DEMlncRNAs had 
significant differences (Figure 2F). Furthermore, we 

used neural network algorithm to well establish a 
diagnostic model with six DEMlncRNAs in TCGA-
SKCM & GTEx dataset (randomly split into train and 
test dataset with ratio = 7:3), which suggested good 
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accuracies and AUC values in train dataset (accuracy = 
0.99 and AUC = 0.99) (Figure 3A, 3D) and test dataset 
(accuracy = 0.99 and AUC = 1.00) (Figure 3B, 3E). 
Even in GSE15605 dataset, our diagnostic model still 
revealed an excellent performance to distinguish normal 
and tumor patients with accuracy = 0.85 and AUC = 
0.93 (Figure 3C, 3F). 
 
Afterwards, the six DEMlncRNAs were subsequently 
performed to develop a risk model in train dataset by 
applying multivariate Cox analysis. Each patient’s risk 
score was finally computed using the risk score formula. 
The risk model consisted of risk scores distribution, 
vital status, overall survival (OS) time, and heat map 
of DEMlncRNAs expression, which respectively 
illustrated in train (Supplementary Figure 3A), 

validation (Supplementary Figure 3B) and GSE65904 
(Supplementary Figure 3C) datasets. Next, we divided 
the melanoma patients in the train dataset into high-risk 
and low-risk groups based on the median value of the 
risk score. With a significant log-rank test of p < 0.001, 
the KM survival curves revealed that patients of high-
risk group had substantially worse survival than low-
risk group (Figure 4A). The ROC curve was drawn to 
estimate the ability of prediction power, and the AUCs 
of the curves were 0.619 at 3-year and 0.676 at 5-year 
respectively (Figure 4B). Moreover, to confirm 
the robustness of the six DEMlncRNAs based model, it 
was further verified in validation and GSE65904 
datasets via the same cutoff value. The patients 
in validation and GSE65904 datasets were 
accordingly divided into high- and low-risk subgroups.  

 

 
 
Figure 2. Prognostic macrophage associated differentially expressed lncRNAs (DEMlncRNAs) feature selection. (A) Forest 
plots of the prognostic DEMlncRNAs in training dataset. (B) Misclassification error distribution with the corresponding λ-logarithm value 
and the left variants of model in The Least Absolute Shrinkage and Selection Operator (LASSO) algorithm. (C) Random forests variable 
selection (RF-VS) algorithm. The lowest point of the curve indicates the lowest out of bag (OOB) error, and the corresponding DEMlncRNAs 
at this point are the best signature selected by RF-VS. (D) Support Vector Machine-Recursive Feature Elimination (SVM-RFE) algorithms. The 
point highlighted indicates the lowest error rate, and the corresponding DEMlncRNAs at this point are the best signature selected by SVM-
RFE. (E) The Venn plot of overlapping DEMlncRNAs selected by LASSO, RF-VS and SVM-RFE algorithms. (F) Boxplots of lncRNA expression 
distribution in GSE15605 dataset. 
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KM curves indicated that significantly distinct survival 
outcome was also observed at high- and low-risk group 
in validation dataset with log-rank p < 0.001 (Figure 
4C) and GSE65904 dataset with log-rank p = 0.026 
(Figure 4E). The 3-, 5-year of AUCs were 0.778, 0.764 
in validation dataset (Figure 4D) and 0.636, 0.622 
(Figure 4F) in GSE65904 dataset respectively. 
 
Independence of the risk score from traditional 
clinical variables 
 
In uni- and multi-variate Cox regression analysis, the 
risk score and conventional clinical parameters were 
utilized to establish if the DEMlncRNAs signature is an 
independent predictive predictor of OS in various 
datasets. The train and validation datasets demonstrated 
that the DEMlncRNAs signature risk score and tumor 
stage were substantially linked with OS in both uni- and 
multi-variate Cox analysis (Figure 5A, 5B). In same 
analyses of an external GSE65904 dataset, the risk 
score was remained strongly linked with OS (Figure 
5C). These findings suggest that the risk score of the 

DEMlncRNAs signature is a significant predictive 
factor that is independent of other conventional clinical 
factors. 
 
Pathway enrichment analysis  
 
Overall, 53 lncRNA-paired protein-coding genes were 
predicted on the ENCORI website and utilized in BP 
term and KEGG pathway enrichment analyses. The 
KEGG enrichment results showed that these paired 
protein-coding genes were considerably enriched in 
biological processes linked to RNA transport, the 
mRNA surveillance pathway, and ribosome synthesis in 
eukaryotes, transcriptional misregulation in cancer, 
Herpes simplex infection and Spliceosome (Figure 4G). 
The BP findings indicated that these paired protein-
coding genes were considerably enriched in pathways 
such as viral gene expression, gene expression 
regulation, epigenetics, positive control of translation, 
and 3′-UTR-mediated mRNA destabilization, regulation 
of telomere maintenance (Figure 4H). Furthermore, 
Based on ImmLnc database, these DEMlncRNAs 

 

 
 
Figure 3. Diagnostic performance of six selected macrophage associated lncRNAs. (A) Confusion matrix of diagnostic prediction 
for melanoma in train dataset. (B) Confusion matrix of diagnostic prediction for melanoma in test dataset. (C) Confusion matrix of 
diagnostic prediction for melanoma in GSE15605 dataset. (D) Receiver operating characteristic (ROC) curve of diagnostic model in train 
dataset. (E) ROC curve of diagnostic model in test dataset. (F) ROC curve of diagnostic model in GSE15605 dataset. 
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significantly associated with immune pathways, 
including TNF family members, natural killer cell 
cytotoxicity, interleukins receptor and cytokine Receptors 
(Figure 4I). The detail results of pathway enrichment 
analysis were listed in Supplementary Table 4. 
 
Associations between risk score and conventional 
variables as well as the immunological 
microenvironment 
 
Box plots demonstrated that clark level, tumor size, 
radiation, vital status, and metastatic status were 
associated with risk score (Figure 6A). To investigate 
the relationships between risk score and immunological 
microenvironment, the CIBERSORT algorithm was 
employed to calculate the relative proportions of 22 
immune cells. Only 133 melanoma samples and 11 

immune cells were selected out for further research 
based on the selection criteria. In overall, the 11 
immune cell subsets in melanoma included memory B 
cells, naïve B cells, resting Mast cells, and M0, M1, M2 
macrophages, resting NK cells, CD 8 T cells, follicular 
helper T cells, regulatory Tregs T cells and CD4 
memory T cells have been activated, whose sum of 
mean proportions was more than 75% in all melanoma 
samples (Figure 6B). The differences in immune cell 
infiltrations between high- and low-risk groups were 
explored, and the findings revealed that Macrophages 
M0, M1, CD8, follicular helper, regulatory Tregs and 
CD4 memory activated T cells were differently 
infiltrated (Figure 6C). Afterwards, a total of 25 
promising immune associated signatures were scored 
and classified into six categories which contained 
immune related biomarker, immune microenvironment,  

 

 
 
Figure 4. Kaplan–Meier survival analysis and pathway enrichment. (A) Kaplan–Meier survival analysis of risk model in train 
dataset. (B) 3, 5 years of the receiver operating characteristic (ROC) curves in train dataset. (C) Kaplan–Meier survival analysis of risk model 
in validation dataset. (D) 3, 5 years of the receiver operating characteristic (ROC) curves in validation dataset. (E) Kaplan–Meier survival 
analysis of risk model in GSE65904 dataset. (F) 3, 5 years of the receiver operating characteristic (ROC) curves in GSE65904 dataset. (G) 
Enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of lncRNA-related mRNAs: X-axis means the -log10(p-value) of 
enrichment, Y-axis means pathway terms. (H) The biology process (BP) pathway enrichment of lncRNA-related: X-axis means the -log10(p-
value) of enrichment, Y-axis means pathway terms. (I) The immune related pathway enrichment: X-axis means the -log10(p-value) of 
enrichment, Y-axis means pathway terms. 
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immune suppression, immune exclusion, immune 
exhaustion, T-cell or B-cell receptor (TCR_BCR). The 
heatmaps delineated a different immune expressed 

pattern between high and low risk phenotype regardless 
by using PCA (Figure 7A), ssGSEA (Figure 7B) or Z-
score (Figure 7C) methods. 

 

 
 
Figure 5. Forest plot of risk score and traditional clinical variables in uni- and multivariate Cox regression. (A) Hazard Ratios 
(HRs) of uni- and multivariate Cox analysis in TCGA-SKCM train dataset. (B) HRs of uni- and multivariate Cox analysis in TCGA-SKCM 
validation dataset. (C) HRs of uni- and multivariate Cox analysis in GSE65904 dataset. 

4526



www.aging-us.com 10 AGING 

Comparison of risk score and previously identified 
prognostic indicators 
 
In order to correlate our assessment of risk score with 
other established prognostic markers, several well 

established prognostic markers such as transcriptomic 
classification, mutation subtype and BRAF mutant for 
cutaneous melanoma were obtained from the previous 
TCGA study [25]. The TCGA research proven that 
patient in “immune” subtype of transcriptomic 

 

 
 
Figure 6. Relationships between risk score with clinical characteristics and immune microenvironment. (A) The risk score 
distribution of clinical variables which including age, clark level, tumor size, stage, radiation, vital status and metastatic status. (B) The 
landscape of immune infiltration between high and low risk groups in TCGA-SKCM dataset. (C) The difference of 11 immune infiltration 
between high and low risk groups; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. 
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classifications (Figure 8A), “BRAF Hotspot Mutants” 
of mutation subtypes (Figure 8C) and BRAF mutant 
group (Figure 8E) have a good prognosis, respectively. 
The risk distribution of these well established 
prognostic markers suggested that “MITF low” subtype 
(Figure 8B), “Triple WT” mutant subtype (Figure 8D) 
and BRAF wildtype group (Figure 8F) have a higher 
risk score than “immune” subtype, “BRAF Hotspot 
Mutants” subtypes and BRAF mutant group, 
respectively. Most importantly, compared with the 5 
years AUC values of these established prognostic 
markers (transcriptomic classification, mutation 
subtype, tumor stage and BRAF mutant), our signature 
can achieve higher accuracy value (Figure 8G). 
 
Potential indicator for melanoma immunotherapy 
 
The relationship between risk score and immune 
checkpoint gene expression (PD-1 and CTLA-4) was 
investigated further to assess the potential 
responsiveness to immunotherapy. According to the 

Spearman tests, the estimated risk score was 
substantially negatively linked with PD-1 expression (r 
= −0.4883; p < 0.0001) (Figure 9A) and CTLA-4 
expression (r = −0.2574; p < 0.0001) (Figure 9C). The 
stratified analysis indicated that PD-1 (Figure 9B) and 
CTLA-4 (Figure 9D) in the low risk subgroup had 
significant higher expression levels than those in high 
risk subgroup. The cross-talk influences of the risk 
score and immune checkpoint genes on patient survival 
were further analyzed. Based on the combination of risk 
score and immune checkpoint genes, these patients were 
classified into four categories, and KM curve analyses 
were performed to assess the various survival outcomes 
among the four subgroups. When compared to the data, 
the risk score was able to discriminate patients’ 
outcomes with opposing levels of immune checkpoint 
genes (Figure 9E, 9F). Patients with high risk scores 
and low levels of immune checkpoint genes fared the 
poorest. Patients with low risk scores and high levels of 
immune checkpoint genes, on the other hand, are more 
likely to survive longer among the four groups. 

 

 
 
Figure 7. Associations between risk score and immune signatures. (A) Heatmap for immune related signatures between high and 
low risk subgroup based on Principal Component Analysis (PCA) method. (B) Heatmap for immune related signatures between high and low 
risk subgroup based on Single-sample Enrichment Analysis (ssGSEA) methods. (C) Heatmap for immune related signatures between high 
and low risk subgroup based on Z-score method. 
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Because of the strong association between the risk score 
and immune checkpoint genes, we postulated that the 
risk score may be used to predict response to melanoma 
immunotherapy. As a consequence, we conducted the 
TIDE method and subclass mapping to predict 
melanoma who responded to immune-checkpoint 
inhibitors (CTLA-4 and PD-1) [22]. Strikingly, the low 
risk group reacts better to anti-PD-1 therapy 
(Bonferroni adjusted P = 0.007) (Figure 10A). Patients 
in the high-risk category, on the other hand, do not 
respond to anti-CTLA-4 therapy (Bonferroni corrected 
P = 0.039) (Figure 10A). To validate our hypothesis, 
participants in the Riaz et al. and Hugo et al. melanoma 
studies who received anti-PD-1 treatment were divided 
into low and high risk score groups [20, 21]. Notably, 
individuals in high risk group have a poor prognosis 
regardless in Hugo et al. cohort (Figure 10B) or Riaz et 
al. cohort (Figure 10C). Furthermore, in the Hugo et al 
cohort (Figure 10D) and Riaz et al. cohort (Figure 10E), 
the non-respond group had a higher risk score than the 
response group for anti-PD-1 immunotherapy. 

Gene set enrichment analysis (GSEA) 
 
GSEA was used to examine the distinct activation of 
cancer hallmarks between low and high risk groups for 
investigating the potential biological and molecular 
mechanism of the lncRNA signature. We found that 10 
positive linked pathways were enriched in the low risk 
group, which included interferon alpha and gamma 
response, allograft rejection, inflammatory response, 
epithelial mesenchymal transition, TNFA signaling 
through NFKB (Figure 10F). Oxidative 
phosphorylation, MYC targets, estrogen response late, 
estrogen response early, and KRAS signaling were all 
actively related with the high risk group (Figure 10F). 
 
DISCUSSION 
 
The risk and morbidity of melanoma patients increase 
rapidly. Once it has spread, it is much harder to improve 
the chance of melanoma-specific survival at all [27]. 
Cancer immunotherapy is currently recognized as a 

 

 
 
Figure 8. Comparations between risk score and previously established prognostic markers in TCGA-SKCM. (A) Kaplan–Meier 
survival curve of transcriptomic subtypes. (B) The risk score distribution of transcriptomic subtypes (named “immune”, “keratin” and 
“MITF-low). (C) Kaplan–Meier survival curve of mutation subtypes (named BRAF subtype, RAS subtype, NF1 subtype and Triple Wild-Type 
subtype). (D) The risk score distribution of mutation subtypes. (E) Kaplan–Meier curve of BRAF mutant. (F) The risk score distribution of 
BRAF mutant and wildtype. (G) The 5 years area under the curve (AUC) of risk score and prognostic markers associated with overall 
survival. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. 
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potential treatment approach that is commonly 
employed in melanoma patients [28, 29]. Nevertheless, 
not all melanomas are responding to immunotherapy 
and even in the subtype of those tumor. These 
differential outcomes not only caused by the 

heterogeneity of tumor, but also resulted in tumor 
microenvironment composition [30, 31]. Immune cells 
of the tumor microenvironment are critically involved 
in response of immunotherapy. As a key component of 
infiltrating immune cells, macrophage has been 

 

 
 
Figure 9. Effect of the risk score and immune checkpoint gene expression on patient survival. (A) Correlation between the risk 
score and PD-1 gene expression. (B) Expression distribution of PD-1 gene in the high- and low-risk groups stratified by risk score. (C) 
Correlation between the risk score and CTLA4 gene expression. (D) Expression distribution of CTLA4 gene in the high- and low-risk groups 
stratified by risk score. (E) Kaplan–Meier survival curve of four groups stratified by the risk score and PD-1 expression. (F) Kaplan–Meier 
survival curve of four groups stratified by the risk score and CTLA4 expression. 
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identified that it’s activities could dysregulate immune 
activity, enhance tumor metastasis, upregulate immune 
response evasion and effect other immune cells [32–34]. 

Besides, recent studies revealed that lncRNAs are 
widely regulated cancer immunity. Several bigdata 
analyses suggested that the cell-type specificity of 

 

 
 
Figure 10. Immunotherapy response prediction. (A) Submap analysis manifested that low risk group could be more sensitive to the 
PD-1 inhibitor (Bonferroni-corrected P = 0.07), and high risk group are insensitive to anti-CTLA-4 therapy (Bonferroni corrected P = 0.039); 
(B) Kaplan–Meier survival analysis of risk model in Hugo et al melanoma study (accession number: GSE78220); (C) Kaplan–Meier survival 
analysis of risk model in Riaz et al melanoma study (accession number: GSE91061); (D) The risk score distribution of anti-PD-1 therapy 
between response and non-response in GSE78220; (E) The risk score distribution of anti-PD-1 therapy between response and non-response 
in GSE91061; (F) Gene set enrichment analysis (GSEA) of high vs low risk scores groups in cancer hallmark pathways. 
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lncRNA can work as a potential marker for the 
subpopulation of immune cells [35, 36]. Hence, it is 
necessary to elucidate the accurate molecular regulation 
of macrophage polarization to increase the efficacy of 
tumor-infiltrated macrophage targeted methods and 
immunotherapy response in melanoma. 
 
Therefore, in this study, multiple machine learning 
algorithms were applied to select potential lncRNAs 
from the list of macrophage associated lncRNAs and 
established a diagnostic and prognostic signature, 
which also was verified in validation and external sets. 
The diagnostic and prognostic signature contained six 
lncRNAs, including PART1, LINC00968, LINC00954, 
LINC00944, LINC00518 and C20orf197. Among these 
macrophage-related lncRNAs, several have been 
demonstrated to link with cancer or immunological 
response. For example, the PART1 lncRNA can 
modulate Toll-like receptor pathways to effect the 
immune response and cell apoptosis [37]. Recent 
experimental results manifested that the inhibition of 
LINC00968 can significantly decrease the proliferation 
of tumor cell and could be regard as an oncogene in 
various cancers [38, 39]. Luan at el also suggested that 
LICN00518 was highly expressed in melanoma tissues 
and could be an independent risk indicator for 
melanoma patients [40]. The enrichment of these 
lncRNAs in immune response-related pathways, such 
as TNF family members, natural killer cell cytotoxicity, 
and interleukin receptors, suggests their potential 
involvement in modulating the interactions between 
tumor-infiltrating macrophages and the immune 
microenvironment within melanoma. These lncRNAs 
may exert regulatory effects on the expression of key 
immune-related genes, cytokines, and receptors, 
thereby influencing the polarization and function of 
macrophages and other immune cells in the tumor 
microenvironment. Furthermore, the association of 
these lncRNAs with cytokine receptors and RNA 
synthesis-related signaling pathways, including mRNA 
surveillance, RNA transport, and transcriptional 
misregulation in cancer, indicates their potential roles 
in coordinating the expression and processing of 
immune-related genes and signaling molecules. It is 
conceivable that these lncRNAs may participate in the 
post-transcriptional and post-translational regulation of 
immune response genes, affecting the secretion and 
activity of cytokines and chemokines involved in 
melanoma-immune cell crosstalk. 
 
To estimate the accurate ability of survival prediction, 
we also built risk score model and classified 
melanomas into high- or low-risk group. The KM 
survival curves showed that low-risk patients have a 
good prognosis. Compared with the traditional clinical 
factors, the multivariate Cox results in different cohorts 

suggested that the risk score might be independently 
considered as a prognostic biomarker. Moreover, the 
distribution of risk score in clinical features 
manifiested that the high risk score was closely 
associated with high clark level, large tumor size, no 
radiation and metastasis. Besides, the high-risk patients 
had higher macrophage infiltration and lower T cell 
infiltration than low risk group. T cells act as cytotoxic 
lymphocytes, and once fully cytotoxic, they are critical 
in suppressing the proliferation of cancer cells and 
growth through the immune system [41]. However, the 
increasingly infiltrated myeloid cells such as 
macrophages, and dendritic cells would enhance cancer 
cells expansion, immune surveillance evasion, and 
eventually lead to metastasis [42, 43]. Most 
importantly, we astonishingly observed that our 
macrophage associated lncRNAs signature defined 
low-risk melanoma patients who were belong to 
immune inflamed subtype and have strong immuno-
stimulating functions of suppression, exclusion, and 
exhaustion. Therefore, it goes without saying that our 
lncRNA related signature closely associated with 
immune activation and prognosis of melanoma. 
Furthermore, the risk score distributions of 
transcriptomic classification, mutation subtype and 
BRAF mutant showed that “keratin”, “Triple WT” 
subtypes and wildtype of BRAF were significantly 
higher than “immune”, “BRAF Hotspot Mutants” and 
mutant of BRAF in melanoma, which was in line with 
prior findings. Notably, when compared to the AUC 
values of well-established prognostic biomarkers such 
as stage, transcriptome categorization, mutation 
subtype, and BRAF mutant over a 5-year period, our 
lncRNA associated biomarker achieves a higher 
accuracy value. 
 
At present, checkpoint blockade immunotherapies were 
emerging as a promising strategy and reveal a great 
benefit in cancer therapy. Especially, PD-1 and CTLA-4 
blocking antibodies are widely used in clinical 
melanoma treatment [44–46]. However, only a portion 
of patients are responding to immune checkpoint 
inhibitor therapy. Therefore, it’s essentially to identify 
the predicted roles for immune checkpoint 
immunotherapy responses. When checking the 
associations between DEMlncRNAs signature and PD-
1/CTLA-4, the risk score of DEMlncRNAs signature 
showed a significantly correlated with the PD-1 and 
CTLA-4 expression. In addition, the combination of 
survival analyses between DEMlncRNAs signature and 
immune checkpoint genes indicated an interacted 
influence on the prognosis of patients. Our results are 
consistent with recent researches that the PD-1 
expression of tumor-infiltrating macrophage negatively 
correlates with the function of macrophage for against 
tumor cells [47]. The synthesis of PD-1 blockade with 
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macrophage associated treatment will enhance 
immunotherapy effect in cancer therapy [48]. Hence, 
our DEMlncRNAs related signature might be used to 
predict melanoma treatment response. However, it is 
uncertain whether types of melanomas are amenable to 
immune checkpoint inhibitor treatment. Thus, the 
subgroup with varied risk scores was investigated in 
many published datasets that reacted to immune-
checkpoint inhibitors. We were surprised to discover 
that the low-risk group is likely to respond to anti-PD-1 
treatment, whereas the high-risk group is insensitive to 
anti-CTLA-4 treatment, which could supply effective 
solutions to aid in the final clinical decision and help 
patients with advanced melanoma achieve the highest 
remission rate. 
 
Moreover, we discovered that immunological pathways 
such interferon alpha and gamma response, 
inflammatory response, allograft rejection, and TNFA 
signaling through NFKB were favorably active in the 
low-risk phenotype using GSEA. Interferon alpha and 
gamma signaling is well recognized as an important 
effector in anti-cancer immune response [49]. NFKB is 
essential for the control of immunological responses 
and inflammation [50]. As a result, it’s clear to see why 
low-risk melanoma patients have a greater survival rate 
and respond better to immunotherapy. 
 
CONCLUSION  
 
In summary, our study comprehensively identified 
several lncRNAs related signatures by integrative 
analysis of immune related lncRNA, tumor-infiltrating 
macrophage and clinical features. And we also proven 
the efficiency of signature in predicting prognosis and 
immunotherapy response of melanoma, which may give 
a more simple and reliable prediction for melanoma 
patients and provide a framework to evaluate potential 
population for immunotherapy. Furthermore, to the best 
of our knowledge, this is the first study to investigate 
the tumor-infiltrated macrophage associated lncRNA 
signature, emphasizing the role of lncRNAs in 
macrophage infiltration and paving the way for future 
individual melanoma immunotherapy. 
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SUPPLEMENTARY MATERIALS 
 
Supplementary Figures 
 

 
 
Supplementary Figure 1. The prognostic value of macrophage in TCGA-SKCM by multiple immune deconvolution methods. 
(A) Heatmap of multivariable Cox proportional hazard model for macrophage in TCGA-SKCM datasets. (B) Heatmap of correlation between 
macrophage and BRAF mutant. (C) Boxplot of macrophage between BRAF mutant and BRAF wildtype. 
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Supplementary Figure 2. Selection of macrophage associated differentially expressed lncRNAs (DEMlncRNAs). (A) Volcano plot 
of differentially expressed lncRNAs between normal and melanoma. The highly differentially expressed lncRNAs were labeled (|Log2FC|>10). 
(B) The Venn plot of macrophage associated differentially expressed lncRNAs (DEMlncRNAs). (C) Heat map of the DEMlncRNAs in TCGA-SKCM 
dataset. 
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Supplementary Figure 3. Risk score model. (A) The risk model in train dataset: the distribution of risk score which are arranged in 
ascending order from left to right; Overall survival (OS) time and life status; The prognostic lncRNA expression patterns. (B) The risk model 
in validation dataset: the distribution of risk score which are arranged in ascending order from left to right; Overall survival (OS) time and 
life status; The prognostic lncRNA expression patterns. (C) The risk model in GSE65904 dataset: the distribution of risk score which are 
arranged in ascending order from left to right; Overall survival (OS) time and life status; The prognostic lncRNA expression patterns. 
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Supplementary Tables 
 
Please browse Full Text version to see the data of Supplementary Tables 1, 2 and 4. 
 
 
Supplementary Table 1. The correlation between macrophage and lncRNAs in cutaneous melanoma. 

 
Supplementary Table 2. The differentially expressed lncRNAs between tumor and normal groups in TCGA-
SKCM&GTEx. 

 
Supplementary Table 3. Univariate regression analysis for the six selected DEMlncRNAs. 

lncRNA_id lncRNA_symbol HR z-value p-value Lower Upper 
ENSG00000152931 PART1 1.075214 2.727958 0.006373 1.020626 1.132721 
ENSG00000228784 LINC00954 0.924471 −2.23804 0.025218 0.863028 0.99029 
ENSG00000246430 LINC00968 0.931976 −2.38642 0.017013 0.879584 0.98749 
ENSG00000183674 LINC00518 1.098574 2.486129 0.012914 1.020096 1.18309 
ENSG00000256128 LINC00944 0.940095 −2.88669 0.003893 0.90148 0.980364 
ENSG00000176659 C20orf197 0.920155 −2.21562 0.026718 0.854853 0.990444 

 
 
Supplementary Table 4. The pathway analysis of the six selected DEMlncRNAs. 
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