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INTRODUCTION 
 

The U.S. Census Bureau projects that by 2060, the life 

expectancy of Americans will increase by about six 

years to 85.6 and by 2034, individuals >65 years will 

outnumber children under 18 for the first time [1]. As 

humans age, the risk for disease increases [2], which 

makes understanding links between aging and early 

biomarkers of disease onset important [3]. However, the 

aging process is complex, and chronological age is an 

incomplete surrogate for biological aging [4]. Recently 

developed DNA methylation (DNAm) age biomarkers 

are a better predictor of biological age than chrono-

logical age [5], and DNAm age acceleration, the 

difference between DNAm age and chronological age, 

has been associated with all-cause mortality, cancer, 

severe sleep-disordered breathing, cognitive decline, 

cardiovascular disease, and several other health 

outcomes [6–10]. Cardiovascular disease (CVD), one of 

the leading causes of death worldwide [11, 12], 

inflammation, and metabolic dysfunction [13] are 

linked to aging [14–16]. 

 

Nuclear magnetic resonance (NMR) provides a novel 

means by which to detect metabolic and inflammatory 

biomarkers and other cardiometabolic disease risk 

factors [17, 18]. NMR spectra of human serum can be 

used to predict both the occurrence and severity of 
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ABSTRACT 
 

Research into aging has grown substantially with the creation of molecular biomarkers of biological age that 
can be used to determine age acceleration. Concurrently, nuclear magnetic resonance (NMR) assessment of 
biomarkers of inflammation and metabolism provides researchers with new ways to examine intermediate risk 
factors for chronic disease. We used data from a cardiac catheterization cohort to examine associations 
between biomarkers of cardiometabolic health and accelerated aging assessed using both gene expression 
(Transcriptomic Age) and DNA methylation (Hannum Age, GrimAge, Horvath Age, and Phenotypic Age). Linear 
regression models were used to associate accelerated aging with each outcome (cardiometabolic health 
biomarkers) while adjusting for chronological age, sex, race, and neighborhood socioeconomic status. Our 
study shows a robust association between GlycA and GrimAge (5.71, 95% CI = 4.36, 7.05, P = 7.94 × 10−16), 
Hannum Age (1.81, 95% CI = 0.65, 2.98, P = 2.30 × 10−3), and Phenotypic Age (2.88, 95% CI = 1.91, 3.87, P = 1.21 × 
10−8). We also saw inverse associations between apolipoprotein A-1 and aging biomarkers. These associations 
provide insight into the relationship between aging and cardiometabolic health that may be informative for 
vulnerable populations. 
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diseases like coronary heart disease (CHD) [19], and 

detect novel glycoprotein biomarkers of disease risk and 

inflammation, such as GlycA [20–22].  

 

There are several molecular biomarkers of biological 

age. The properties of each biomarker, also called a 

“clock,” depend largely on how they are developed. 

Horvath’s pan-tissue epigenetic clock was developed 

using DNA methylation measured on multiple tissues 

and cell types [23]. The Horvath pan-tissue clock 

accurately estimates epigenetic age of several tissues 

and is strongly associated with mortality and disease 

risk [4]. Blood-specific DNA methylation based aging 

biomarkers include Hannum Age [24], GrimAge [25], 

and Phenotypic Age [26]. These measures were all 

developed differently and are described in more detail 

in the Methods section. Despite differences in their 

construction all of these aging biomarkers have been 

strongly associated with morbidity and mortality though 

the magnitude of these associations can differ.  

 

In addition to their method of development, the 

underlying ‘omics data used can have a substantial 

impact on the properties of a given aging clock. 

Horvath, Hannum, GrimAge, and Phenotypic Age were 

all developed using DNA methylation – the primary 

molecular data type for aging clocks since the 

publication of the Horvath pan-tissue clock [23]. Gene 

expression (the cellular transcriptome) is also used to 

create robust and highly predictive aging biomarkers. 

Transcriptomic Age, is an aging biomarker based on 

gene expression data [27] and accelerated 

Transcriptomic Age is associated with blood pressure, 

cholesterol levels, fasting plasma glucose, and body 

mass index [27].  

 

Though there are robust associations between 

chronological age and measures related to inflammation 

and metabolic dysfunction, associations between these 

measures and epigenetic aging biomarkers show some 

heterogeneity. The GOLDN study found associations 

between HDL and accelerated epigenetic aging 

(Horvath and Hannum clocks) but not LDL or total 

cholesterol [28]. Most studies of epigenetic aging and 

metabolic or inflammatory biomarkers are done in 

young, healthy adults and show that epigenetic age 

acceleration is associated with triglyceride and HDL 

concentrations, as well as inflammatory and metabolic 

markers, like C-reactive protein [29, 30]. However, 

there is limited information on associations between 

metabolic outcomes and epigenetic aging across the life 

course or among those with pre-existing disease. In a 

recent study of cardiac catheterization patients, 

associations between accelerated epigenetic aging and 

mortality were partially mediated by diabetes, 

indicating that links between aging and metabolic 

dysfunction are vital relationships to understand in this 

population [31]. This study utilizes the CATHGEN 

cohort from the Jiang et al. study to investigate 

associations between multiple epigenetic and 

transcriptomic aging biomarkers and a broad array of 

NMR-based measures of inflammation, lipid homeo-

stasis, and diabetes risk. 

 

RESULTS 
 

Cohort description 

 

Within our study cohort, there were 1284 CATHGEN 

participants with gene expression data, of which 883 

also had NMR data. There were also 563 CATHGEN 

patients with DNA methylation data, of which 502 had 

NMR data. Of those CATHGEN participants with  

DNA methylation data, 227 overlapped with the 883 

individuals with gene expression data. To evaluate 

associations between epigenetic age and NMR measures 

we used all 502 participants with both sets of data, 

while for analyses of transcriptomic age and NMR 

measures we used all participants with transcriptomic 

and NMR data available (N = 883). In joint analyses of 

both transcriptomic and epigenetic age, we were 

restricted to the 227 overlapping samples (Figure 1). 

Participants in the three sub-cohorts were similarly aged 

at just over 60 years old, with slightly higher ages in  

the group with combined transcriptomic and DNA 

methylation data (Table 1). The transcriptomic aging 

group was less urban, had a higher percentage of white 

participants, and was slightly less educated than the 

other two groups. Participants with DNA methylation 

data available, including those with both DNA 

methylation and gene expression, had higher home 

values, household income, and a lower percentage of 

smokers than all study participants with gene expression 

data. 

 

Transcriptomic age estimation 

 

There are multiple ways to estimate Transcriptomic Age 

based on the type of confounder adjustment done  

during its estimation. Three approaches to estimate 

Transcriptomic Age were explored here: No confounder 

adjustment (intercept only model), sex adjusted, sex and 

smoking status adjusted, and sex, smoking status, and 

cell count adjusted. This was done to explore the degree 

to which various confounder adjustments impacted the 

correlation of Transcriptomic Age with chronological 

age. There was no difference in the correlation with 

chronological age for Transcriptomic Age estimated 

using the intercept only model versus Transcriptomic 

Age estimated while adjusting for sex only (Pearson  

r = 0.29). This was also the same correlation when 

estimating Transcriptomic Age using a sex and
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smoking-status-adjusted model. Correlations between 

all transcriptomic age estimation methods and 

chronological age are given in Supplementary Figure 1. 

The correlation between Transcriptomic Age and 

chronological age decreased when the model was 

adjusted for cell counts (Pearson r = 0.13). Therefore, 

we used Transcriptomic Age estimated based on 

residuals from regressing sex and smoking status 

regressed on the gene expression probes for all 

analyses. The correlation between Transcriptomic Age 

and other epigenetic aging predictors is shown  

in Figure 2. All epigenetic aging biomarkers 

(GrimAge, Hannum, Horvath, and Phenotypic age) 

were estimated using the online calculator at 

https://dnamage.genetics.ucla.edu/home. GrimAge, 

Hannum Age, Horvath Age, and Phenotypic Age were 

correlated with Transcriptomic Age with Pearson  

r = 0.24, 0.32, 0.25, 0.26, respectively. 

 

Associations between NMR biomarkers and aging 

measures 

 

GrimAge (5.71; 95% CI = 4.36, 7.05, P = 7.94 × 10−16), 

Hannum Age (1.81; 95% CI = 0.65, 2.98, P = 2.30 × 

10−3), and Phenotypic Age (2.88; 95% CI = 1.91, 3.87, 

P = 1.21 × 10−8) acceleration were all positively 

associated with GlycA (Figure 3). We also observed a 

negative association between apoA-1 and GrimAge 

(−1.03; 95% CI = −1.42, −0.63, P = 5.50 × 10−7), 

Hannum Age (−0.41; 95% CI = −0.74, −0.08, P = 0.01), 

and Phenotypic Age (−0.55; 95% CI = −0.83, −0.26,  

P = 1.58 × 10−4) acceleration (Figure 4). In contrast, 

Transcriptomic Age acceleration was positively 

associated with apoA-1 (0.34, 95% CI = 0.04, 0.63,  

P = 0.03). No aging predictors were associated with 

blood glucose concentrations. We examined the VIF for 

all models and saw a slight elevation of VIF in models 

with accelerated Transcriptomic Age but not others 

using the common VIF >5 cutoff. All results are in 

Supplementary Table 1. 

 

In models adjusted for all epigenetic and 

transcriptomic aging predictors, accelerated GrimAge 

remained positively associated with GlycA (5.03, 95% 

CI = 3.01, 7.05, P = 1.85 × 10−6) and inversely 

associated with apoA-1 (−1.13, 95% CI = −1.71, 

−0.55, P = 1.83 × 10−4). These associations were the 

only Bonferroni significant (P < 0.05/35) associations 

seen in the models with multiple aging predictors. 

There were several associations with P < 0.05 

including between GrimAge and apoB: A-1 ratio (0.01, 

95% CI = −1.16, 0.99, P = 6.84 × 10−3) (Figures 3  

and 4; Supplementary Table 2). Inverse associations 

between accelerated Hannum Age and apoA-1 also 

remained, while Phenotypic Age maintained its 

positive association with GlycA. The only association 

observed in the models adjusted for all epigenetic and 

transcriptomic aging biomarkers that were not 

observed in the individual models was a negative 

association between accelerated Horvath Age and 

GlycA (−2.94, 95% CI = −4.86, −1.02, P = 2.89 × 

10−3) and Horvath Age and ApoB (−0.80, 95% CI = 

−1.43, −0.16, P = 0.01). Results for these models are 

in Supplementary Table 2. 

 

 
 

Figure 1. Number of individuals in the sub-cohorts for each analysis. 
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Table 1. Description of the study cohort. 

 

Gene expression  
(n = 883) 

DNAm  
(n = 502) 

Gene expression and DNAm 
(n = 227) 

Mean (± SD) Mean (± SD) Mean (± SD) 

Chronological Age (y) 62.2 ± 11.9 60.5 ± 12.5 63.2 ± 12.4 

Accel Grim Age (y)  −2.2 ± 6.4 −2.4 ± 6.6 

Accel Hannum Age (y)  11.2 ± 7.0 9.8 ± 6.9 

Accel Horvath Age (y)  4.7 ± 6.7 3.8 ± 6.6 

Accel Phenotypic Age (y)  −8.9 ± 7.6 −9.6 ± 7.3 

Accel Transcriptomic Age (y) −6.5 ± 11.5  −8.1 ± 12.0 

Poverty (%) 19.7 ± 14.9 21.4 ± 18.5 18.4 ± 18.0 

Urbanicity (%) 55.4 ± 44.2 83.3 ± 33.5 85.9 ± 30.2 

HS Education or more (%) 82.5 ± 11.5 84.9 ± 12.8 86.8 ± 12.5 

Median household value ($) 150 676 ± 93 805 200 145 ± 102 107 210 200 ± 104 069 

Median household income ($) 48 367 ± 24 553 53 927 ± 29 848 58 726 ± 30 292 

 N (%) N (%) N (%) 

Males (N) 346 (39.2) 284 (56.5) 101 (44.5) 

Females (N) 537 (60.8) 218 (43.5) 126 (55.5) 

White (N) 628 (71.1) 315 (62.7) 150 (66.1) 

Black (N) 198 (22.4) 187 (37.3) 77 (33.9) 

Other (N) 57 (6.5) 0 (0) 0  

History of Smoking (Yes) (N) 429 (48.5) 221 (44.0) 101 (44.5) 

Accel ages (accelerated ages) refer to the difference between calculated age and chronological age. Data are reported as 
mean ± SD or number (n) and the percentage (%). Data is reported in years (y), percent (%), dollars ($), or counts (N). 
Abbreviation: DNAm: DNA methylation. 

 

Given that only a subset of the participants had both 

epigenetic and transcriptomic data (Table 1) we also ran 

models with all epigenetic aging biomarkers but without 

Transcriptomic Age included. Results were similar to 

those observed when Transcriptomic Age was also 

included indicating that the addition of transcriptomic 

age, and subsequent sample size restriction, did not 

substantially impact associations (Supplementary 

Table 3). After adjustment for the epigenetic aging 

biomarkers, accelerated Transcriptomic Age was not 

associated with any of the NMR biomarkers and had an 

elevated VIF (>5) in all models suggesting that the 

results for this model may be inflated, likely due to high 

correlations amongst the predictors and the relatively 

small sample size. 

 

Associations between LP-IR, DRI and aging 

measures 

 

We also investigated associations between aging 

biomarkers and the NMR biomarkers LP-IR (Lipoprotein 

Insulin Resistance Index) and DRI (Diabetes Risk Index) 

which combine multiple NMR measures to inform on 
metabolic risks. Accelerated GrimAge was inversely 

associated with DRI (−0.29, 95% CI = −0.57, 

−2.03 × 10−3, P = 0.05). Although not statistically 

significant, there was weak evidence for a positive 

association between accelerated Horvath Age and  

LP-IR (0.32, 95% CI = −9.36 × 10−3, 0.66; P = 0.06). We 

did not observe any other associations (Figure 5; 

Supplementary Table 4). We also did not observe 

independent associations when including all aging 

biomarkers in the same model (Supplementary Table 5), 

including when excluding Transcriptomic Age from the 

models as done before (Supplementary Table 6). As 

before, there was evidence for multi-collinearity  

for accelerated Transcriptomic Age in the model, 

including Transcriptomic Age and all the epigenetic 

aging predictors (Supplementary Table 5), warranting 

substantial caution in interpreting these results. 

 

Associations between LDL, HDL and aging 

measures 

 

Finally, we also examined NMR measures of LDL and 

HDL as secondary outcomes, as these outcomes have 

not been examined for individuals with underlying 

cardiovascular disease [32–34]. Hannum Age (−0.30, 

95% CI = −0.65, 6.28 × 10−3, P = 0.05) and accelerated 
Phenotypic Age (−0.26, 95% CI = −0.56, −0.04,  

P = 0.03) was negatively associated with HDL. Both 

Hannum Age (−1.11, 95% CI = −2.16, −0.07, P = 0.04) 
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and Horvath Age (−1.13, 95% CI = −2.15, −0.10,  

P = 0.03) were negatively associated with LDL 

(Supplementary Table 7). 

 

DISCUSSION 
 

Cardiovascular and metabolic diseases are some of the 

most common age-related diseases and are projected to 

grow in prevalence given the aging of the United States 

population [15, 35, 36]. While advanced chronological 

age is a risk factor CVD and metabolic dysfunction, 

biological aging biomarkers are better tied to intrinsic 

biological processes and are associated with morbidity 

and mortality independent of chronological age [37–

40]. Novel NMR-based biomarkers may be used to 

identify risk factors for disease; however, there are still 

significant gaps in the research on the relationship 

between these novel NMR biomarkers and aging 

biomarkers [22, 40–42]. We address this data gap in this 

study by reporting associations with epigenetic and 

transcriptomic age for many of these biomarkers and 

utilizing a study cohort of cardiac catheterization 

patients with elevated morbidity and mortality risks. We 

decided to use GrimAge, Horvath Age, Hannum Age, 

and Phenotypic Age as these clocks represent both first 

generation (Hannum and Horvath Age) and second 

generation (GrimAge, Phenotypic Age) clocks allowing 

us to evaluate how clocks derived with different 

approaches associate with these biomarkers. As this was 

not meant to be an exhaustive study of all epigenetic 

clocks, we did not include every clock published in the 

literature. While assessing biological age using DNA 

methylation is one of the most common methods, aging 

is a complex process that that is likely to be reflected in 

multiple molecular hierarchies, e.g., DNA methylation, 

gene transcription, and even protein concentrations. For 

this reason we also evaluated associations with 

transcriptomic age which has been shown to have 

different associations with clinical outcomes than DNA 

methylation age, and thus may also show associations 

with biomarkers of inflammation and metabolism that 

differ from DNA methylation-based aging biomarkers 

in informative ways. 

 

We observed an association between GrimAge, an 

estimator of lifespan and all-cause mortality [25, 43], 

 

 
 

Figure 2. Correlation between transcriptomic age and other epigenetic aging predictors. The scatterplots show the correlation 

between estimated transcriptomic age and the other epigenetic aging predictors in the study. (A) shows the correlation between 
Transcriptomic Age and Grim Age, (B) shows the correlation between Transcriptomic Age and Hannum Age, (C) shows the correlation 
between Transcriptomic Age and Horvath Age, and (D) shows the correlation between Transcriptomic Age and Phenotypic Age. R = Pearson 
correlation coefficient. 
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and GlycA, a biomarker for systemic inflammation and 

CVD risk [22]. Studies show that GlycA is also 

positively associated with C-reactive protein (CRP) 

[44], a traditional biomarker for inflammation [45]. 

GlycA and high-sensitivity CRP (hs-CRP) have a 

similar predictive value for CVD-related events [21]. 

While both GlycA and hs-CRP are used to measure 

inflammation, GlycA is a composite biomarker that may 

 

 
 

Figure 3. Models of associations between GlycA and glucose NMR biomarkers and accelerated ages of epigenetic and 
transcriptomic biomarkers. Models were run with aging biomarkers (Abbreviations: GA: GrimAge; HaA: Hannum Age; HorA: Horvath 

Age; PA: Phenotypic Age; TA: Transcriptomic Age) and then adjusted for other aging biomarkers. Models with epigenetic aging biomarkers 
were adjusted for GrimAge, Hannum Age, Horvath Age, and Phenotypic Age (GHHP). Models with transcriptomic and epigenetic biomarkers 
were adjusted for GrimAge, Hannum Age, Horvath Age, Phenotypic Age, and Transcriptomic Age (GHHPT). Error bars represent a 95% 
confidence interval. (A) is the association between GlycA and the aging predictors and (B) displays the association between glucose and the 
aging predictors. 
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have some advantages over a single molecule like  

hs-CRP, like being a more stable measurement and  

low intra-individual variability [46]. However, more 

research is needed to explore the utility of GlycA as 

compared to traditional inflammation biomarkers such 

as hs-CRP. We observed an inverse relationship

 

 
 

Figure 4. Models of associations between ApoB, ApoA-1, and the ApoB: A-1 ratio NMR biomarkers and accelerated ages of 
epigenetic and transcriptomic biomarkers. Models were run with aging predictors (Abbreviations: GA: GrimAge; HaA: Hannum Age; 
HorA: Horvath Age; PA: Phenotypic Age; TA: Transcriptomic Age) and then adjusted for other aging biomarkers. Models with accelerated 
ages of epigenetic aging biomarkers were adjusted for GrimAge, Hannum Age, Horvath Age, and Phenotypic Age (GHHP). Models with 
accelerated ages of transcriptomic and epigenetic biomarkers were adjusted for GrimAge, Hannum Age, Horvath Age, Phenotypic Age, and 
Transcriptomic Age (GHHPT). Error bars represent a 95% confidence interval. (A–C) show the association between Apolipoprotein B, 
Apolipoprotein A-1, and the ApolipoproteinB: A-1 ratio and the aging predictors, respectively. 
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between GrimAge and DRI suggesting that increasing 

GrimAge is associated with a lower diabetes risk 

according to the DRI. It’s worth nothing that this 

association was in the opposite direction of other 

associations with GrimAge, e.g., GlycA, but nonetheless 

could indicate a more complex relationship between 

GrimAge and DRI – possibly driven by diabetes 

treatment status or mediation which we could not 

 

 
 

Figure 5. Associations between NMR biomarkers LP-IR and DRI and the accelerated ages of epigenetic and transcriptomic 
biomarkers. Models were run with accelerated ages of epigenetic and transcriptomic biomarkers (Abbreviations: GA: GrimAge; HaA: 
Hannum Age; HorA: Horvath Age; PA: Phenotypic Age; TA: Transcriptomic Age). (A) is the association between LP-IR and the aging 
predictors and (B) displays the association between DRI and the aging predictors. Error bars represent 95% confidence intervals. 
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account for in this study. Further investigations of 

GrimAge and diabetes risk are warranted to better 

understand this relationship. 

 

ApoA-1 and apoB carry lipids and cholesterol in the 

blood [47]. We did not observe an association with 

apoB, but apoA-1 was inversely associated with 

accelerated GrimAge, Hannum Age, and Phenotypic 

Age. Given that apoA-1 is cardioprotective [48, 49] an 

inverse association between apoA-1 and epigenetic 

aging biomarkers is not unexpected as there is a positive 

association between accelerated epigenetic age and 

CVD. Research has shown that plasma apoA-1 

increases with age [50] and is an indicator of 

cardiovascular risk [51]. 

 

Previous studies have shown that commonly used 

metabolic biomarkers, like HDL, are associated with 

epigenetic age acceleration. In the GOLDN study, HDL 

was inversely associated with Horvath and Hannum age 

acceleration [28]. Meanwhile, in a coronary artery risk 

development study (CARDIA) HDL was inversely 

associated with GrimAge acceleration [29]. We see a 

similar pattern in the secondary analysis of HDL in our 

study which shows inverse associations between HDL 

and Hannum and Phenotypic age acceleration as well as 

weaker inverse associations with Horvath age and 

GrimAge acceleration. The GOLDN study also shows a 

pattern for stronger positive associations with 

inflammatory biomarkers especially with Hannum age 

acceleration. The same pattern is present in our study 

with positive associations between GlycA and 

GrimAge, Hannum age, and Phenotypic age 

acceleration, and to a lesser extent, Horvath age 

acceleration. This suggests that our results are not a 

cohort specific effect and may not be limited to those 

with underlying cardiovascular disease. 

 

There are several strengths and limitations of this study. 

Although we did have a moderately large sample size for 

the patients with gene expression data (N = 883), the 

number of patients with DNAm data (N = 502) and 

matching transcriptomic and DNAm data (N = 227) were 

smaller. However, the consistency of the results between 

the epigenetic and epigenetic + transcriptomic datasets 

shows that the smaller sample size is not much of an issue. 

We did not have information on medications which could 

be an important confounder that modifies some of the 

biomarkers examined. The relationship between 

medication usage and accelerated aging is also unknown 

so future studies that are able to evaluate the role of 

medications in these associations will substantially add to 

our understanding of aging biomarkers. In addition to 
medications, further information on behavioral factors, 

such as alcohol usage – which was not available in 

CATHGEN, could help to refine associations. Considering 

the study was limited to patients that had undergone 

cardiac catheterization, associations between NMR 

lipoprotein biomarkers and epigenetic and transcriptomic 

age acceleration may not generalize to other populations. 

However, previous studies with other cohorts show a 

similar pattern of results with weaker associations between 

metabolic biomarkers and aging biomarkers and stronger 

associations between inflammatory biomarkers and aging 

biomarkers [28, 29]. This study is the first to examine 

associations between these novel NMR lipoprotein 

biomarkers and multiple epigenetic and transcriptomic 

aging predictors, especially in a population enriched for 

individuals with CVD. A limitation of this study is the lack 

of medication information available. We observed no 

associations between glucose and aging measures and 

inverse associations between GrimAge and DRI. It is 

possible that medication usage partially explains these 

observations and is a factor that should be incorporated 

into future studies of aging and metabolic traits. 
 

In conclusion, this study is an initial examination of the 

associations between epigenetic and transcriptomic 

aging biomarkers and novel NMR lipoprotein 

biomarkers. As researchers work to better understand 

the clinical significance of aging biomarkers, work to 

understand their relationship with known markers of 

inflammation and metabolism can better establish their 

utility in clinical medicine. Additionally, as these NMR 

biomarkers continue to be evaluated as subclinical risk 

factors, it is crucial to understand their associations with 

biological aging measures which may aid in identifying 

aging-related disease biomarkers. Taken together these 

insights will aid in understanding the links between 

biological aging and health, especially among clinically 

vulnerable populations. 

 

METHODS 
 

Study population 

 

We used data collected from cardiac catheterization 

patients at Duke University Hospital in North Carolina 

between 2001–2010 (CATHGEN, CATHeterization 

GENetics Study) [52]. Peripheral blood was collected 

during the cardiac catheterization procedure per 

previously published methods. Enrollment in 

CATHGEN included linkage with existing patient 

medical records allowing for the extraction of 

demographics, pre-existing co-morbidities, clinical labs, 

and vital measurements. 

 

Transcriptomic age calculation 

 

Whole genome gene expression data was captured for 

1284 CATHGEN individuals [52]. Assessment of 

quantitative whole genome RNA data was done using 

6660



www.aging-us.com 10 AGING 

the Human HT-12v3 Expression BeadChip (Illumina, 

San Diego, CA, USA), and quality control (QC) was 

done using Illumina GenomeStudio [52]. Probes 

detected in more than 50% of samples with a detection 

P-value of < 0.05 were added to the CATHGEN 

database for 1284 samples. In these samples, 12,800 

probes passed detection and QC filters. 

 

Transcriptomic Age acceleration measures the 

difference between estimated and chronological age 

with a net positive meaning age acceleration. Estimating 

Transcriptomic Age is a two-step process. First, 

residuals were estimated for each gene expression 

probe. The original Transcriptomic Age predictor by 

Peters et al. used a ridge regression penalized model on 

the entire gene expression array (Illumina Infinium 

HumanMethylation450k BeadChip Array). Of the 

11,779 genes used in the original estimation model, 

7,497 passed QC in CATHGEN. The weights from the 

Peters et al. (2015). Transcriptomic Age estimator was 

applied to the CATHGEN data in the second step.  

Non-overlapping probes were set to 0, as was done for 

validation cohorts in the original manuscript when the 

probes passing QC did not perfectly encompass that of 

the development cohort. The original predictor used a 

series of regression models to compare the behavior of 

the predictor ranging from using an intercept-only 

model to calculate the residuals up to a model 

accounting for age, sex, smoking status, and cell counts. 

We estimated Transcriptomic Age using an intercept-

only regression model and ones adjusting for sex, sex + 

smoking status, and sex + cell counts + smoking status. 

We observed similar correlations between these models 

and chronological age, indicating the robustness of the 

residual estimation method (Supplementary Figure 1). 

The estimated cell counts used in the cell count 

adjustment model were monocytes, granulocytes, 

cytotoxic T-cells (CD8T), CD4 T lymphocytes, natural 

killer cells (NK), and B lymphocytes which were 

estimated using the Houseman method as implemented 

in the online epigenetic aging clock estimator 

(https://dnamage.genetics.ucla.edu/home) [53]. 

 

Epigenetic age estimation 

 

We used several different epigenetic aging predictors in 

our models, Hannum Age, GrimAge, Horvath Age, and 

Phenotypic Age. Hannum Age is a single-tissue DNAm 

age estimator that uses the percent methylation of 71 

CpG markers in blood cells [24] to estimate age. DNAm 

GrimAge, or GrimAge, is a predictor of lifespan that 

uses the percent methylation at several hundred CpG 

loci along with chronological age and sex, as well as a 
DNAm estimator of smoking pack-years to obtain an 

aging estimate [25]. GrimAge can predict lifespan, 

health span, age-related clinical phenotypes, and all-cause 

mortality [25, 43]. Horvath Age is a unique aging 

predictor because it is valid for multiple tissues and cell 

types which assesses DNAm data from 353 CpG loci 

using a penalized regression [23]. Phenotypic Age is an 

aging predictor that is a robust estimator for morbidity 

and mortality outcomes that uses DNA methylation at 

513 CpG loci to estimate age [26]. The loci were 

selected from those that best predicted nine age-

associated clinical parameters. DNA methylation for the 

CATHGEN study was processed using the methylumi R 

package with normalization performed using normal-

exponential convolution using out-of-band probes 

(noob) followed by quantile normalization which was 

found to perform as good or better than other methods 

for this data. The aforementioned epigenetic ages were 

estimated for the CATHGEN cohort using an online 

calculator (http://dnamage.genetics.ucla.edu/). For this 

study, we estimated age acceleration as the difference 

between epigenetic and transcriptomic and 

chronological age. Chronological age was included in 

all regression models making this approach equivalent 

to using the residuals-based age acceleration definitions 

also seen in the literature. 

 

NMR biomarkers 

 

Cardiometabolic biomarkers were measured in 8,738 

CATHGEN individuals using NMR spectroscopy at 

LipoScience, Inc., (Raleigh, NC, USA) [54, 55] performed 

on fasting plasma samples collected at the time of the 

catheterization procedure, but prior to the administration of 

heparin or initiation of the procedure specific actions. 

These NMR-measured metabolites and biomarkers 

included in this analysis were: GlycA, Apolipoprotein B 

(apoB), Apolipoprotein A1 (apoA-1), and glucose. We 

focused on these biomarkers as they have yet to be 

evaluated for associations with accelerated aging despite 

their links with age-related cardiometabolic disease. GlycA 

is a novel biomarker of systemic inflammation, and 

evidence shows that it is elevated in acute and chronic 

inflammation [22]. Apolipoprotein B (apoB) is a 

lipoprotein that can get trapped within the arterial wall, 

accelerating the atherosclerotic process [42, 56]. It is 

associated with insulin resistance [57] and myocardial 

infarction [58]. Apolipoprotein A1 (apoA-1) is the primary 

component in HDL-C [59], and evidence suggests it is 

inversely associated with type 2 diabetes and blood 

pressure in patients with coronary artery disease [60, 61]. 

We also calculated the apoB: apoA-1 ratio which is 

associated with metabolic syndrome [62] and coronary 

heart disease in obese patients [63]. 

 

In addition to the four biomarkers described above, we 
examined two NMR biomarkers of multiple NMR-

measured features strongly associated with metabolic 

dysfunction. LP-IR and DRI were both estimated using 
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lipoprotein data measured via NMR [41, 64]. LP-IR is 

calculated by adding weighting scores of six different 

lipoprotein particles [54, 64], and has been associated 

with type 2 diabetes mellitus [65] and insulin resistance 

[64]. DRI was calculated with logistic regression to find 

the regression coefficients in a model with LP-IR and a 

branch-chain amino acid (BCAA) parameter (valine + 

2 × leucine) [41]. Valine and leucine were used because 

of their associations with future diagnoses and risk of 

type-2 diabetes [66, 67]. 

 

Statistical analysis 

 

We used linear regression to investigate the associations 

between accelerated aging and NMR biomarkers. We 

used demographics from hospital records and socio-

economic data from the 2010 US Census as 

confounders to adjust for age, sex, race, smoking status, 

and the following census block group variables: Median 

household income, median household value, poverty 

rate, urbanicity, and percentage of persons with a high 

school education or more. Smoking status was not 

included in the models with Transcriptomic Age due to 

its inclusion in the estimation of Transcriptomic Age. 

Confounders were chosen based on previous studies in 

CATHGEN [31, 68–70]. Although inflammatory and 

metabolic outcomes like body fat, C-reactive protein, 

and obesity have been associated with epigenetic aging 

these outcomes are directly related to our outcomes of 

interest and thus are within the causal pathway of 

interest. Thus, we did not adjust for metabolic or 

inflammatory outcomes as these would not be 

confounders and adjusting for them could bias 

associations. 

 

The outcomes examined were GlycA, apoB, apoA-1, 

Glucose, and apoB: apoA-1 ratio, and the NMR multi-

markers (LP-IR and DRI) with the aging measures as 

the independent variable of interest. As previous studies 

have not investigated these NMR biomarkers, we also 

examined HDL and LDL as secondary analyses 

included post-hoc during the literature review process. 

These outcomes were included to facilitate comparison 

with existing literature. 

 

We ran models for each aging measure individually and 

then adjusted for multiple aging predictors to evaluate if 

aging predictors had independent associations. We 

examined one model that included all the epigenetic 

aging predictors and one that examined all the 

epigenetic aging predictors and transcriptomic age. 

Given the small overlap between the epigenetic and 

transcriptomic data, we examined both models to 
maximize sample size. We evaluated models with 

multiple aging predictors for multi-collinearity using the 

various inflation factor (VIF). 

All models were run using R version 1.3.959, and the 

results are reported as the regression coefficient from 

the linear models along with the associated 95% 

confidence interval (CI). Given some analyses' 

relatively small sample sizes, we report all associations 

with P < 0.05. Bonferroni correction was applied to  

P-values to adjust for multiple testing. Associations that 

were Bonferroni significant after correcting for the five 

aging biomarkers and seven outcomes (P < 0.05/35 = 

1.4 × 10−3) are noted in the Results and Discussion. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figure 
 

 
 

Supplementary Figure 1. Correlation between chronological age and transcriptomic age when transcriptomic age was 
calculated using different covariates. The scatterplots show the correlation between chronological age and transcriptomic age. (A–D) 

show these correlations using residuals from models for estimating transcriptomic age where the models differ in the included covariates. 
In (A) no additional covariates were included beyond the intercept (which was included in all models). In (B) the model was adjusted for 
sex. In (C) the model was adjusted for sex and smoking status. Finally, in (D) the model was adjusted for sex, smoking status, and cell 
counts. R = Pearson correlation coefficient. 
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Supplementary Tables 
 

Supplementary Table 1. Associations between accelerated ages of epigenetic and transcriptomic biomarkers 
and nuclear magnetic resonance biomarkers. 

Biomarker Aging predictor Coefficient (95% CI) P-value 

GlycA GrimAge 5.71 (4.36, 7.05) 7.94 × 10−16* 

ApoB GrimAge 0.10 (−0.35, 0.55) 0.65 

ApoA-1 GrimAge −1.03 (−1.42, −0.63) 5.50 × 10−7* 

Glu GrimAge −0.12 (−0.82, 0.59) 0.74 

ApoB: A-1 GrimAge 0.02 (−0.01, 0.06) 0.20 

GlycA Hannum Age 1.81 (0.65, 2.98) 2.30 × 10−3 

ApoB Hannum Age −0.06 (−0.42, 0.31)  0.76 

ApoA-1 Hannum Age −0.41 (−0.74, −0.08) 0.01 

Glu Hannum Age 0.37 (−0.20, 0.94) 0.21 

ApoB: A-1 Hannum Age 0.01 (−0.02, 0.04) 0.47 

GlycA Horvath Age 0.81 (−0.45, 2.07) 0.21 

ApoB Horvath Age −0.19 (−0.58, 0.21) 0.36 

ApoA-1 Horvath Age −0.29 (−0.64, 0.07) 0.12 

Glu Horvath Age 0.28 (−0.34, 0.89) 0.37 

ApoB: A-1 Horvath Age −5.22 × 10−3 (−0.03, 0.02)  0.73 

GlycA Phenotypic Age 2.88 (1.91, 3.87) 1.21 × 10−8* 

ApoB Phenotypic Age 0.07 (−0.25, 0.39) 0.67 

ApoA-1 Phenotypic Age −0.55 (−0.83, −0.26) 1.58 × 10−4* 

Glu Phenotypic Age 0.12 (−0.38, 0.61) 0.64 

ApoB: A-1 Phenotypic Age 8.96 × 10−3 (−0.01, 0.03) 0.46 

GlycA Transcriptomic Age 0.34 (−0.85, 1.53) 0.57 

ApoB Transcriptomic Age 0.05 (−0.26, 0.37) 0.74 

ApoA-1 Transcriptomic Age 0.34 (0.04, 0.63) 0.03 

Glu Transcriptomic Age 0.23 (−0.36, 0.82) 0.45 

ApoB: A-1 Transcriptomic Age −1.27 × 10−3 (−5.29 × 10−3, 2.75 × 10−3) 0.54 

Abbreviation: CI: confidence interval; *indicates Bonferroni significant P-value (P < 1.43 × 10−3). 

 

 
Supplementary Table 2. Associations between nuclear magnetic resonance biomarkers and multiple adjusted 
accelerated ages of epigenetic and transcriptomic aging biomarkers. 

Biomarker Aging predictor adjustment Aging predictor Coefficient (95% CI) P-value 

GlycA Gr + Ha + Ho + Ph + TA GrimAge 5.03 (3.01, 7.05) 1.85 × 106* 

ApoB Gr + Ha + Ho + Ph + TA GrimAge 0.45 (−0.22, 1.11) 0.19 

ApoA-1 Gr + Ha + Ho + Ph + TA GrimAge −1.13 (−1.71, −0.55) 1.83 × 10−4* 

Glu Gr + Ha + Ho + Ph + TA GrimAge −0.09 (−1.16, 0.99) 0.87 

ApoB: A-1 Gr + Ha + Ho + Ph + TA GrimAge 1.04 × 10−2 (2.9 × 10−3
, 0.02) 6.84 × 10−3 

GlycA Gr + Ha + Ho + Ph + TA Hannum Age 1.17 (−0.77, 3.12) 0.24 

ApoB Gr + Ha + Ho + Ph + TA Hannum Age 0.24 (−0.40, 0.88) 0.46 

ApoA-1 Gr + Ha + Ho + Ph + TA Hannum Age −0.60 (−1.16, −0.04) 0.04 

Glu Gr + Ha + Ho + Ph + TA Hannum Age 0.21 (−0.82, 1.25) 0.68 

ApoB: A-1 Gr + Ha + Ho + Ph + TA Hannum Age 6.27 × 10−3 (−9.74 × 10−4, 0.01) 0.09 

GlycA Gr + Ha + Ho + Ph + TA Horvath Age −2.94 (−4.86, −1.02) 2.89 × 10−3 
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ApoB Gr + Ha + Ho + Ph + TA Horvath Age −0.80 (−1.43, −0.16) 0.01 

ApoA-1 Gr + Ha + Ho + Ph + TA Horvath Age −0.12 (−0.67, 0.44) 0.67 

Glu Gr + Ha + Ho + Ph + TA Horvath Age 0.13 (−0.89, 1.15) 0.80 

ApoB: A-1 Gr + Ha + Ho + Ph + TA Horvath Age −6.89 × 10−3 (−0.01, 2.66 × 10−4) 0.06 

GlycA Gr + Ha + Ho + Ph + TA Phenotypic Age* 2.27 (0.47, 4.06) 0.01 

ApoB Gr + Ha + Ho + Ph + TA Phenotypic Age 0.18 (−0.41, 0.77) 0.55 

ApoA-1 Gr + Ha + Ho + Ph + TA Phenotypic Age 0.28 (−0.24, 0.80) 0.29 

Glu Gr + Ha + Ho + Ph + TA Phenotypic Age 0.33 (−0.62, 1.29) 0.49 

ApoB: A-1 Gr + Ha + Ho + Ph + TA Phenotypic Age −2.30 × 10−4 (−6.93 × 10−3, 6.47 × 10−3) 0.95 

GlycA Gr + Ha + Ho + Ph + TA Transcriptomic Age −0.85 (−2.90, 1.13) 0.39 

ApoB Gr + Ha + Ho + Ph + TA Transcriptomic Age 0.08 (−0.58, 0.75) 0.80 

ApoA-1 Gr + Ha + Ho + Ph + TA Transcriptomic Age 0.56 (−0.02, 1.15) 0.06 

Glu Gr + Ha + Ho + Ph + TA Transcriptomic Age −0.13 (−1.20, 0.94) 0.81 

ApoB: A-1 Gr + Ha + Ho + Ph + TA Transcriptomic Age −3.86 × 10−3 (−0.01, 3.66 × 10−3) 0.31 

Abbreviations: Gr: Grim Age; Ha: Hannum Age; Ho: Horvath Age; Ph: Phenotypic Age; TA: Transcriptomic Age; CI: confidence 
interval. *indicates Bonferroni significant P-value (P < 1.43 × 10−3). 

 

 

Supplementary Table 3. Associations between nuclear magnetic resonance biomarkers and multiple adjusted 
accelerated ages of epigenetic aging biomarkers.  

Biomarker Aging predictor adjustment Aging predictor Coefficient (95% CI) P-value 

GlycA Gr + Ha + Ho + Ph GrimAge 5.03 (3.01, 7.05) 1.83 × 10−6* 

ApoB Gr + Ha + Ho + Ph GrimAge 0.45 (−0.22, 1.11) 0.19 

ApoA-1 Gr + Ha + Ho + Ph GrimAge −1.13 (−1.72, −0.54) 2.02 × 10−4* 

Glu Gr + Ha + Ho + Ph GrimAge −0.08 (−1.16, 0.98) 0.87 

ApoB: A-1 Gr + Ha + Ho + Ph GrimAge 0.01 (2.89 × 10−3, 1.79 × 10−2) 6.88 × 10−3 

GlycA Gr + Ha + Ho + Ph Hannum Age 1.07 (−0.86, 2.99) 0.28 

ApoB Gr + Ha + Ho + Ph Hannum Age 0.25 (−0.38, 0.89) 0.43 

ApoA-1 Gr + Ha + Ho + Ph Hannum Age −0.53 (−1.09, 0.03) 0.06 

Glu Gr + Ha + Ho + Ph Hannum Age 0.20 (−0.82, 1.22) 0.70 

ApoB: A-1 Gr + Ha + Ho + Ph Hannum Age 5.80 × 10−3 (−1.39 × 10−3, 0.01) 0.11 

GlycA Gr + Ha + Ho + Ph Horvath Age −2.90 (−4.81, −0.98) 3.23 × 10−3 

ApoB Gr + Ha + Ho + Ph Horvath Age −0.80 (−1.43, −0.17) 0.01 

ApoA-1 Gr + Ha + Ho + Ph Horvath Age −0.14 (−0.70, 0.42) 0.61 

Glu Gr + Ha + Ho + Ph Horvath Age 0.14 (−0.88, 1.15) 0.79 

ApoB: A-1 Gr + Ha + Ho + Ph Horvath Age −6.72 × 10−3 (−0.01, 4.28 × 10−4) 0.07 

GlycA Gr + Ha + Ho + Ph Phenotypic Age 2.26 (0.46, 4.05) 0.01 

ApoB Gr + Ha + Ho + Ph Phenotypic Age 0.18 (−0.41, 0.77) 0.55 

ApoA-1 Gr + Ha + Ho + Ph Phenotypic Age 0.29 (−0.24, 0.81) 0.28 

Glu Gr + Ha + Ho + Ph Phenotypic Age 0.33 (−0.62, 1.28) 0.50 

ApoB: A-1 Gr + Ha + Ho + Ph Phenotypic Age −2.63x10−4 (−7.0 × 10−3, 6.43 × 10−3) 0.94 

Abbreviations: Gr: Grim Age; Ho: Horvath Age; Ha: Hannum Age; Ph: Phenotypic Age; CI: confidence interval. *indicates 
Bonferroni significant P-value (P < 1.43 × 10−3). 
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Supplementary Table 4. Associations between accelerated ages of individual epigenetic and transcriptomic 
aging predictors and nuclear magnetic resonance multi markers. 

Biomarker Aging predictor adjustment Aging predictor Coefficient (95% CI) P-value 

LP-IR Grim Age GrimAge 0.18 (−0.20, 0.56) 0.35 

DRI Grim Age GrimAge −0.29 (−0.57, −2.03 × 10−3) 0.05 

LP-IR Hannum Age Hannum Age 0.15 (−0.16, 0.46) 0.34 

DRI Hannum Age Hannum Age −0.04 (−0.28, 0.19) 0.72 

LP-IR Horvath Age Horvath Age 0.32 (−9.36 × 10−3, 0.66) 0.06 

DRI Horvath Age Horvath Age 0.06 (−0.20, 0.31) 0.67 

LP-IR Phenotypic Age Phenotypic Age 0.18 (−0.08, 0.45) 0.18 

DRI Phenotypic Age Phenotypic Age −0.09 (−0.29, 0.15) 0.40 

LP-IR Transcriptomic Age Transcriptomic Age −0.13 (−0.44, 0.18) 0.40 

DRI Transcriptomic Age Transcriptomic Age −0.02 (−0.26, 0.23) 0.88 

Abbreviation: CI: confidence interval. 

 

 

Supplementary Table 5. Associations between nuclear magnetic resonance multi markers and multiple adjusted 
accelerated ages of epigenetic and transcriptomic aging biomarkers. 

Biomarker Aging predictor adjustment Aging predictor Coefficient (95% CI) P-value 

LP-IR Gr + Ha + Ho + Ph + TA GrimAge 0.32 (−0.28, 0.93) 0.29 

DRI Gr + Ha + Ho + Ph + TA GrimAge −0.22 (−0.68, 0.24) 0.35 

LP-IR Gr + Ha + Ho + Ph + TA Hannum Age 0.16 (−0.42, 0.74) 0.59 

DRI Gr + Ha + Ho + Ph + TA Hannum Age −0.01 (−0.46, 0.43) 0.95 

LP-IR Gr + Ha + Ho + Ph + TA Horvath Age 0.13 (−0.44, 0.71) 0.64 

DRI Gr + Ha + Ho + Ph + TA Horvath Age 0.04 (−0.40, 0.48) 0.87 

LP-IR Gr + Ha + Ho + Ph + TA Phenotypic Age −0.12 (−0.66, 0.42) 0.66 

DRI Gr + Ha + Ho + Ph + TA Phenotypic Age −0.10 (−0.51, 0.31) 0.64 

LP-IR Gr + Ha + Ho + Ph + TA Transcriptomic Age −0.11 (−0.72, 0.49) 0.71 

DRI Gr + Ha + Ho + Ph + TA Transcriptomic Age −0.08 (−0.55, 0.38) 0.72 

Abbreviations: Gr: Grim Age; Ha: Hannum Age; Ho: Horvath Age; Ph: Phenotypic Age; TA: Transcriptomic Age; CI: confidence 
interval. 

 

 
Supplementary Table 6. Associations between nuclear magnetic resonance multi markers and multiple adjusted 
accelerated ages of epigenetic aging predictors.  

Biomarker Aging predictor adjustment Aging predictor Coefficient (95% CI) P-value 

LP-IR Gr + Ha + Ho + Ph GrimAge 0.32 (−0.35, 0.93) 0.29 

DRI Gr + Ha + Ho + Ph GrimAge −0.22 (−0.68, 0.24) 0.35 

LP-IR Gr + Ha + Ho + Ph Hannum Age 0.15 (−0.43, 0.72) 0.62 

DRI Gr + Ha + Ho + Ph Hannum Age −0.03 (−0.46, 0.41) 0.91 

LP-IR Gr + Ha + Ho + Ph Horvath Age 0.14 (−0.43, 0.71) 0.63 

DRI Gr + Ha + Ho + Ph Horvath Age −0.04 (−0.40, 0.48) 0.85 

LP-IR Gr + Ha + Ho + Ph Phenotypic Age −0.12 (−0.65, 0.42) 0.66 

DRI Gr + Ha + Ho + Ph Phenotypic Age −0.10 (−0.51, 0.31) 0.64 

Abbreviations: Gr: Grim Age; Ha: Hannum Age; Ho: Horvath Age; Ph: Phenotypic Age; CI: confidence interval. 
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Supplementary Table 7. Associations between LDL and HDL and accelerated ages of individual epigenetic and 
transcriptomic aging biomarkers. 

Biomarker Aging predictor Coefficient (95% CI) P-value 

HDL GrimAge −0.33 (−0.68, 0.03) 0.07 

LDL GrimAge −0.22 (−1.34, 0.90) 0.70 

HDL Hannum Age −0.32 (−0.65, 6.28 × 10−3) 0.05 

LDL Hannum Age −1.11 (−2.16, −0.07) 0.04 

HDL Horvath Age −0.29 (−0.62, 0.04) 0.08 

LDL Horvath Age −1.13 (−2.15, −0.10) 0.03 

HDL Phenotypic Age −0.30 (−0.56, −0.04) 0.03 

LDL Phenotypic Age −0.74 (−1.56, 0.09) 0.08 

HDL Transcriptomic Age −0.18 (−0.12, 0.48) 0.25 

LDL Transcriptomic Age 0.24 (−0.61, 1.09) 0.58 

Abbreviation: CI: confidence interval. 
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