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INTRODUCTION 
 

Multiple myeloma (MM) is a malignancy of plasma 

cells in the bone marrow, and mainly occurs among 

older adults (median age around 70) with clinical 

manifestations such as hypercalcemia, anemia, renal 
insufficiency, and pathological fractures [1–3]. In the 

last two decades, the use of novel drugs such as 

proteasome inhibitors (PI), immunomodulatory drugs, 

antibody-based targeting immunotherapy, and chimeric 

antigen receptor (CAR) T-cell therapy have improved 

the overall survival rate of MM patients. However, it 

remains incurable as most patients unavoidably relapsed 

and became drug resistance [4–6]. Thus, there is an 

urgent need to find more potential drugs/targets and 

develop more therapeutic strategies. 
 

Since the approval of the first designed kinase inhibitor 

(imatinib) in 2001 and the first anti-EGFR inhibitor 

(Gefitinib) in 2003 [7, 8], great efforts have been 
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ABSTRACT 
 

Inhibitors of Epidermal growth factor receptor tyrosine kinase (EGFR-TKIs) are producing impressive benefits to 
responsive types of cancers but challenged with drug resistances. FHND drugs are newly modified small 
molecule inhibitors based on the third-generation EGFR-TKI AZD9291 (Osimertinib) that are mainly for targeting 
the mutant-selective EGFR, particularly for the non-small cell lung cancer (NSCLC). Successful applications of 
EGFR-TKIs to other cancers are less certain, thus the present pre-clinical study aims to explore the anticancer 
effect and downstream targets of FHND in multiple myeloma (MM), which is an incurable hematological 
malignancy and reported to be insensitive to first/second generation EGFR-TKIs (Gefitinib/Afatinib). Cell-based 
assays revealed that FHND004 and FHND008 significantly inhibited MM cell proliferation and promoted 
apoptosis. The RNA-seq identified the involvement of the MAPK signaling pathway. The protein chip screened 
PDZ-binding kinase (PBK) as a potential drug target. The interaction between PBK and FHND004 was verified by 
molecular docking and microscale thermophoresis (MST) assay with site mutation (N124/D125). Moreover, the 
public clinical datasets showed high expression of PBK was associated with poor clinical outcomes. PBK 
overexpression evidently promoted the proliferation of two MM cell lines, whereas the FHND004 treatment 
significantly inhibited survival of 5TMM3VT cell-derived model mice and growth of patient-derived xenograft 
(PDX) tumors. The mechanistic study showed that FHND004 downregulated PBK expression, thus mediating 
ERK1/2 phosphorylation in the MAPK pathway. Our study not only demonstrates PBK as a promising novel 
target of FHND004 to inhibit MM cell proliferation, but also expands the EGFR kinase-independent direction for 
developing anti-myeloma therapy. 
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devoted to the rational design and improvement of new 

kinase inhibitors. There are two main types of EGFR 

inhibitors: monoclonal antibodies (mAbs, such as 

Cetuximab) and small molecule tyrosine kinase 

inhibitors (TKIs, including Gefitinib and Afatinib as the 

1st and 2nd generation) [9]. These EGFR-TKIs are 

mainly used to treat NSCLC harboring EGFR exon-19 

deletions and the exon-21 L858R mutation [10–12]. 

However, most patients developed severe TKI drug 

resistance within 1-2 years mainly due to the additional 

acquired T798M mutation in EGFR. Third-generation 

EGFR-TKI AZD9291 (Osimertinib) was highly 

influential in EGFR-T798M mutated NSCLC, but the 

adverse effects especially cardiotoxicity are severe [13, 

14]. Despite impressive effect on NSCLC patients, 

EGFR-TKI therapies have limited efficacies and have 

been clinically challenged by the intrinsic and acquired 

resistance in the clinic [15, 16]. In order to reduce its 

cardiotoxicity and overcome the drug resistance caused 

by T790M/L858R double mutations meanwhile keeping 

good anti-tumor activity in vivo and ex vivo, a series of 

5,6-dihydro-4H-pyrrolo[3,2,1-ij]quinoline derivatives 

(namely FHND serial new drugs pipeline from Jiangsu 

Chia Tai Fenghai Pharmaceutical Co., Ltd., including 

FHND004 and FHND008) were synthesized and 

obtained on the basis of AZD9291 structure via 

modifying the pyrimidine ring or expanding an indole 

ring [17, 18]. Additionally, considering the complicate 

intra- and inter-tumor heterogeneity, the successful 

applications of EGFR-TKIs to other cancers are less 

certain, largely because these kinase-activating 

mutations and T790M frequently occur in NSCLC and 

glioblastoma, but are rarely found in other types of 

cancers [19, 20]. Though it was reported that 

first/second generation EGFR-TKIs (Gefitinib/Afatinib) 

exhibit moderate or no inhibition in NRAS wildtype or 

mutant MM cells (LP-1 and L-363, respectively) within 

the EGFR signaling pathway [21], inadvertently, we 

found that the FHND004 from modifying the third-

generation EGFR-TKI AZD9291 (Osimertinib) might 

have a satisfactory antitumor effect in MM cells (ARP1 

and H929). Therefore, this study aims to further explore 

the FHND drug’s anti-myeloma effect, downstream 

targets and underlying mechanisms. 

 

In the present study, we verified that FHND004 could 

inhibit MM proliferation both in vitro and in vivo. Its 

potential downstream target, PBK (PDZ-binding kinase, 

also known as T-lymphokine-activated killer cell-

originated protein kinase, TOPK), was distinguished by 

proteomic chip and RNA-seq methods. The mechanistic 

studies indicated that FHND004 could inhibit  

ERK1/2 phosphorylation (p-ERK1/2) by targeting  

PBK. These findings suggested that using FHND004  

to target PBK might be a promising treatment strategy 

for MM. 

RESULTS 
 

FHND004 and FHND008 inhibit cellular proliferation 

in MM cell lines 

 

To determine the antitumor activity of FHND drugs  

in MM, the MTT assays were performed in both  

ARP1 and H929 cells for a series of FHND drugs 

(Supplementary Table 1). Among them, FHND004 and 

FHND008, based on the marketed AZD9291 

(Osimertinib) structure with an expanded indole ring or 

a modified pyrimidine ring, respectively (Figure 1A), 

had a relatively better inhibitory activity on the cell 

viability of MM cells. FHND004 had an impressive 

anti-proliferation activity in these two MM cells within 

three days, while FHND008 had similar trends but with 

higher IC50 values (Figure 1B, 1C). Furthermore, the 

Annexin V/PI staining assay showed that FHND004 

and FHND008 could apparently trigger a higher level of 

apoptosis in these two MM cells at the dosage of 4 μM 

(Figure 1D, 1E). Western Blotting (WB) results 

confirmed the up-regulated expression of apoptosis 

markers: the cleaved PARP (poly ADP-ribose 

polymerase) and the cleaved caspase-3 after FHND004 

and FHND008 treatments (Figure 1F, 1G and quantified 

in Supplementary Figure 1A, 1B). In addition, the flow 

cytometry of cell cycle results demonstrated that 

treatment using FHND004 and FHND008 increased the 

proportion of cells in the G0/G1 phase and decreased 

the proportion of cells in the G2/M phase (Figure 1H, 

1I). Collectively, these results indicate that FHND004 

and FHND008 possess inhibitory activity on MM cell 

proliferation. 

 

FHND004 and FHND008 decrease the proliferation 

of MM cells through the MAPK pathway 

 

To further investigate the potential targets and the 

downstream signaling pathways of FHND004 and 

FHND008, we performed transcriptomic RNA-seq in 

these two MM cell lines with or without 

FHND004/FHND008 treatment. The volcano plots 

showed the tens of or hundreds of differentially 

expressed genes (DEGs) upon FHND004 or FHND008 

treatment in ARP1 WT and H929 WT cells, 

respectively (Figure 2A). The KEGG analysis for these 

DEGs showed that the MAPK signaling was 

significantly upregulated in MM cells after the 

treatment of FHND004 or FHND008 (Figure 2B, 2C). 

Therefore, we next verified their effect on the 

expression of key MAPK markers, namely ERK1/2 and 

its phosphorylated form (p-ERK1/2). The WB results 

confirmed that the expression profile of p-ERK1/2 

protein level but not the total ERK1/2 was significantly 

reduced by the addition of FHND004 (Figure 2D and 

quantified in Supplementary Figure 1C) in ARP1 WT 
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Figure 1. FHND004 and FHND008 inhibit cellular proliferation in MM cell lines. (A) The chemical structure of FHND004 and 

FHND008 were modified from the marked third-generation EGFR-TKI AZD2921. (B, C) Effects of FHND004 and FHND008 on viability of ARP1 
WT and H929 WT cells. (D) Effects of 24 h treatment with FHND004 (4 μM) on cell apoptosis of ARP1 WT and H929 WT cells were determined 
by flow cytometry. (E) The apoptotic rate of ARP1 WT and H929 WT cells after 24 h treatment with FHND004 (4 μM) and FHND008 (4 μM) 
was determined quantitatively as histograms. (F, G) The expressions of PARP, cleaved caspase-3 and β-actin were detected by WB analysis 
after 24 h treatment with FHND004 (4 μM) and FHND008 (4 μM). (H) Effects of 48 h treatment with FHND004 (4 μM) on the cell cycle phases 
distribution of ARP1 WT and H929 WT cells was determined by flow cytometry. (I) The distributions of different cell cycle phases of ARP1 WT 
and H929 WT cells after 48 h treatment with FHND004 (4 μM) and FHND008 (4 μM) were determined quantitatively. The data of FHND004 
were expressed as the mean ± SD; p < 0.05 (*), p < 0.01 (* *) and p < 0.001 (* * *), n = 3. 
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Figure 2. FHND004 and FHND008 decrease the proliferation of MM cells through the MAPK pathway. (A) The volcano plot of 

gene expression in ARP1 WT and H929 WT with or without the treatment of FHND004 and FHND008, the red dots indicating significantly 
upregulated genes and green dots indicating significantly downregulated genes, and blue dots indicating those genes with no significant 
differential expressions. (B, C) KEGG pathway analysis of the RNA-seq data indicated that FHND004 and FHND008 were associated with the 
MAPK signaling pathway. (D, E) WB analysis of ERK1/2 and p-ERK1/2 expression in ARP1 WT, H929 WT with or without treatment of 
FHND004 (4 μM) (D) and FHND008 (4 μM) (E). 
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and H929 WT cells, and similar results were obtained 

after the treatment of FHND008 (Figure 2E and 

quantified in Supplementary Figure 1D). Therefore, it is 

suggested that FHND004 and FHND008 could suppress 

MM cells proliferation via the MAPK pathway. 

 

PBK is identified as a novel target of FHND004 and 

FHND008 

 

To explore the direct targets of FHND004 and 

FHND008, we employed HuProt™ human proteomic 

chip V4.0 containing 21000 human proteins with 81% 

coverage and 89% full-length genes, which is suitable 

for the global high-throughput screen of protein-

protein interaction and targets of small molecules [22–

24]. According to the experimental standards, the 

protein chip analysis using biotinylated FHND drugs 

with positive and negative controls screened out the 

top 14 protein candidates (Figure 3A, 3B, and 

Supplementary Table 2). Among them, we next 

focused on PBK because only the biological process of 

PBK is related to the negative regulation of MAPK 

(Figure 3C). At the same time, the GEP analysis of 

public clinical datasets (GSE2658, GSE5900) for MM 

cohorts demonstrated that PBK mRNA was 

increasingly expressed from the “premalignant” 

plasma cells with monoclonal gammopathy of un-

determined significance (MGUS, n = 44) to plasma 

cells of MM patients (MM, n = 351), compared with 

normal plasma cells (NP, n = 22) during MM 

progression (Figure 3D). Additionally, the Kaplan-

Meier analysis indicated that the higher PBK 

expression favored the poorer clinical outcomes for 

MM patients from the cohorts of TT2 (total therapy 2 

from University of Arkansas, GSE2658) as well as 

HOVON65 (hematology-oncology group-65 from the 

Dutch-Belgian cooperative trial group, GSE19784) 

(Figure 3E, 3F). Thus, we speculate that PBK may be 

a novel direct target of FHND004 and FHND008. 

 

The affinity of FHND004 to PBK protein is better 

than FHND008 

 

To further confirm the interactions between PBK and 

FHND004/FHND008, we then performed molecular 

docking of FHND004 and FHND008 with the PBK 

complex (PDB: 5J0A). The result showed that 

FHND004 and FHND008 could be docked into PBK 

via interaction with several critical residues, such as 

N124 and D125 (Figure 4A–4C). Consistently, the 

MST results showed that the binding affinity of 

FHND004 with PBK (3.1 μM) was apparently better 

than that of FHND008 (73.9 μM) (Figure 4D). 
Meanwhile, double mutation of PBK at sites of N124 

and D125 from asparagine and aspartic acid to alanine 

greatly reduced the affinity of FHND004 (99.5 μM) 

and FHND008 (3083.7 μM) by 32-fold and 41.7-fold, 

respectively (Figure 4E). These results support that 

PBK is the direct target of FHND004 and FHND008  

in vitro. 

 

FHND004 exerts anti-tumor activity in CDX and 

PDX mouse models 

 

To verify whether FHND004 could inhibit MM 

progress in vivo, we followed to construct a 5TMM3VT 

cell-derived xenograft (CDX) MM mouse model at first 

(Figure 5A). The FHND004 treatment (20 mg/kg body 

weight, twice per a week) delayed the onset of hind 

limb weakness and significantly prolonged the survival 

of myeloma mice than control group (p < 0.05) (Figure 

5B). In addition, we also verified the anticancer effect 

of FHND004 on MM cell proliferation by constructing 

a patient-derived xenograft (PDX) mouse model. The 

administration of FHND004 obviously inhibited the 

tumor size compared with the PBS-treated control 

group (Figure 5C, 5D). Consistently, the smaller 

average volume and mean weight of tumor mass from 

the FHND004 group were statistically significant 

compared to the PBS-control group (p < 0.05) (Figure 

5E, 5F). Collectively, these data reveal that FHND004 

exerts anti-tumor activity in vivo. 

 

FHND004 targets PBK to inhibit MM cell 

proliferation 

 

To further examine the inhibitory effect of drug 

FHND004 on the proliferation of MM cells through 

targeting PBK, we constructed ARP1 and H929 cells 

with stable PBK overexpressing (PBK-OE), which was 

verified by WB (Figure 6A and quantified in 

Supplementary Figure 2A). The cell viability assay of 

CCK-8 results showed that PBK-OE cells had a higher 

proliferation rate compared to control wild type (WT) 

cells (Figure 6B). Additionally, PBK overexpression 

seemed to cause MM cells more insensitive to 

FHND004, as evidenced by the IC50/μΜ value (in 

ARP1 WT: 5.772 vs PBK-OE: 6.226; H929 WT: 7.081 

vs PBK-OE: 10.798) (Figure 6C, 6D). Furthermore, 

the apoptosis rate of the PBK-OE treated group was 

significantly higher than that in PBK-WT treated 

group, indicating that FHND004 targeting PBK could 

promote the apoptosis of MM cells (Figure 6E–6G). 

Consistent with previous results, the cell cycle analysis 

showed that overexpression of PBK significantly 

enhanced the proportion of cells in the G2/M phase, 

while FHND004 significantly decreased the proportion 

of the G2/M phased cells and increased the proportion 

of the G0/G1 phased cells, especially for H929 cells 
(Figure 6H–6J). Therefore, it is indicated that 

FHND004 inhibits MM cell proliferation via targeting 

PBK. 
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Figure 3. PBK is identified as a novel target of FHND004 and FHND008. (A) The protein chip scan. The red arrow pointed to the 

positive control, the blue arrow pointed to the negative control, yellow arrow indicated the PBK protein. (B) Top 14 potential FHND008-
associated proteins, including PBK. SNR: signal-to-noise ratio. (C) Biological processes of PBK protein based on the Gene ontology annotation, 
PBK is related to the negative regulation of MAPK. (D) The mRNA levels of PBK were significantly increased in MM samples. The signal level of 
PBK was shown on the y-axis. Patients designated as healthy donors with normal bone marrow plasma cells (NP, n = 22), monoclonal 
gammopathy of undetermined significance (MGUS, n = 44), or multiple myeloma (MM, n = 351) were sorted on the x-axis. (E, F) Kaplan-Meier 
analysis revealed the association of PBK expression with overall survival (OS) in TT2 (E) and HOVON65 (F) cohorts by log-rank test. Events/N 
means events of death/total patients. The data were expressed as the mean ± SD; p < 0.05 (*), p < 0.01 (* *) and p < 0.001 (* * *). 
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Figure 4. The affinity of FHND004 to PBK protein is better than FHND008. (A) The structure of PBK (PDB: 5J0A). (B, C) The molecular 

docking of FHND004 and FHND008 with PBK. The green stick in B is FHND004, the red stick in C is FHND008, the PBK is represented by a 
yellow cartoon, and the hydrogen bond is represented by a dotted line. (D) MST results of FHND004 and FHND008 on PBK wild type. The 
results showed that the affinity between FHND004 and PBK was better than that of FHND008. (E) MST results after double mutation of 
N124A and D125A in PBK. The results showed that the affinity of PBK double mutation to FHND004 and FHND008 was significantly 
decreased. 
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Figure 5. FHND004 exerts anti-tumor activity in CDX and PDX mouse models. (A, B) FHND004 treatment improved the survival of 

MM-prone C57BL/KaLwRij mice (n = 10, i.g. 20 mg/kg, twice a week). The table at the bottom of the survival curve showed the number of 
subjects at risk at each time point. (C, D) Tumor images of PDX mice in the control group (PBS) and the FHND004-treated group (n = 6, 
FHND004: i.g. 20 mg/kg, twice a week). (E) The time course of tumor growth in the control group (PBS) and the FHND004 treated group.  
(F) Mean tumor weights of the control group (PBS) and the FHND004 treated group. The data were expressed as the mean ± SD; p < 0.05 (*), 
p < 0.01 (* *) and p < 0.001 (* * *). 
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Figure 6. FHND004 targets PBK to inhibit MM cell proliferation. (A) WB analysis confirmed that PBK-OE MM cells were constructed 

successfully verified. (B) The proliferation of PBK-OE and PBK-WT cells was detected by CCK-8. (C, D) Effects of 48 h treatment with FHND004 
on the viability of ARP1 (C) and H929 (D) WT and PBK-OE cells. (E–G) Effects of 24 h treatment with FHND004 (4 μM) on the apoptosis of 
ARP1 (E) and H929 (F) WT and PBK-OE cells. (H–J) Effects of 48 h treatment with FHND004 (4 μM) on the cell cycle phases of ARP1 (H) and 
H929 (I) WT and PBK-OE cells. The data were expressed as the mean ± SD, n = 3; p < 0.05 (*), p < 0.01 (* *) and p < 0.001 (* * *). 
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FHND004 targets PBK leading to the inhibition of 

ERK1/2 phosphorylation in the MAPK pathway 

 

We followed to confirm the involvement of FHND004 

targeting PBK in the MAPK pathway by detecting the 

expression of ERK1/2 and p-ERK1/2 in PBK-WT, 

PBK-OE MM cells with/without the treatment of 

FHND004. Results showed that PBK overexpression 

increased the level of p-ERK1/2, while the addition of 

FHND004 treatment substantially down-regulated the 

expression of p-ERK1/2, both in ARP1 and H929 

cells (Figure 7A, 7B and quantified in Supplementary 

Figure 2B, 2C). Furthermore, the Co-IP experiment 

performed that PBK indeed interacted with p-ERK1/2, 

and the enriched p-ERK1/2 level was reduced after 

the addition of FHND004 (Figure 7C). In summary, 

FHND004 could target PBK and inhibit the binding 

between PBK and p-ERK1/2, thus the decreased 

phosphorylation of ERK1/2. Hence, our results 

suggested that FHND004 inhibited MM cell pro-

liferation via the MAPK pathway in vitro and in vivo. 

Taken together, the above results suggest that PBK 

could be a novel drug target for the treatment of  

MM, and its inhibitor FHND004 will hold promise  

as an effective agent for anti-MM therapy (Figure 

7D). 

 

DISCUSSION 
 

Despite the continuous improvement in MM 

treatments, the etiology of MM is not completely clear 

at present and most patients eventually develop drug 

resistance and relapse [25–28]. More treatment options 

for myeloma are needed to be explored. It has been 

shown that IL-6 (Interleukin-6), as a critical cytokine, 

can influence the pathogenesis of myeloma through 

direct activation of PI3K/AKT and MAPK pathways 

[29, 30]. Moreover, HB-EGF (Heparin-binding EGF-

like growth factor) can enhance the survival and the 

proliferation of IL-6-dependent MM cells. Hence, the 

EGFR inhibitors with the inhibitory effect on HB-EGF 

can be used in the combination with IL-6 monoclonal 

antibody or dexamethasone to achieve better thera-

peutic effects for MM [31, 32]. The present study 

inadvertently found that FHND004, derived from the 

third-generation EGFR-TKI AZD9291 (Osimertinib) 

which is mainly for solid tumor NSCLC harboring 

EGFR-sensitive mutations, also has a strong inhibitory 

effect on the proliferation of MM cells. Since MM 

cells were assumed to be resistant to EGFR-TKI due to 

rare EGFR mutations and frequent mutations of 

KRAS/NRAS/BRAF downstream of EGFR signaling 

pathway, and previously reported to be moderate or 

less sensitive to first/second generation TKI 

(Gefitinib/Afatinib) in a cellular context of NRAS 

mutation dependent manner [21], we thus hypothesized 

to find and validate the drug target of FHND 

compounds in MM cells that would be explored  

as new therapeutic directions in anti-myeloma 

therapies. 

 

EGFR-TKIs are extensively developed targeting EGFR, 

one well-known oncogene altered in many cancers. Our 

experiments started with the new FHND compounds 

which were designed and synthesized based on the 

structure of the marketed third-generation EGFR-TKI 

AZD9291 (Osimertinib) with an expanded indole ring 

(FHND004) or a modified pyrimidine ring (FHND008). 

The antitumor effects of these two compounds are 

similar in inhibiting MM cell growth, inducing apoptosis 

(Figure 1D–1I), and inhibiting MAPK signaling pathway 

(Figure 2), though FHND008 seems to have higher IC50 

value in both ARP1 and H929 cells (Figure 1C). The 

molecular docking, and MST results indicated a superior 

interaction of FHND004 to PBK than that of FHND008 

(Figure 4), possibly due to the approaching of the 

expanded indole ring of FHND004 into the pocket 

harboring residue D125 of PBK. Recently, the first 4th 

generation of EGFR-TKI (an allosteric inhibitor 

EAI045) does not work as a single agent, and can 

effectively inhibit the kinase activity of T790M/C797S 

only by combining it with the anti-EGFR mAb 

Cetuximab [33]. It appears that the focus of tyrosine 

kinase activity-dependent activity of EGFR may narrow-

down and limit the anti-EGFR therapies only to TKI-

resistant fractioned patients, attracting more attention to 

other EGFR kinase-independent roles in cell pro-growth 

and pro-survival [19]. Mechanistically, in terms of 

biological significance, the EGFR-TKIs and mAbs 

exhibit obvious growth inhibition effect rather than 

inducing DNA fragmentation thus affecting cell survival 

in many types of EGFR-positive cancer cells, while  

our FHND004 affects both MM cell growth (increase in 

cell numbers or size) and survival (ability to keep alive 

under stresses) by targeting PBK rather than EGFR 

kinase in MM. Therefore, this minor and critical 

difference underscores the need to rethink and extend the 

EGFR kinase-independent directions for more drug 

targets [19]. 

 

PBK, screened and identified as a potential novel drug 

target in this study, is emerging as promising drug target 

[34]. Also known as T-lymphokine-activated killer-cell-

originated protein kinase (TOPK), PBK is a mitotic 

serine/threonine protein kinase as a new member of the 

Mitogen-activated protein kinase kinase (MAPKK) 

family [35]. It was reported to be involved in a variety 

of cell processes, such as cell cycle regulation and 

mitotic progression [36, 37], DNA damage and repair 
[38] and immune response and inflammation [38–40]. 

PBK is almost undetectable in normal tissues, except in 

testis and fetal tissues [41, 42], but is highly expressed 
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Figure 7. FHND004 targets PBK leading to the inhibition of ERK1/2 phosphorylation in the MAPK pathway. (A, B) WB validated 

the protein expression profiles of ERK1/2 and p-ERK1/2 in PBK-WT and PBK-OE cells with or without treatment of FHND004 (4 μM) (A: ARP1, 
B: H929). n = 3. (C) Co-IP assay revealed that FHND004 (4 μM) interfered with the interaction between PBK and p-ERK1/2 in H929 PBK-OE 
cells. (D) Schematic diagram of the mechanism of FHND004 targeting PBK in MM. 
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in a variety of proliferative malignant cells [43, 44], 

making it an ideal and effective target with diverse 

therapeutic potential. However, PBK has been less 

studied in MM with only a few mentions [45–47] and 

one genomic data-mining and siRNA screen study 

[48]. Our study took advantage of transcriptomic 

RNA-seq, protein chip, molecule docking, MST, and 

other cellular experiments to characterize the potential 

drug target by FHND004 in vitro. Interestingly, we 

observed a seemingly more pronounced inhibitory 

effect as well as p-ERK1/2 in H929 cells than that in 

ARP1 cells (Figures 1F, 1G, 2D, 2E). It might be at 

least partially due to the relatively lower background 

expression level of PBK in H929 compared to ARP1 

(Figure 6A), and that H929 cells bearing a 

confirmed/observed heterozygous G13D mutation in 

NRAS gene (https://www.keatslab.org/myeloma-cell-

lines) may confine and sensitize H929 cell to interact 

with FHND004. The overexpression intensity in the 

two MM cells (Figures 6A, 7A, 7B), further supported 

the interaction between PBK and FHND004. However, 

whether the inhibition of PBK by binding these two 

sites, namely N124 and D125, is worth further 

exploration, which provides a new basis for the 

development of PBK inhibitors. 

 

In fact, PBK can act on a variety of downstream 

molecules, such as p38, H3, H2AX, ERK1/2, MKP1, 

and Prx1 (ref. [37, 40, 49–52]), thus promoting the 

occurrence of cancer, development, metastasis, and 

drug resistance [53–56]. PBK promotes autophagy in 

ovarian cancer cells by phosphorylating ERK1/2 and 

thereby activating the mTOR pathway while increasing 

cisplatin resistance [57]. Our results demonstrated that 

PBK can affect the proliferation of MM by regulating 

ERK1/2 phosphorylation in the MAPK pathway, and 

this is an entirely new discovery. Meanwhile, MEK1/2 

was considered to be the most suitable target for early 

tumor suppression, but the prevalent resistance to MEK 

inhibitors makes MEK1/2 not a suitable target for tumor 

treatment [58]. However, PBK is considered an 

oncogenic form of MEK1 and is active in cancer cells 

while largely unexpressed in normal tissues, which 

makes PBK more valuable as a promising antitumor 

target [50, 59]. One of the limitations of this study 

might be the incomplete characteristics of the 

involvement of the MAPK pathway from upstream 

RTKs (including the exact intact/ overexpressed EGFR 

activity) to downstream targets in MM. 

 

In conclusion, PBK is shown to be a novel therapeutic 

target in MM, and the discovery of possible active sites 

by FHND004 provides a new approach for MM targeted 

therapy [32], which may be an alternative choice for the 

usage of PBK inhibitors. 

MATERIALS AND METHODS 
 

Cell lines and cell culture 

 

Human MM cell lines ARP1 and H929, and Mouse MM 

cell line 5TMM3VT cells were cultured in RPMI-1640 

(C3010-0500, VivaCell). HEK293 cells were cultured 

in DMEM (C3110-0500, VivaCell, China). The culture 

medium contained 10% fetal bovine serum (A6901FBS-

500, Invigentech, USA), and 1% penicillin/streptomycin 

(C100C5, NCM Biotech, China). All cells were 

incubated at 37° C in a humidified 5% CO2 incubator. 

 

Antibodies and reagents 

 

All primary antibodies were diluted at a ratio of 1:1000, 

and all of them were purchased from Cell Signaling 

Technology (Danvers, MA, USA) except for PBK, 

which was obtained from Proteintech Group (Wuhan, 

China), the specific antibody information was as 

follows: Cleaved Caspase-3 (9661S); PBK (16110-1-

AP); PARP (9542S); ERK1/2 (4695S); p-ERK1/2 

(4370S); β-actin (4970S). The second antibodies were 

purchased from Santa Cruz (Santa Cruz, CA, USA) and 

diluted 1:5000, including goat anti-Rabbit IgG (sc-

2005) and rabbit anti-mouse IgG (sc-2004). 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

assay (MTT) was acquired from Solarbio (Shanghai, 

China). Puromycin was obtained from Merck KGaA 

(Darmstadt, Germany). FHND004 and FHND008 were 

synthesized in Dr. Yongqiang Zhu’s lab at Nanjing 

Normal University, Nanjing, China. 

 

Gene expression profiling (GEP) 

 

The gene expression profiling (GEP) of MM patients 

was collected using the public clinical datasets 

(GSE2658 and GSE5900). The total therapy 2 (TT2, 

GSE2658) and the Dutch-Belgian cooperative trial 

group for hematology-oncology group-65 (HOVON65, 

GSE19784) trial patient cohort were used in these 

analyses [45, 60, 61]. 

 

Plasmids and transfection 

 

The plasmids incorporating human PBK cDNA 

(NM_018492.4) were purchased from Genechem 

(Shanghai, China). The coding sequence of PBK was 

cloned into the Flag-tagged lentiviral vector of pTSB. 

The target expression vector and packaging plasmids 

(PLP1, PLP2, and VSVG) were co-transfected into 

HEK293 cells by using liposomal transfection reagent 

(40802ES02, Yeasen, China), and cultured for 48 h. The 

supernatant was then collected as the viral solution. The 

viral solution was transfected into MM cells for culture 

and screened by puromycin resistance. Finally, the 
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transduction efficiency and whether the cells were 

successfully constructed were determined by Western 

Blotting (WB). 

 

Cell proliferation 

 

Cell viability was determined by MTT assay, and the 

assay procedure was as follows: first, the desired cells 

(6 × 103) were seeded into 96-well plates containing 

180 μL of cell suspension and 20 μL of different 

concentrations of the drug per well and incubated for an 

appropriate period of time. Then each well was 

incubated for 4 hours with 20 μL of MTT reagent (5 

mg/mL). At the end of incubation, centrifuge at 4000 

rpm for 15 min at room temperature, discard the 

supernatant, and add 150 μL of Dimethyl Sulfoxide 

(DMSO) to each well. Absorbance was measured 

spectrophotometrically at 570 nm using a microplate 

reader (Thermo Fisher Scientific, Waltham, MA, USA). 

 

Apoptosis analysis and cell cycle assays 

 

Annexin V/PI staining assay was used for apoptosis 

detection of cells. Firstly, the cells collected in good 

condition were centrifuged at 1200 rpm for 5 min at  

4° C, pre-chilled PBS washed twice. After discarding 

the supernatant, the cell precipitates were collected and 

resuspended in 100 μL of binding buffer, followed by 

the addition of 5 μL each of APC Annexin V (640941, 

Biolegend, USA) and PI (No. C0080, Solarbio, China) 

were added, and incubated for 15 min at room 

temperature under light protection. The detection of 

treated samples by using flow cytometry and Annexin V 

positive cells were quantitated. 

 

For cell cycle assays, MM cells at the logarithmic growth 

stage were collected, and centrifuged at 1200 rpm, 4° C 

for 5 min, and the cell precipitate was washed once with 

pre-chilled PBS and resuspended by using 250 μL of pre-

chilled PBS. The cell suspension was slowly added 

dropwise to 5 mL of pre-chilled 70% ethanol and allowed 

to fix overnight at -20° C in the refrigerator. The next 

day, the fixed cells were centrifuged at 1200 rpm for 5 

min at 4° C. the precipitate was washed twice with cold 

PBS and resuspended with 250 μL of pre-chilled PBS 

followed by the addition of 5 μL RNase A (200 μg/mL) 

and the cells were treated on ice for 1 hour. Then, we 

added 5 μL of PI (No. C0080, Solarbio) into the solution 

and incubated it for 15 min at room temperature away 

from light at least. The cell samples were loaded and 

analyzed by using flow cytometry. 

 

Western blotting and co-immunoprecipitation (Co-IP) 

 

Collect MM cells and lyse cells with Radioimmuno-

precipitation Assay (RIPA) (WB3100, NCM Biotech) 

buffer with protease inhibitor (K1007, APExBIO, 

Beijing, China). BCA Protein Quantification Kit 

(20201ES90, Yeasen) was used to determine the protein 

concentration. After the separation by SDS-PAGE, total 

protein (20 μg) was transferred to a PVDF membrane. 

The membrane was blocked with a blocking solution for 

1 hour at room temperature and incubated overnight at 4° 

C overnight with the primary antibody, the second 

antibody was incubated with horseradish peroxidase 

(HRP) coupling at 25° C for 1 hour. Finally, the Super 

ECL Detection Reagent (36208ES76, Yeasen) was used 

to develop the blots. Refer to the protocol of Pierce™ 

Direct Magnetic IP/Co-IP kit (88828, Thermo Fisher 

Scientific) for detailed procedures of the Co-IP assay. 

 

Transcriptomic RNA-sequencing (RNA-seq) 

 

ARP1 WT and H929 WT cells were treated with 

FHND004 and FHND008. Approximately 5 × 106 WT 

cells and cells treated with the drug were collected, and 

centrifuged at 4° C, 1200 rpm for 5 min and the 

supernatant was discarded. The cell precipitates were 

washed twice with ice-cold PBS, centrifuged at 1200 rpm 

for 5 min at 4° C, and the supernatant was discarded. 

Added 1 mL of TRIeasy lysate (10606ES60, Yeasen) to 

the cell precipitate, followed by mixing well, and then 

transferred to a 1.5 mL nuclease-free EP tube on dry ice 

for RNA-seq sequencing. All data analysis and 

processing are conducted by RealoMics Biotechnological 

Co., LTD (Shenzhen, China) and deposited in NCBI 

GEO database (accession number GSE223166). 

 

Protein microarray technology 

 

The establishment of human proteome chip was 

provided by Guangzhou Bochong Biotechnology Co., 

Ltd. (Guangzhou, China). PBK recombinant protein 

interaction screening based on HuProt™ human whole 

proteome chip HuProt_V4. The technical route 

includes: chip closure, co-incubation of biotin-labeled 

FHND008 and protein chip at room temperature for 1 h, 

chip cleaning, chip drying, and data reading. 

 

Microscale thermophoresis assay (MST) 

 

First, PBK protein was fluorescently labeled according 

to the instructions of the Monolith™ RED-NHS second-

generation protein labeling kit. The labeled buffer NHS 

was used to pass the column, and then the PBK purified 

protein samples were passed the column as same, 

collected after centrifugation, the dye obtained by 

mixing RED-NHS second-generation dye. NHS labeled 

buffer solution was mixed with PBK purified protein 
sample for incubation. The incubated dye-PBK protein 

labeled reactant solution and binding reaction buffer 

solution were passed through the column to obtain 
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labeled protein samples. Finally, the drug was incubated 

with PBK protein, and the mixed solution was absorbed 

by capillary, then the combination ability was tested, 

and the Kd value was calculated by the MO. Control 

analysis software. 

 

5TMM3VT mouse model 

 

5TMM3VT mouse myeloma cells (1 × 106) were 

administered intravenously to the 6-week-old 

C57BL/KaLwRij mice (n = 10 in each group). 2 days 

later, FHND004 was administered by gavage twice a 

week at a dose of 20 mg/kg and would be sacrificed 

until they exhibited signs of hind limb paralysis. Record 

the survival time of each group of mice and plot the 

survival curves. 

 

Patient-derived tumor xenograft (PDX) model 

 

The patient-derived tumor xenograft (PDX) model was 

created by using a biopsy sample of a cutaneous 

subcutaneous extramedullary tumor on the head skin of 

a MM patient collected from the Department of 

Hematology, the First Affiliated Hospital of Nanjing 

Medical University. Under pentobarbital anesthesia, the 

2~3 small blocks of 2*2*2 mm3 extramedullary biopsy 

tumor sections were subcutaneously transplanted into 4 

to 6-week-old male SCID/NOD mice without any 

sublethal irradiation required (n = 12). When the tumors 

reached a size of 500 mm3, they were harvested and the 

tumor tissues were then divided into small pieces and 

implanted under the skin again. This operation was 

repeated three times until the tumor size grew to 

100~150 mm3, the mice were assigned randomly into 

control and treatment groups and PBS and FHND004 

were injected respectively. The dosing frequency was 

twice a week [62]. 

 

Statistical analyses 

 

All values were expressed as mean ± SD unless 

otherwise specified. Statistical differences were 

analyzed in two separate ways, using the Student’s t-test 

for two independent experimental groups and the one-

way ANOVA for three or more experimental groups. 

The threshold p-values were set at p < 0.05 (*), p < 0.01 

(* *) and p < 0.001 (* * *). Statistical analyses were 

performed using SPSS version 19.0 and GraphPad 

Prism 8.0 software. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 

 
 

Supplementary Figure 1. Quantitative analysis of WB results. (A, B) Relative expression of PARP and Cleaved Caspase-3 in ARP1 WT, 

H929 WT with or without treatment of FHND004 (4 μM) (A) and FHND008 (4 μM) (B). (C, D) Relative expression of ERK, p-ERK in ARP1 WT 
and H929 WT cells with or without treatment of FHND004 (4 μM) (C) and FHND008 (4 μM) (D). The data are expressed as mean ± SD.  
(*p < 0.05; ** p < 0.01; ***p < 0.001). Related to Figures 1F, 1G, 2D, 2E in the manuscript. 
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Supplementary Figure 2. Quantitative analysis of WB results. (A) Relative expression of PBK in ARP1 and H929 WT and PBK-OE cells. 

(B, C) Relative expression of ERK, p-ERK in PBK-WT and PBK-OE cells with or without treatment of FHND004 (4 μM) (A: ARP1, B: H929). The 
data are expressed as mean ± SD. (*p < 0.05; ** p < 0.01; ***p < 0.001). Related to Figures 6A, 7A, 7B in the manuscript. 
 
  

4830



www.aging-us.com 21 AGING 

Supplementary Tables 
 

 

Supplementary Table 1. The effects of FHND 
drugs on cell viability of MM cells. 

FHND drugs ARP1 WT H929 WT 

FHND002 (μM) 7.98 15.84 

FHND004 (μM) 3.95 2.84 

FHND006 (μM) 10.77 / 

FHND007 (μM) / 40.64 

FHND008 (μM) 5.68 / 

FHND009 (μM) 16.52 18.59 

 

Supplementary Table 2. Potential proteins interacting with FHND008 based on HuProt™ human proteomic 
chip V4.0. 

Block Column Row Name ID SNR-biotin SNR-FHND008 
Normalization-

biotin 

Normalization-

FHND008-biotin 
Fold change 

9 15 57 MYLK JHU14956.B9C15R57 1.86833333333333 3.52971428571429 1.86833333333333 6.06282849990836 3.24504647631134 

1 25 19 GDPD5 JHU01374.B1C25R19 2.51282051282051 3.49350259896042 2.51282051282051 6.00062934476153 2.38800555556836 

1 29 47 GADD45G JHU02812.B1C29R47 2.29787234042553 2.62281976744186 2.29787234042553 4.50509733904754 1.96055161977069 

14 23 73 CYAT1 JHU15234.B14C23R73 2.80876068376068 2.47417582417582 2.80876068376068 4.24977844844512 1.51304398164497 

11 23 85 TCEB2 JHU03155.B11C23R85 2.17142857142857 2.33883333333333 2.17142857142857 4.0173068532088 1.85007552450405 

3 25 25 MARC2 JHU01787.B3C25R25 1.96332046332046 2.30470822281167 1.96332046332046 3.95869171445079 2.01632478671142 

8 27 51 PPM1G JHU08990.B8C27R51 2.47794117647059 2.1789825282631 2.47794117647059 3.74273844957469 1.51042263840403 

11 9 27 DOHH JHU13137.B11C9R27 2.28323170731707 2.05241935483871 2.28323170731707 3.52534668560619 1.54401617422731 

7 8 47 ACAA1 JHU08544.B7C8R47 2.20482261640798 1.9347024256064 2.20482261640798 3.32314970995865 1.50721862395107 

2 3 87 SNX15 JHU05453.B2C3R87 1.87 1.92758291577189 1.87 3.31092085412611 1.77054591129739 

6 8 27 PBK JHU07458.B6C8R27 1.75295508274232 1.824 1.75295508274232 3.13300122579043 1.78726839987775 

13 1 75 FABP5 JHU00992.B13C1R75 1.57619047619048 1.79357394366197 1.57619047619048 3.08073978291597 1.95454789852675 

16 6 53 CCDC117 JHU18658.B16C6R53 1.96150362318841 1.79356805664831 1.96150362318841 3.08072967106234 1.57059596252728 

5 3 33 IGLC2 JHU07717.B5C3R33 1.5155255395125 1.77923976608187 1.5155255395125 3.05611862286709 2.01654049581386 

SNR, Signal-to-noise Ratio. 
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